江苏省无锡市天一实验学校2018届中考第三次适应性考试数学试题
无锡市天一实验学校中考第三次适应性练习数学试题

2014.5一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.如图,数轴上点A 所表示的数的倒数是( ▲ )A .2-B .2C .12D .12-2.下面是一位同学做的四道题:①()b a ab 33=;②1-=+--ba ba ;③326a a a =÷; ④222)(b a b a +=+ 其中做对了几道题 ( ▲ ) A .0 B .1 C .2 D .33.函数351++=x y 中,自变量x 的取值范围是 ( ▲ )A .5>xB .5-≥xC .5-≤xD .5->x 4.如图,所给图形中是中心对称图形但不是轴对称图形的是 ( ▲ )A .B .C .D .5.下列事件是确定事件的是( ▲ ) A .阴天一定会下雨B .黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .在学校操场上向上抛出的篮球一定会下落6. 如图是一个直三棱柱,则它的平面展开图中,错误的是( ▲ )第6题图 A . B . C . D .7.如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则∠BCD的度数为( ▲ ) A .27° B .54° C .63° D .36° 8.若一个多边形的每一个外角都是45°,则这个正多边形的边数是( ▲ )A .10B .9C .8D .6102030405060708017016015014013012011010010203040506070801701601501401301201101000090180180DC BAOCABOEF第7题图 第10题图9.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( ▲ )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >10.如图,EF 是△ABC 的中位线,O 是EF 上一点,且满足OE = 2OF .则△ABC 的面积与△AOC 的面积之比为 ( ▲ )A .2B .23 C .35D .3 二、填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,只需把答案直接填写在答题..卡上相应的位置.......) 11.因式分解:=+-8822a a ▲ .12.根据国际货币基金组织IMF 的预测数据,2013年世界各国GDP 排名中国位居第二,GDP 总量为9万零386亿美元, 则中国的GDP 总量用科学记数法可表示为 ▲ 亿美元13.已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的中位数是 ▲ . 14.一元二次方程0132=+-x x 的两根为x 1、x 2,则x 1 + x 2 = ▲ .15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm ,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为 ▲ cm .16.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为 ▲ .17.如图,点P 在双曲线y =kx(x >0)上,⊙P 与两坐标轴都相切,点E 为y 轴负半轴上的一点,过点P 作PF ⊥PE 交x 轴于点F ,若OF -OE =6,则k 的值是 ▲ .18.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O 按顺时针方向旋转α度(0<α ≤180°)得到四边形OA ′B ′C ′,此时直线OA ′、直线B ′C ′分别与直线BC 相交于P 、Q .在四边形OABC 旋转过程中,若BP =21BQ ,则点P 的坐标为 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分) 计算:(1)计算:022014212+⎪⎭⎫⎝⎛--- (2)化简: 121112--÷⎪⎭⎫ ⎝⎛--x x x20.(本题满分8分)(1)解不等式组:⎩⎪⎨⎪⎧x -32+3≥x ,1-3(x -1)<8-x .(2) 解方程:1223x x =+21.(本题满分8分)区教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动。
江苏省无锡市2018年中考数学试卷及答案解析(word版)

2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a <0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应销量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( ) A .100元 B .95元C .98元D .97.5元8.(3分)如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A .0B .1C .2D .39.(3分)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于B .等于C .等于D .随点E 位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条 B.5条 C.6条 D.7条二、填空题(本大题共8小题,每小题2分,共16分。
无锡市2018年初三年级数学试题中考模拟考试含答案.docx

无锡市 2018 年初三年级数学试题中考模拟考试含答案2018.4一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰有一项 是符合题目要求的, 请将正确选项的序号填写在题答题卡的相应的括号内. ....1.- 3 的倒数是()11A .3B . 3C .± 3D .- 3 .2.使 x-2 有意义的 x 的取值范围是( ) A .x > 1 B . x >2 C . x ≥ 2 12 D . x ≥ .23.下列事件中最适合使用普查方式收集数据的是 ( )A .了解某班同学的体重情况B .了解我省初中学生的兴趣爱好情况C .了解一批电灯泡的使用寿命D .了解我省农民工的年收入情况.4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是(5.方程 2x - 1= 3x +2 的解为 A.B .C .A .x = 1B . x =- 1C . x = 36.如图 A , D 是⊙ O 上两点, BC 是直径.若∠D=35 ,则∠ OAB A .35B . 55 C . 65D .70 )D .(D . x =- 3.的度数是(.))7.下列图形中,是轴对称图形但不是中心对称图形的是()A .等边三角形B .平行四边形C .矩形D .圆.8.如图,直线 a ∥ b ,三角板的直角顶点放在直线b 上,两直角边与直线 a 相交,如果∠ 1=55 °,那么∠ 2 等于()A. 65°B .55°C .45°D. 35 .°9.如图, 将正方形 ABCD 的一角折向边CD ,使点 A 与 CB 上一点 E 重合,若 BE =1,CE=2,则折痕 FG 的长度为( )A. 10B. 2 2C . 3D . 4 .A ADGD1aF D /COB2bBEC第 8 题图第 6 题图第 9 题图10.