医学统计学的基础知识

合集下载

医学统计学的基本内容

医学统计学的基本内容

医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。

2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。

3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。

第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。

一般有度量衡单位,每个对象之间有量的区别。

2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。

每个对象之间没有量的差异,只有质的不同。

3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。

注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。

二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。

2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。

从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。

四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。

亦称偶然事件。

五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。

,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。

表示某事件发生的可能性很小。

七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。

2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。

A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。

3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。

3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。

2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。

一是统计报表,二是经常性工作记录,三是专题调查或专题实验。

C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。

变异(variation):同质基础上的各观察单位间的差异。

变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。

变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。

医学统计学绪论

医学统计学绪论
第一章
绪论
第一章
一、重ห้องสมุดไป่ตู้内容
一、重点内容
医学统计学的定义 统计工作的基本步骤 统计资料的变量类型 统计学中的几个基本概念
医学统计学的定义 医学统计学(medical statistics)是运用概率论和数理统计的基本原理
和方法,结合医学实践,研究医疗卫生领域中资料的收集、整理和分析 的一门应用科学。
的影响因素相同或基本相同。 变异(variation):是指同质观察单位个体间某项指标数值上存在的
差异。
总体(population):是根据研究目的所确定的同质观察单位某项变 量值的集合。
样本(sample):是根据随机性原则从总体中抽取出部分具有代表性 的观察单位某项指标变量值的集合。
参数(parameter):就是用来描述总体特征的统计指标,一般是未 知的常数。
随机误差(random error):受偶然因素的影响,对同一对象的多次 测量结果不完全一致。
抽样误差(sampling error):是指在抽样过程中所产生的样本统计量 与总体参数或样本同一统计量之间的差异。
概率(probability):是描述随机事件发生可能性大小的数值。 频率(frequency):是在相同的条件下进行了n次试验,在这n次试 验中事件A发生的次数m称为事件A发生的频数,其比值m/n称为事件A 发生的频率,记为fn(A)=m/n。
第一章
二、疑难知识点
二、疑难知识点
资料类型的判断 三种误差的区分 参数与统计量的区分 小概率事件的认识
第一章
三、常考知识点
三、常考知识点
统计工作的基本步骤 统计资料类型的判别 总体与样本的概念 统计分析的内容 统计推断的内容
第一章

医学统计学复习资料

医学统计学复习资料

医学统计学第一章绪论第一节医学统计学的定义和内容1.医学统计学的主要内容 :统计推断、统计描述第二节统计工作的基本步骤1.医学统计工作可分为四个步骤:统计设计搜集资料整理资料分析资料第三节统计资料的类型医学统计资料按研究指标的性质一般分为:定量资料、定性资料、等级资料一、定量资料(计量资料)定量资料(quantitative data)是用定量的方法测定观察单位(个体)某项指标数值的大小,所得的资料称定量资料。