经过点 (2,- 1)作一条直线和反比例函数y2相交, 当他们有且只有一个公共点时,x这样的直线存在( )A . 2 条B. 3 条 C.4条D.无数条.二、填空题(本大题共8 小题,每小题 2 分,共 16 分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11. 2017 年我市参加中考的人数大约有11000 人,将 11000 用科学记数法表示为.12.因式分解: ab2- 9a=.13.当x =1时,分式x+2无意义 .k14.若反比例函数 y= x的图像经过点A(2, 5)和点 B( 1, n),则 n=.15.已知圆柱的底面半径为3cm,母线长为 5cm,则圆柱的侧面积是cm.16.居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过 2880度的电量,执行第一档电价标准为0.48 元/度;全年用电量在2880 度到 4800度之间(含4800),超过2880 度的部分,执行第二档电价标准为0.53元 /度;全年用电量超过 4800 度,超过 4800 度的部分,执行第三档电价标准为0.78 元/度.小敏家 2017年用电量为3000 度,则2017 年小敏家电费为元.17.在四边形 ABCD 中,AD = 4,CD =3,∠ ABC=∠ ACB=∠ ADC = 45°,则 BD 的长为.D ACB第17 题18.在平面直角坐标系中,已知平行四边形ABCD 的点 A ( 0,-2)、点 B( 3m, 4m+1)(m≠-1),点 C( 6, 2),则对角线B D 的最小值是.三、解答题(本大题共 10 小题,共84 分.请在答题卡题目下方空白处作答,解答时应.......写出文字说明、证明过程或演算步骤)19.(本小题满分 8 分)计算 :( 1) tan30o- (- 2)2-.( 2) (2x- 1)2+( x-2)(x+2) .20. (本题满分8 分 )( 1)解方程:1xx- 3(x-2)≤4,= 2+.( 2)解不等式组:1+2x> x-1.x- 33-x321. (本题满分 6 分)如图,正方形AEFG的顶点 E、G 在正方形 ABCD的边 AB、AD 上,连接BF 、 DF .(1) 求证: BF=DF ;(2) 连接 CF,请直接写出CF(不必写出计算过程) .的值为BEB CEFAGD22.(本题满分 6 分)某校组织学生书法比赛,对参赛作品按 A、B、C、 D 四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:分析结果的扇形统计图人数分析结果的条形统计图6048D 级 A 级5020%40C 级302430%B 级2010根据上述信息完成下列问题:B C 等级A D 图①图②(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;( 3)已知该校这次活动共收到参赛作品750 份,请你估计参赛作品达到 B 级以上(即A 级和 B 级)有多少份?23. (本题满分8 分)甲、乙两人用手指玩游戏,规则如下:(1)每次游戏时,两人同时随机地各伸出一根手指;( 2)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,( 1)求甲伸出小拇指取胜的概率(请用“画树状图”或“列表”等方法写出分析过程);( 2)求乙取胜的概率.24.(本题满分 8 分)如图,△ ABC 中, AB=AC,以 AB 为直径的⊙ O 与 BC 相交于点 D,与 CA 的延长线相交于点 E,过点 D 作 DF⊥ AC 于点 F.(1)试说明 DF 是⊙ O 的切线;(2)若 AC=3 AE,求 tanC.25、(本题满分 10分)今年我市某公司分两次采购了一批第 24 题大蒜,第一次花费40 万元,第二次花费 60 万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500 元,第二次采购时每吨大蒜的价格比去年的平均价格下降了 500元,第二次采购的数量是第一次采购数量的两倍.( 1)试问去年每吨大蒜的平均价格是多少元?( 2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8 吨大蒜,每吨大蒜获利 1000 元;若单独加工成蒜片,每天可加工12 吨大蒜,每吨大蒜获利600 元 . 为出口需要,所有采购的大蒜必须在30 天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半. 为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?226.(本题满分 10 分)在平面直角坐标系xOy 中,抛物线y= mx +6mx+n( m> 0)与x 轴交于 A,B 两点(点 A 在点 B 左侧),顶点为 C,抛物线与y 轴交于点 D ,直线 BC 交 y 轴于 E,且△ ABC 与△ AEC 这两个三角形的面积之比为2∶ 3.( 1)求点 A 的坐标;( 2)将△ACO 绕点 C 顺时针旋转一定角度后,点 A 与求抛物线的解析式.B 重合,此时点O 恰好也在y 轴上,27.(本题满分 10 分)已知,如图,在边长为10 的菱形 ABCD 中, cos∠ B=3,点 E 为 BC 10边上的中点,点 F 为边 AB 边上一点,连接EF,过点 B 作 EF 的对称点 B’,( 1)在图( 1)中,用无刻度的直尺和圆规作出点B’(不写作法,保留痕迹);( 2)当△EFB ’为等腰三角形时,求折痕EF 的长度.(3)当 B’落在 AD 边的中垂线上时,求BF 的长度.A D A D A DF F FB EC B E C B EC图 1备用图备用图28.(本题满分 10 分)【缘起】苏教版九下56,“如图1,在Rt△中,∠=90°,CDP ABC ACB是△ ABC 的高,则△ ACD 与△ CBD 相似吗?”于是,学生甲发现CD2=AD ·BD 也成立.问题 1:请你证明 CD 2=AD ·BD ;CA D B图 1学生乙从CD2=AD ·BD 中得出:可以画出两条已知线段的比例中项.问题 2:已知两条线段AB 、BC 在 x 轴上,如图 2:请你用直尺(无刻度)和圆规作出这两条线段的比例中项.要求保留作图痕迹,不要写作法,最后指出所要作的线段.yA O ( B)Cx图 2学生丙也从 CD 2=AD·BD 中悟出了矩形与正方形的等积作法.问题 3:如图 3,已知矩形 ABCD ,请你用直尺(无刻度)和圆规作出一个正方形BMNP ,使得 S 正方形BMNP =S 矩形ABCD.要求:保留作图痕迹;简要写出作图每个步骤的要点.D CA B图3参考答案与评分标准一、 :1.D 2. C 3. A 4. B 5. D 6. B 7. A 8. D 9. A 10. C二、填空 :11 .1.1× 10412. a(b+3)(b-3) 13. x =- 214.1015 .30π 16.144617. 4118. 6三、解答 :19 .解:( 1)原式=3- 4 - 23 ⋯⋯( 3 分)(2)原式= 4x 2-4x + 1+( x 2- 4)=34 3( 4 分)= 4x 2- 4x +1+x 2- 4 ⋯( 3 分)- 63= 5x 2- 4x-3.⋯⋯( 4 分)20 .解:( 1) 1=2( x-3)-x⋯( 2 分)( 2)第 1 个不等式解得: x ≥ 1∴ x=7 ⋯( 3 分)第 1 个不等式解得: x < 4⋯( 2 分)x=7 是原方程的解.⋯( 4 分)∴原不等式 的解集 1≤ x <4 ⋯( 4 分)21 .( 1)略⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)( 2) 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)22 .( 1) 120⋯⋯( 2 分)( 2) 略, C :40; D : 12每个 1 分( 4 分)( 3) 750×4824= 450(份).⋯⋯⋯⋯⋯( 6分)120123 .解:(1)画 状 或列表略⋯⋯⋯⋯( 6 分)画 状 或列表正确,得5 分, 正( 2)125确 1 分⋯⋯⋯⋯⋯( 8 分)524. 解析: ( 1) 明: 接 OD ,∵ OB=OD , ∴∠ B=∠ ODB ,⋯⋯⋯⋯⋯( 1 分)∵ AB=AC , ∴ ∠ B= ∠ C , ∴ ∠ ODB= ∠ C , ∴ OD ∥ AC , ⋯⋯⋯⋯⋯⋯( 2 分)∵ DF ⊥ AC , ∴ OD ⊥ DF , ⋯⋯⋯( 3 分)∴ DF 是⊙ O 的切 ;⋯⋯⋯(( 2)解: 接BE , ∵ AB 是直径,∴∠ AEB=90°,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)5 分)∵ AB=AC , AC=3AE ,∴ AB=3AE , CE=4AE , 22∴ BE= AB -AE =2 2 AE , ⋯⋯⋯( 6 分)BE 2 2AE2在 Rt △ BEC 中, tanC=AE = 4AE = 225.解:( 1) 去年每吨大蒜的平均价格是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( x 元,8 分)由 意得,4000002600000⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)x 500x 500解得: x =3500, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (3 分): x =3500 是原分式方程的解,且符合 意,⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)答:去年每吨大蒜的平均价格是 3500 元;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5 分)( 2)由( 1)得,今年的大蒜数 : 40000040003 300(吨)⋯⋯⋯⋯(6 分)将 m 吨大蒜加工成蒜粉, 将( 300 m )吨加工成蒜片,由 意得,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7 分)解得: 100≤m ≤120, ⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)利 : 1000 +600(300)=400+180000,⋯⋯⋯⋯⋯⋯⋯⋯⋯(9 分)mm m当 m =120 ,利 最大, 228000 元. 答: 将120 吨大蒜加工成蒜粉,最大利 228000 元. ⋯⋯⋯(10 分)26.解:( 1)抛物 y =mx 2 +6mx + n (m > 0),得到 称 x=-2,⋯⋯⋯( 1 分)①当 S △ ABC : S △AEC =2∶ 3 , BC : CE=2: 3,∴ CB : BE=2:1∵ OF=3,∴ OB=1,即 B (- 1, 0)∴ A(-5, 0), B(- 1, 0), ⋯⋯( 2 分)②当 S △ABC : S △AEC =3∶ 2 , BC :CE=3 : 2,∴ CD : BD =2: 1∴ A(-15, 0), B( 3, 0), ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)22( 2)①当 A(- 5, 0),B(-1, 0) ,把 B(- 1, 0)代人 y = mx 2得, n=5m ⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)+6mx + n m =6 , n= 546 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5 分)4∴ y =6 x 2+ 3 6 x+ 5 6 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)4 2 4②当 A(-15 , 0), B(3, 0) ,22把 B( 3,0)代人 y = mx 2+6mx + n 得, n= -45m ⋯⋯⋯⋯⋯⋯(7 分)24m =2 5, n=-55 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9 分)276∴ y =2 5x 2+ 4 5 x -5 5.⋯⋯⋯⋯⋯⋯⋯( 10 分)279627.解:( 1)尺 作 略.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)( 2)① 当 B ’E=EF , EF=5,⋯⋯⋯⋯⋯( 3 分)②当 B ’E=B ’F , EF= 35 ,⋯⋯⋯⋯⋯( 4 分) ③当 EF=B ’F , EF=25⋯⋯⋯⋯⋯( 5 分)3上: EF=5,35 , 25⋯⋯⋯⋯⋯( 6 分)3(3) 2 91 - 12⋯⋯⋯⋯⋯( 10 分)y5D28.解:( 1)明略⋯⋯⋯( 2 分)( 2) CD所要画的段⋯⋯⋯( 4 分)( 3)①延 AB 至 E,使得 BE=BC;A O (B) C x②以 AE 直径,画半 O,与 BC 的延相交于M图 2③以 BM 做正方形 BMNP⋯⋯⋯⋯⋯( 7 分)N MD C⋯⋯⋯⋯⋯( 10 分)AP O B E。
〖中考零距离-新课标〗2018年江苏省无锡市中考数学第三次模拟试题及答案解析一

第9题图第8题图2018年无锡市初三三模数学试卷一、选择题:(本大题共10小题,每题3分,共30分.) 1、下列图形中,既是轴对称图形,又是中心对称图形的是(▲ ) A .正三角形 B .平行四边形 C .矩形 D .等腰梯形 2、计算32)2(b a -的结果是 ( ▲ )A .366b a - B .b a 28- C .362b a - D .368b a -3、若a b 3a b 7+=-=,,则22a b -的值为 ( ▲ ) A .-21 B .21 C .-10 D .104、在下列二次根式中,与2是同类二次根式的是 ( ▲ ) A .4 B .6 C .12 D .185、已知直角三角形ABC 的一条直角边AB=4cm ,另一条直角边BC=3 cm ,则以AB 为轴旋转一周,所得到的圆锥的侧面积是 ( ▲ )A .230cm πB .215cm πC .212cm πD .220cm π6、在某校“我的中国梦”演讲比赛中,有15名学生参加决赛,他们决赛的最终成绩各不相同。