如身高(㎝)、体重(㎏)、脉搏(次/分)、血压(kPa,mmHg)等为数值变量,其组成的资料为定量资料。

二、定性资料(计数资料)定性资料(qualitative data)是将观察单位按某种属性或类别分组,清点各组的观察单位数,所得的资料。

亦称无序分类资料。

如:男-女分组;中医的虚、实,阴、阳等分组;按生存-死亡分组;A、B、O、AB分组。

三、等级资料等级资料(ranked data)是将观察单位按属性的等级分组,清点各组的观察单位数,所得的资料为等级资料。

亦称有序分类资料。

如治疗结果分为治愈、显效、好转、无效四个等级。

:疾病的严重程度可以分为,轻、中、重;中医辨证中舌象的颜色有,淡、红、暗、紫。

♦根据需要,各类变量可以互相转化。

♦若按贫血的诊断标准将血红蛋白分为四个等级:重度贫血、中度贫血、轻度贫血、正常,可按等级资料处理。

有时亦可将定性资料或等级资料数量化,如将等级资料的治疗结果赋以分值,分别用0、1、2…等表示,则可按定量资料处理。

第四节统计学中的几个基本概念一、同质与变异同质(homogeneity)是指观察单位或研究个体间被研究指标的主要影响因素相同或基本相同。

如研究儿童的生长发育,同性别、同年龄、同地区、同民族、健康的儿童即为同质儿童。

变异(variation)由于生物个体的各种指标所受影响因素极为复杂,同质的个体间各种指标存在差异,这种差异称为变异。

如同质的儿童身高、体重、血压、脉搏等指标会有一定的差别。

《医学统计学》完整课件超级经典

《医学统计学》完整课件超级经典

未来医学统计学研究方向建议
THANKS
感谢观看
卫生事业管理统计应用
医疗服务质量评价
通过统计学手段,对医疗服务质量进行评价和改进,提高患者满意度和医疗服务水平。
卫生政策效果评估
运用统计学知识,评估卫生政策的效果和实施情况,为政策制定和调整提供依据。
医学统计学的前景和挑战
06
医学统计学在医疗、公共卫生、生物技术等领域的应用越来越广泛,随着生物医学研究技术和数据采集技术的不断发展,医学统计学的应用前景更加广阔。
现代医学统计学的发展
现代医学统计学作为一门独立的学科,是在19世纪末20世纪初开始形成的。当时的一些著名医生,如英国的皮尔逊(Karl Pearson)和美国的费希尔(R. A. Fisher),对医学统计学的理论和方法做出了重要贡献。
早期的医学统计学
医学统计学的发展历程
VS
医学统计学的研究对象主要包括临床试验和流行病学调查所获得的各种数据,以及与这些数据相关的各种因素和条件。
推断性统计分析
医学统计学应用
05
临床试验设计
运用统计学原理和方法,对临床试验方案进行合理设计,确保试验数据的科学性和准确性。
诊断与疗效评估
通过统计学方法,对疾病的诊断、治疗和疗效进行评估,提高医疗质量和效果。
预后因素分析
运用统计学技术,分析影响疾病预后的因素,为制定个性化治疗方案提供依据。
临床医学统计应用
01
02
03
参数估计
利用样本数据对总体参数进行点估计和区间估计。
方差分析
通过设计矩阵、计算平方和及自由度、计算均方及F统计量等方法,研究多组数据间的差异。
回归分析
研究两个或多个变量之间的相关关系,建立回归模型,并对模型进行检验和预测。

医学统计学知识点

医学统计学知识点

1.一般来说,两均数比较用t检验,而两个以上均数的比较就必须用方差分析了。

t检验的应用条件:当样本含量n较小时(如n< 50=,理论上要求样本取自正态总体,两小样本均数比较时还要求两样本总体方差相等。

但在实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,则对结果亦影响不大。

u检验的应用条件:样本含量n较大,一般要求n>50。

其实,u检验和t检验都属同类,其方法步骤也基本相同,不同的地方仅在于确定P值时界值的选择。

2.两均数比较可选用t检验,(当样本含量较大,如n>100时可用u检验);两样本方差比较可选用F检验、率的比较可选用u检验或x2检验。

3.完全随机设计是分别从两个研究总体中随机抽取样本,对这两个样本均数进行比较,以推断它们所代表的总体是否一致。

4.t检验的基本步骤:①建立假设:H0、H1②确定检验水准:α=0.05③计算统计量t:根据不同的资料选用相应的计算公式④查t值表,确定P值:t ≥ tα,υP≤αt ≤ tα,υP≥α⑤统计推断结论P>0.05,接受H0,差别无显著意义;0.01<P≤0.05,拒绝H0,接受H1,差别有显著意义;P≤0.01 拒绝H0,接受H1,差别有非常显著意义。

5.t检验的注意事项①资料必须有可比性;②必须是计量资料;③资料必须呈正态或近似正态分布;④要根据不同的资料类型选用不同的计算公式;要正确理解统计结论的含义。

方差分析一、方差分析的用途及应用条件(一)用途1、检验两个或多个样本均数间的差异有无统计学意义;2、回归方程的线性假设检验;3、检验两个或多个因素间有无交互作用。