其中的一名学生想要知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的( ▲ ).A .众数B .方差C .平均数D .中位数7、 若二次函数2()1y x m =--.当x ≤ 3时,y 随x 的增大而减小,则m 的取值范围是A .m = 3B .m >3C .m ≥ 3D .m ≤ 3 ( ▲ )8、如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是( ▲ ) A .PA ,PB ,AD ,BCB .PD ,DC ,BC ,AB C .PA ,AD ,PC ,BCD .PA ,PB ,PC ,AD9、如图,在直角坐标系中放置一个边长为2的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 第三次回到x 轴上时,点A 运动的路线与x 轴围成的图形的面积和为( ▲ )A .ππ+2B .22+πC .ππ323+D .66+π10.如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动.在运动过程中,点B 到原点的最大距离是( ▲ ) A .6B .26C .25D .22+2第15题 第18题第17题二、填空(本大题共8小题,每题2分,共16分) 11、函数xy -=11中自变量x 的取值范围是▲.12、我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为▲元.13、已知点A (x 1,y 1)、B (x 1―3,y 2)在直线y =―2x +3上,则y 1 ▲ y 2 (用“>”、“<”或“=”填空)14、若关于x 的二次方程032=+++a ax x 有两个相等的实数根,则实数a = ▲ 15、如图,点A 在双曲线x y 3=上,点B 在双曲线xy 5=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为平行四边形,则它的面积为▲16、如图,方格纸中有三个格点A 、B 、C ,则点A 到BC 的距离为=▲.17、如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为_ _▲__18、如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3n-2)步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,第2016次电子跳蚤能跳到的圆圈内所标的数字为___▲__三、解答题(本大题共10小题,共84分) 19、(每小题5分,共10分)①解不等式组⎪⎩⎪⎨⎧+<≥+325,5)5.1(2m m m ,并将解集在数轴上表示出来 .②先化简,再求代数式的值:a a a a a -÷⎪⎭⎫⎝⎛+--+112122,其中13-=a .20、(本题满分6分)如图,线段AB 绕点O 顺时针旋转一定的角度得到线段A 1B 1. (1)请用直尺和圆规作出旋转中心O (不写作法,保留作图痕迹);(2)连接OA 、OA 1、OB 、OB 1,如果∠AO A 1=∠BOB 1=α;OA =OA 1=a ;OB =OB 1=b .则线段AB 扫过的面积是▲.111210987654321AB A 1B 121、(本题满分6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:AB=CD22、(本题满分8分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了▲名同学;(2)条形统计图中,m= ▲,n= ▲;(3)扇形统计图中,艺术类读物所在扇形的圆心角是▲度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?23、(本题满分7分)现有4根小木棒,长度分别为:2、3、3、5(单位:cm),从中任意取出3根,请用画树状图或例举法求它们能首尾顺次相接搭成三角形的概率.24、(本题满分8分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=8米,AE=10米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.)25、(本题满分9分)某景区门票价格80元/人,为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(1)a=___▲____,b=___▲_____(2)直接写出y 1、y 2与x 之间的函数关系式;(3)导游小王4月15日(非节假日)带A 旅游团, 5月1日带B 旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A 、B 两个旅游团各多少人?26.(本题满分10分)已知点O 是四边形ABCD 内一点,AB=BC ,OD=OC ,∠ABC=∠DOC=α. (1)如图1,α=60°,探究线段AD 与OB 的数量关系,并加以证明; (2)如图2,α=120°,探究线段AD 与OB 的数量关系,并说明理由;(3)结合上面的活动经验探究,请直接写出如图3中线段AD 与OB 的数量关系为 ▲ (直接写出答案)27.(本题满分10分) 在平面直角坐标系xOy 中,定义直线y=ax+b 为抛物线y=ax 2+bx 的特征直线,C (a ,b )为其特征点.设抛物线y=ax 2+bx 与其特征直线交于A 、B 两点(点A 在点B 的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为___▲___; (2)若抛物线y=ax 2+bx 如图所示,请在所给图中标出点A 、点B 的位置; (3)设抛物线y=ax 2+bx 的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐标为(1,0),DE ∥CF .①若特征点C 为直线y=-4x 上一点,求点D 及点C 的坐标;②若21<tan ∠ODE <2,则b 的取值范围是___▲___.28、(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,直线6+-=x y 交y 轴于点A ,交x 轴于点B ,点C 、B 关于原点对称,点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P 、D 、B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF . (1)求A 、B 、C 三点的坐标;(2)当点P 在线段AB (不包括A ,B 两点)上时.求证:DE=EF ;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.数学答案及评分标准一、选择题:(本大题共10小题,每题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 答案CDADBDCADD二、填空(本大题共8小题,每题2分,共16分)11、x<1 12、6.8810⨯ 13、 < 14、6或-215、2 16、55917、21-2 18、10 三、解答题(本大题共10小题,共84分)19、m ≥1 (1分) m<2 (1分)∴1≤m<2 (1分) 数轴表示 (2分)②先化简,再求代数式的值:a a a a a -÷⎪⎭⎫⎝⎛+--+112122,其中13-=a . 化简得,原式=a+13(3分), 当13-=a 时,原式=3 (2分) 20、(本题满分6分) ⑴作图 4分 (2))(36022a b -∂π (2分) 21、(本题满分6分) 略 22、(本题满分8分) (1)200 (2分) (2)m=40,n=60;(2分) (3)72度;(2分) (4)750本 (2分) 23、(本题满分7分) 树状图 (4分)P(搭成三角形)=21(3分) 24、(本题满分8分) (1)BH=4 (4分)(2)CD=14-63≈3.6 (4分) 25、(本题满分9分) (1)a=6,b=8 (2分) (2)y 1=48xy 2=80x (0≤x ≤10)y 2=64x+160(x>10) (3分) (3)设A 团有n 人,B 团有(50-n)人 若50-n>10 则48n+64(50-n)=160=3040 n=20 (2分)若50-n ≤10 则48n+80(50-n)=3040 n=30(不合题意,舍去) (2分) 答:A 团有20人,B 团有30人 26.(本题满分10分) 解:(1)AD=OB ,(1分)如图1,连接AC ,∵AB=BC ,OD=OC ,∠ABC=∠DOC=60°,∴△ABC 与△COD 是等边三角形, ∴∠ACB=∠DCO=60°, ∴∠ACD=∠BCO , 在△ACD 与△BCO 中,,∴△ACD ≌△BCO , ∴AD=OB ; (3分)(2)AD=OB ;(1分)如图2,连接AC ,过B 作BF ⊥AC 于F , ∵AB=BC ,OD=OC ,∠ABC=∠DOC=120°, ∴∠ACB=∠DCO=30°,∴∠ACD=∠BCO ,∴△ACD ∽△BCO ,∴,∵∠CFB=90°,∴=2sin60°=,∴AD=OB ; (3分)(3)如图3,连接AC ,过B 作BF ⊥AC 于F , ∵AB=BC ,OD=OC ,∠ABC=∠DOC=α,∴∠ACB=∠DCO=,∴∠ACD=∠BCO ,∴△ACD ∽△BCO ,∴,∵∠CFB=90°,∴=2sin,∴AD=2sinOB . (2分)27.(本题满分10分) (1)(3,0) (2分)(2) 图 (每点1分)A(1,a+b) B (ab -,0) (3)① C 在直线y=-4x 上,所以b=-4a 抛物线为y=a ax 42-对称轴为x=2, 所以D (2,0)∵E(0,-4a) C(a,-4a) ∴CE ∥DF 又∵DE ∥CF 所以CEDF 为平行四边形,CE=DF=1 ∴a=-1 C(-1,4) (4分)②21-≤b<0 或485<<b (2分)28、(本题满分10分) 解:∴A (0,6),B (6,0)∴C (-6,0),(3分) (2)①由已知得:OB=OC ,∠BOD=∠COD=90°, 又∵OD=OD ,∴△BDO ≌△CDO ,∴∠BDO=∠CDO ,∵∠CDO=∠ADP ,∴∠BDE=∠ADP ,如图1,连结PE ,∴∠ADB=∠PDE ∵∠DEP=∠ABD , ∴△DEP 相似于△ADB ∴ ∠DPE=∠OAB , ∵OA=OB=6,∠AOB=90°,∴∠OAB=45°, ∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF 是⊙Q 的直径,∴∠DEF=90°,∴△DEF 是等腰直角三角形, ∴DE=EF 。
2018年江苏省无锡市中考数学试卷(附参考解析)

2018年江蘇省無錫市中考數學試卷一、選擇題(本大題共10小題,每小題3分,共30分。
在每小題所給出的四個選項中,只有一項是正確的,請用2B鉛筆把答題卡上相應的選項標號塗黑) 1.(3分)下列等式正確的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函數y=中引數x的取值範圍是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列運算正確的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下麵每個圖形都是由6個邊長相同的正方形拼成的圖形,其中能折疊成正方體的是()A.B.C.D.5.(3分)下列圖形中的五邊形ABCDE都是正五邊形,則這些圖形中的軸對稱圖形有()A.1個 B.2個 C.3個 D.4個6.(3分)已知點P(a,m),Q(b,n)都在反比例函數y=的圖象上,且a <0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商場為了解產品A的銷售情況,在上個月的銷售記錄中,隨機抽取了5天A產品的銷售記錄,其售價x(元/件)與對應銷量y(件)的全部數據如下表:9095100105110售價x(元/件)銷量y(件)110100806050則這5天中,A產品平均每件的售價為()A.100元B.95元C.98元D.97.5元8.(3分)如圖,矩形ABCD中,G是BC的中點,過A、D、G三點的圓O與邊AB、CD分別交於點E、點F,給出下列說法:(1)AC與BD的交點是圓O的圓心;(2)AF與DE的交點是圓O的圓心;(3)BC與圓O相切,其中正確說法的個數是()A.0 B.1 C.2 D.39.(3分)如圖,已知點E是矩形ABCD的對角線AC上的一動點,正方形EFGH 的頂點G、H都在邊AD上,若AB=3,BC=4,則tan∠AFE的值()A .等於B .等於C .等於D.隨點E位置的變化而變化10.(3分)如圖是一個沿3×3正方形方格紙的對角線AB剪下的圖形,一質點P由A點出發,沿格點線每次向右或向上運動1個單位長度,則點P由A點運動到B點的不同路徑共有()A.4條 B.5條 C.6條 D.7條二、填空題(本大題共8小題,每小題2分,共16分。
江苏省无锡市2018年中考数学试题(含答案)(精选)

2018无锡中考试卷一、选择题:(本大题共10小题,每小题3分 共30分) 1.下列等式正确的是( A ) A.()23=3 B.()332-=- C.333= D.()332-=-2.函数xxy -=42中自变量x 的取值范围是( B ) A.4-≠x B.4≠x C.4-≤x D.4≤x3.下列运算正确的是( D ) A.532a a a =+ B.()532a a = C.a a a =-34 D.a a a =÷344.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( C )A. C. D.5.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( D )A.1个B.2个C.3个D.4个6. 已知点P (a ,m )、Q (b ,n )都在反比例函数xy 2-=的图像上,且a<0<b,则下列结论一定成立的是( D ) A. m+n<0 B.m+n>0 C.m<n D.m>n 7. 某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应的销售量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( C ) A.100元 B.95元 C.98元 D.97.5元8. 如图,矩形ABCD 中,G 是BC 中点,过A 、D 、G 三点的圆O 与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;BC 与圆O 相切。
其中正确的说法的个数是( C )A.0B.1C.2D.39. 如图,已知点E 是矩形ABCD 的对角线AC 上一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( A )A. 等于73B.等于33C.等于43 D.随点E 位置的变化而变化【解答】EF ∥AD∴∠AFE=∠FAG △AEH ∽△ACD ∴43=AH EH 设EH=3x,AH=4x ∴HG=GF=3x∴tan ∠AFE=tan ∠FAG=AG GF =73433=+x x x10. 如图是一个沿33⨯正方形格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( B ) A.4条 B.5条 C.6条 D.7条【解答】A∴有5条路径,选B二、填空题(本大题共8小题,每小题2分,共16分) 11、-2的 相反数的值等于 . 【解答】212、今年“五一”节日期间,我市四个旅游景区共接待游客约303 000多人次,这个数据用科学记数法可记为 . 【解答】53.0310⨯13、方程31x xx x -=+的解是 . 