(二)应用条件1、各个样本是相互独立的随机样本;2、各个样本来自正态总体;3、各个处理组(样本)的总体方差方差相等,即方差齐。

二、 方差分析的基本思想 (一)方差分析中变异的分解此类资料的变异,可以分出三种:1、总变异:表现为所有数据大小不等,用总的离均差平方和表示,记为SS 总。

医学统计学基本知识

医学统计学基本知识

医学统计学基本知识•总体(population)指同质的研究对象中所有观察单位研究指标变量值的集合。

总体通常限定于特定的时间与空间范围之内,且为有限数量的观察单位,称为有限总体;有时总体是假设的,没有时间和空间限制,观察单位数是无限的,称为无限总体。

•样本(sample)医学实践与研究中,要直接研究无限总体通常是不可能的,即使是有限总体,由于人力、物力、时间、条件等限制,要对其中每个观察单位进行研究或观察,有时也是不可能的,也不必要。

而只是从总体中随机抽取部分观察单位,其变量实测值构成样本,目的用样本指标推断总体特征。

这种推断不要经过严谨的实验设计,以样本的可靠性和代表性为基础。

样本的可靠性:主要是使样本中每一观察单位确属同质总体。

样本的代表性:使样本能充分反映总体的实际情况,要求抽样遵循随机化原则,目的是使每个观察单位被抽得的机会相等,避免主观取舍及偏性;还要保证足够的样本量,即保证足够的观察单位个数。

•参数(parameter)统计学上描述总体变量的特征称为参数。

如总体均数、中位数和众数等体参数称为样本指标。

如以样本均数()推算总体均数(m),以样本标准差(s)推算总体标准差(s)等,值得注意的是,选择统计量作为参数估计值时,通常选择无偏、有效且一致的估计量,即对总体变量渐进无偏估计量。

计量资料(measurement data)又称定量资料(quantitative data)或数值变量(numerical variable)资料。

为测定每个观察单位某项指标的大小而获得的资料。

其变量值是定量的,表现为数值大小,一般有度量衡单位。

计数资料(enumeration data)又称定性资料(qualitative data)或无序分类变量(unordered categorical variable)资料。