【解答】32x =-14、225x y x y -=⎧⎨+=⎩的解是 .【解答】31x y =⎧⎨=⎩15、命题“四边相等的四边形是菱形”的逆命题是 .【解答】 菱形的四边相等16、如图,点A 、B 、C 都在圆O 上,OC ⊥OB ,点A 在劣弧⌒BC 上,且OA=AB ,则∠ABC= .【解答】15°17.已知△ABC中,AB=10,AC=,∠B=30°,则△ABC 的面积等于 .【解答】18、如图,已知∠XOY=60°,点A 在边OX 上,OA=2,过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD//OY 交OX 于点D ,作PE//OX 交OY 于点E ,设OD=a ,OE=b,则a+2b 的取值范围是 .【解答】过P 作PH ⊥OY 交于点H ,易证EH=1122EP a = ∴a+2b=12()2()22a b EH EO OH +=+=当P 在AC 边上时,H 与C 重合,此时min 1OH OC ==,min (2)2a b += 当P 在点B 时,max 35122OH =+=,max (2)5a b +=∴2(25)a b +≤≤X19、(本题满分8分)计算:(1)02)6(3)2(--⨯-; (2))()1(22x x x --+【解答】 (1)11 (2)31x + 20、(本题满分8分)(1)分解因式:x x 2733- (2)解不等式:⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅⋅⋅-≤⋅⋅⋅⋅⋅⋅⋅->+②),12(311-x ①,112x x x【解答】(1)3(3)(3)x x x +-(2)-2<x ≤2 21、(本题满分8分)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE【解答】ABCD 为平行四边形 AD=AB,CE=AF,∠C=∠A易证△ABF ≌△CDE (SAS )∴∠ABF=∠CDE 22、(本题满分6分)某汽车交易市场为了解二手轿车的交易情况,将本市去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A 、B 、C 、D 、E 五类,并根据这些数据由甲、乙令人分别绘制了下面的两幅统计图(图都不完整)请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手车 3000 辆(2)把这幅条形统计图补充完整。
江苏省无锡市天一实验学校中考数学第三次适应性考试试题

江苏省无锡市天一实验学校2018届中考数学第三次适应性考试试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.下列计算正确的是A .22434x x x +=B .23422x y x x y ⋅= C .332(6)32x y x x ÷= D .22(3)9x x -= 2.下列式子中,是最简二次根式的是 A .34B .30C .3x D .27a 3.若关于的方程2(1)210m x x -++=有两个不相等的实数根,则m 的取值范围是 A .2m > B .2m < C .2m >且1m ≠ D .2m <且1m ≠ 4.已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是A .a b a b +=+B .a b a b +=-C .a b a b -=+D .a b a b -=- 5.已知圆的半径为3cm ,圆心到直线l 的距离为2cm ,则直线l 与该圆的公共点的个数是 A .0 B .1 C .2 D .不能确定 6.点A(m ,﹣3m +2)不在A .第一象限B .第二象限C .第三象限D .第四象限 7.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 一定是 A .矩形 B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形8.有下列说法:①弦是直径;②半圆是弧;③圆中最长的弦是直径;④半圆是圆中最长的弧;⑤平分弦的直径垂直于弦,其中正确的个数有A .1个B .2个C .3个D .4个9.如图,正方形ABCD 的边长为4,点E 是AB 上的一点,将△BCE 沿CE 折叠至△FCE ,若CF ,CE 恰好与以正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为 A .433 B .833C .5D .25第10题第9题 第15题 10.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,在△ABC 内并排(不重叠但可以有空隙)放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB 上,首尾两个正方形各有一个顶点分别在AC 、BC 上,依次这样摆放上去,则最多能摆放的小正方形纸片的个数为A .14B .15C .16D .17二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上) 11.函数13y x =-+中自变量的取值范围是 ▲ .12.分解因式:22416a b -= ▲ .13.地球与太阳之间的距离约为149600000千米,这个数据用科学记数法表示为 ▲千米.14.已知圆锥的侧面积是20πcm²,母线长为5cm ,则圆锥的底面圆半径为 ▲ . 15.如图所示,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD =50°,则∠B 的度数为 ▲ .16.某几何体是由几个棱长为1的小立方体搭成的,其三视图如图所示,则该几何体的表面积(包括下底面)为 ▲ .第17题第16题 第18题17.如图,在菱形ABCD 中,∠ABC =60°,AB =2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 ▲ .18.如图所示,直线a ∥b ∥c ,直线a 与b 之间的距离是2,直线b 与c 之间的距离是4,点A 、B 、C 分别在直线a 、b 、c 上,且△ABC 是等边三角形,则这个等边三角形的边长是 ▲ . 三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:0314()(2)2++-; (2)化简:22()(2)(2)x y x y x y +-+-. 20.(本题满分8分)(1)解方程:2320x x +-=; (2)解不等式组:3(1)11153x x x x -+≤⎧⎪⎨+<-⎪⎩.21.(本题满分7分)如图,已知△ABC.(1)请用尺规作图作出菱形BDEF,要求D、E、F分别在边BC、AC、AB上;(2)若∠ABC=60°,∠ACB=75°,BC=6,请利用备用图求菱形BDEF的边长.备用图22.(本题满分8分)(1)经过三角形的顶点,并且将该三角形的面积等分的直线有▲条;(2)如图①,直线a平行b,依据▲(填定理),可得△ABC与△A′BC面积相等.解决:如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线AM,无需尺规作图,但需要写出画法.图①图②23.(本题满分7分)一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,﹣2,3,﹣4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有▲种可能的结果;(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.24.(本题满分8分)某区教育局为了解今年九年级学生体育测试情况,随机调查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所绘信息解答下列问题:说明:A级:90~100分﹔B级:75分~89分﹔C级:60分~74分﹔D级:60分以下.(1)样本中D级的学生人数占全班人数的百分比是▲﹔(2)扇形统计图中A级所在的扇形的圆心角度数时▲﹔(3)请把条形统计图补充完整﹔(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.25.(本题满分8分)随着《舌尖上的中国》的热播,某县为了让苦芥茶、青花椒、野生蘑菇三种土特产走出大山,县政府决定组织21辆汽车装运这三种土特产共120吨,参加农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.特产车型苦荞茶青花椒野生蘑菇每辆车运费(元)每辆汽车运载量(吨)A型 2 2 0 1500 B型 4 0 2 1800 C型0 1 6 2000(1)设A型汽车安排辆,B型汽车安排辆,求与之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.26.(本题满分10分)如图1,在平面直角坐标系中,有一矩形ABCD ,其三个顶点的坐标分别为A(2,0),B(8,0),C(8,3),将直线l :33y x =--以每秒3个单位的速度向右运动,设运动时间为t 秒.(1)当t = ▲ 时,直线l 经过点A (直接填写答案);(2)设直线l 扫过矩形ABCD 的面积为S ,试求S >0时S 与t 的函数关系式; (3)在第一象限有一半径为3、且与两坐标轴恰好都相切的⊙M ,在直线l 出发的同时,⊙M 以每秒2个单位的速度向右运动,如图2,则当t 为何值时,直线l 与⊙M 相切? 27.(本题满分10分)如图,在△ABC 中,∠A =90°,∠ABC =30 °,AC =3,动点D 从点A 出发,在AB 边上以每秒1个单位的速度向点B 运动,连结CD ,作点A 关于直线CD 的对称点E ,设点D 运动时间为t (s ).(1)若△BDE 是以BE 为底的等腰三角形,求t 的值; (2)若△BDE 为直角三角形,求t 的值;(3)当S △BCE ≤92时,求所有满足条件的t 的取值范围(所有数据请保留准确值,参考数据:tan15°=23-).备用图 备用图 28.(本题满分10分)平面直角坐标系Oy 中,抛物线244(0)y ax ax a c a =-++>与轴交于点A 、B ,与y 轴的正半轴交于点C ,点A 的坐标为(1,0),OB =OC ,抛物线的顶点为D .(1)求此抛物线的解析式;(2)若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3)Q为线段BD上一点,点A关于∠AQB的平分线的对称点为A′,若QA﹣QB=2,求点Q的坐标和此时△QAA′的面积.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10答案 D B D D C C C B B C二、填空题三、解答题19.(1)﹣4;(2)2246x xy y ++.20.(1)1x =,2x =;(2)23x -≤<. 21.(1)先作∠ABC 的平分线BE ,再以BE 为对角线作□BDEF ,此时□BDEF 即为所求作的菱形;(2)22.(1)3条;(2)平行线间距离处处相等;解决:①连接AC 、BD ,②取BD 中点E ,③作EM ∥AC 交CD 于M ,连接AM ,此时AM 即为所求作的直线. 23.(1)12种;(2)56. 24.(1)10%;(2)72°;(3)画图略,图上数据标5;(4)330名. 25.(1)327y x =-+;(2)故车辆安排有三种方案,即:方案一:A 型车5辆,B 型车12辆,C 型车4辆;方案二:A 型车6辆,B 型车9辆,C 型车6辆;方案三:A 型车7辆,B 型车6辆,C 型车8辆;(3)为节约运费,应采用(2)中方案一,最少运费为37100元. 26.(1)1.(2)22274(1),1232149,323310(310)18,3231018,3t t t t S t t t ⎧-<≤⎪⎪⎪-<≤⎪=⎨⎪--+<≤⎪⎪⎪>⎩;(3)5527.(1)2t =; (2)3t =(3)63t -≤≤. 28.(1)243y x x =-+;(2)P(2,2)或(2,2-;(3)Q(114,14-),面积为54.。
江苏省无锡市2018中考数学试题及答案

精心整理2018年江苏省无锡市中考数学试卷一、选择题:(本大题共10小题,每小题3分共30分)1.下列等式正确的是(A ) A.()23=3B.()332-=- C.333= D.()332-=-2.函数xx y -=42中自变量x 的取值范围是(B ) A.4-≠x B.4≠x C.4-≤x D.4≤x 3.下列运算正确的是(D ) B. D.下列图形中的五边形734【解答】EF ∥AD∴∠AFE=∠FAG△AEH ∽△ACD∴43=AH EH 设EH=3x,AH=4x∴HG=GF=3x∴tan ∠AFE=tan ∠FAG=AG GF =73433=+x x x 10. 如图是一个沿33⨯正方形格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有(B )A.4条B.5条C.6条D.7条【解答】∴有5条路径,选B二、填空题(本大题共8小题,每小题2分,共16分)11、-2的相反数的值等于.【解答】212、今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为.1314、x x ⎧⎨⎩151617.18角形ABC 交OY 于点E ,设【解答】过P 作PH ⊥OY 交于点H ,易证EH=22EP a = ∴a+2b=12()2()22a b EH EO OH +=+=当P 在AC 边上时,H 与C 重合,此时min 1OH OC ==,min (2)2a b +=当P 在点B 时,max 35122OH =+=,max (2)5a b += ∴2(25)a b +≤≤19、(本题满分8分)计算:(1)02)6(3)2(--⨯-;(2))()1(22x x x --+ 【解答】(1)11(2)31x +20、(本题满分8分)(1)分解因式:x x 2733-(2)解不等式:⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅⋅⋅-≤⋅⋅⋅⋅⋅⋅⋅->+②),12(311-x ①,112x x x 【解答】(1)3(3)(3)x x x +-(2)21、 ABCD ∴∠22、 (1(2(323机抽出124如图,四边形ABCD 内接于圆心O ,AB=17,CD=10,∠A=90°,cosB=53,求AD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无锡天一中学2017~2018学年度初三中考三模数学试卷2018.5一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.下列计算正确的是A .22434x x x +=B .23422x y x x y ⋅= C .332(6)32x y x x ÷=D .22(3)9x x -= 2.下列式子中,是最简二次根式的是A B D 3.若关于x 的方程2(1)210m x x -++=有两个不相等的实数根,则m 的取值范围是 A .2m >B .2m <C .2m >且1m ≠ D .2m <且1m ≠ 4.