为将观察单位按某属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。

其变量值是定性的,表现为互不相容的属性或类别,如试验结果的阴阳性,家族史的有无等等。

医学统计学基础

医学统计学基础

医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。

它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。

本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。

一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。

总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。

由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。

1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。

定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。

了解数据类型对选择合适的统计方法至关重要。

1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。

推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。

推断统计学可通过假设检验和置信区间来实现。

二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。

标准差则衡量了数据的离散程度,即数据的波动情况。

2.2 相关分析相关分析用于研究两个变量之间的关系。

通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。

2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。

在医学中,生存分析常用于研究患者的生存时间、复发时间等。

2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。

它适用于一组分类变量和一个连续变量的比较。

三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。

医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。

3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。

医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成组序贯设计
两组资料的统计分析方法选择(平行组设计)
两组计量资料
两组计数资料
t检验或Wilcoxon秩和检验
卡方检验或Fisher确切概率法
两组等级资料
两组生存资料
Wilcoxon秩和检验
log-rank检验
愈合
90 (66)
未愈合
30(54)
合计 120
愈合率(%) 75
单纯手术组
合计
42 (66) 132
78(54)
108
120
240
35
55
(A T) T
2
2
A :实际频数 T : 理论频数
90(66)
30(54) 78(54)
2、求检验统计量
பைடு நூலகம்42(66)
2 2 2 2 ( 90 66 ) ( 30 54 ) ( 42 66 ) ( 78 54 ) 2 66 54 66 54
P值和α的关系:假设检验的结论是通过比较P值和α 的大小做出的:P≤α, 拒绝H0,接受H1; P >α, 尚不能 拒绝H0。
假设检验的基本步骤
一、建立检验假设,确定检验水准
二、选择检验方法,计算检验统计量 三、确定P值,下结论
数据类型
计量资料:观测每个受试者某项指标的大小,而获得
的资料,如年龄、血压等。
抽取部分观察单位
总体 参数
推断inference
样本
统计量
例:某试验脱细胞粘膜基质治疗肛瘘,试验组 120例,术后1个月愈合90例,愈合率75%。
总体愈合率? 75%(67%, 82%)
参数估计
参数估计
单个样本率
单个样本均数 两个样本率差 两个样本均数差
总体率的可信区间
总体均数的可信区间 两总体率之差的可信区间 两总体均数之差的可信区间
1、反证法思想 H0:是真事! 2、计算H0成立的概率P 连续猜对100次硬币正反面的可能性 P 是多少? P=0.5100≈7.89×10-31 你认为原假设 H0 成立吗? 3、小概率原理:小概率事件在一次抽样中几乎不可能发生
一般认为P < 0.05为小概率
推断结论不大可能是真事!假事!
两个率的比较——卡方检验
假设检验
例:某试验脱细胞粘膜基质治疗肛瘘,试验组
120例,术后1个月愈合90例,愈合率75%。 传统单纯手术组120例,愈合率35%。两组疗效 有无差别? 75% VS 35%? χ2=38.79,P<0.001,差别有统计学意义。
假设检验的基本思想——小概率反证法思想
抛硬币猜正反,某人连续百次猜对,是真是假?
例:某试验脱细胞粘膜基质治疗肛瘘,评价术
后1个月愈合率。
试验组(脱细胞粘膜基质):120例,愈合90例,愈合 率75%。 对照组(单纯手术):120例,愈合42例,愈合率35%。
两组疗效有无差别?
两种疗法治疗肛瘘的效果
组别
试验组 对照组
愈合
90
未愈合
30
合计 120
愈合率(%) 75 35
42
78
例:某试验脱细胞粘膜基质治疗肛瘘,评价术
后1个月愈合率。
参数与统计量
参数:总体的统计指标,如总体均数、总体率。 是固定的常数。 统计量:样本的统计指标,如样本均数、样本 率。是在参数附近波动的随机变量。 抽样误差:样本统计量与总体参数间的差别。
抽样误差是由抽样所造成的,其本质原因是生物个体的变异 性。抽样误差是不可避免的,但可以控制和计算的。
38.79
3、查表,求 P 值,下结论
P 0.001
结论:按 0.05的水准,拒绝 H 0 ,接受 H1 ,认为两 组总体愈合率不同(统计结论),试验器械的愈合率要 高于单纯手术组(专业结论)。
χ2检验的基本思想
H 0 : 1 2成立
A与T相差不大
怀疑H 0 : 1 2成立
计数资料:将受试者按某种属性或类别分组计数,分
组汇总后而得到的资料,如性别、愈合与否等。
等级资料:半定性或半定量观察结果,有大小顺序。
如临床疗效(显效、有效、无效)等。
生存资料:生存时间和删失情况两个变量,如OS。
设计类型

平行组设计 单组设计 自身对照设计 交叉设计 析因设计
医学统计学 统计学:是关于批量数据资料收集、分 析、解释与表达的普遍原理和方法。 医学统计学:用统计学理论和方法研究
生物医学问题的一门应用学科。
医学统计学工作

统计设计 收集资料 整理资料 统计分析 统计推断 数据管理
统计描述
参数估计 假设检验
总体与样本 总体:根据研究目的而确定的同质观察单位 的全体。 样本:从总体中抽取的部分观察单位。
120
两种可能性:
1. 两组总体愈合率确实不同
2. 两组总体愈合率相同,两组样本率的差异仅仅由抽样误差造成
假设检验
1、建立检验假设,确定检验水准
H 0 :1 2(两组总体愈合率相同)
H1:1 (两组总体愈合率不同) 2
0.05
两种疗法治疗肛瘘的治疗结果
组别 脱细胞粘膜基质组
A与T相差太大
χ 值小,P值大
2
χ 值大,P值小,P
2
假设检验的两类错误
假设检验是针对H0,利用小概率事件的原理对总体参数 做出统计推论。无论拒绝H0还是不拒绝H0,都可能犯错误。
Ⅰ类错误和Ⅱ类错误
假设检验结论
真实情况
拒绝H0,接受H1
H0成立 H0不成立即H1成立
不拒绝H0 推断正确(1-α )
Ⅰ类错误 α
推断正确(1-β)
Ⅱ类错误β
α与β的关系
减少(增加)I类错误,将会 增加(减少)II类错误 增大n 同时降低 与b
b
α与P值的关系
α是事先规定的检验水准,是人为设定的犯Ⅰ类错误
的最大概率。
P值是指由H0规定的总体中进行随机抽样,得到现有
样本统计量以及更极端统计量的概率。
相关文档
最新文档