已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是A .a b a b +=+B .a b a b +=-C .a b a b -=+D .a b a b -=-5.已知圆的半径为3cm ,圆心到直线l 的距离为2cm ,则直线l 与该圆的公共点的个数是 A .0 B .1C .2 D .不能确定 6.点A(m ,﹣3m +2)不在A .第一象限B .第二象限C .第三象限D .第四象限7.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 一定是 A .矩形 B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形8.有下列说法:①弦是直径;②半圆是弧;③圆中最长的弦是直径;④半圆是圆中最长的弧;⑤平分弦的直径垂直于弦,其中正确的个数有 A .1个 B .2个 C .3个 D .4个9.如图,正方形ABCD 的边长为4,点E 是AB 上的一点,将△BCE 沿CE 折叠至△FCE ,若CF ,CE 恰好与以正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为 A .433B .833C .5D .25第10题 第9题第15题10.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,在△ABC 内并排(不重叠但可以有空隙)放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB 上,首尾两个正方形各有一个顶点分别在AC 、BC 上,依次这样摆放上去,则最多能摆放的小正方形纸片的个数为A .14B .15C .16D .17二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上) 11.函数13y x =-+中自变量x 的取值范围是▲.12.分解因式:22416a b -=▲.13.地球与太阳之间的距离约为149600000千米,这个数据用科学记数法表示为▲千米.14.已知圆锥的侧面积是20πcm²,母线长为5cm,则圆锥的底面圆半径为▲.15.如图所示,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=50°,则∠B的度数为▲.16.某几何体是由几个棱长为1的小立方体搭成的,其三视图如图所示,则该几何体的表面积(包括下底面)为▲.第17题第16题第18题17.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为▲.18.如图所示,直线a∥b∥c,直线a与b之间的距离是2,直线b与c之间的距离是4,点A、B、C分别在直线a、b、c上,且△ABC是等边三角形,则这个等边三角形的边长是▲.三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1031()(2)2+-; (2)化简:22()(2)(2)x y x y x y +-+-.20.(本题满分8分)(1)解方程:2320x x +-=; (2)解不等式组:3(1)11153x x x x -+≤⎧⎪⎨+<-⎪⎩.21.(本题满分7分)如图,已知△ABC .(1)请用尺规作图作出菱形BDEF ,要求D 、E 、F 分别在边BC 、AC 、AB 上; (2)若∠ABC =60°,∠ACB =75°,BC =6,请利用备用图求菱形BDEF 的边长.备用图22.(本题满分8分)(1)经过三角形的顶点,并且将该三角形的面积等分的直线有▲条;(2)如图①,直线a 平行b ,依据▲(填定理),可得△ABC 与△A ′BC 面积相等. 解决:如图②,四边形ABCD 中,AB 与CD 不平行,AB ≠CD ,且S △ABC <S △ACD ,过点A 画出四边形ABCD 的面积等分线AM ,无需尺规作图,但需要写出画法.图①图②23.(本题满分7分)一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,﹣2,3,﹣4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有▲种可能的结果;(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.24.(本题满分8分)某区教育局为了解今年九年级学生体育测试情况,随机调查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所绘信息解答下列问题:说明:A级:90~100分﹔B级:75分~89分﹔C级:60分~74分﹔D级:60分以下.(1)样本中D级的学生人数占全班人数的百分比是▲﹔(2)扇形统计图中A级所在的扇形的圆心角度数时▲﹔(3)请把条形统计图补充完整﹔(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.25.(本题满分8分)随着《舌尖上的中国》的热播,某县为了让苦芥茶、青花椒、野生蘑菇三种土特产走出大山,县政府决定组织21辆汽车装运这三种土特产共120吨,参加农产品博览会.现有A 型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.(1)设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式. (2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案. (3)为节约运费,应采用(2)中哪种方案?并求出最少运费.26.(本题满分10分)如图1,在平面直角坐标系中,有一矩形ABCD ,其三个顶点的坐标分别为A(2,0),B(8,0),C(8,3),将直线l :33y x =--以每秒3个单位的速度向右运动,设运动时间为t 秒.(1)当t=▲时,直线l经过点A(直接填写答案);(2)设直线l扫过矩形ABCD的面积为S,试求S>0时S与t的函数关系式;(3)在第一象限有一半径为3、且与两坐标轴恰好都相切的⊙M,在直线l出发的同时,⊙M以每秒2个单位的速度向右运动,如图2,则当t为何值时,直线l与⊙M相切?27.(本题满分10分)如图,在△ABC中,∠A=90°,∠ABC=30 °,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D 运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;时,求所有满足条件的t的取值范围(所有数据请保留准确值,参(3)当S△BCE≤92考数据:tan15°=2 ).备用图备用图28.(本题满分10分)平面直角坐标系xOy中,抛物线244(0)=-++>与x轴交于点A、B,y ax ax a c a与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC,抛物线的顶点为D.(1)求此抛物线的解析式;(2)若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3)Q为线段BD上一点,点A关于∠AQB的平分线的对称点为A′,若QA﹣QB,求点Q的坐标和此时△QAA′的面积.参考答案一、选择题二、填空题三、解答题19.(1)﹣4;(2)2246x xy y ++.20.(1)132x -=,232x -+=;(2)23x -≤<. 21.(1)先作∠ABC 的平分线BE ,再以BE 为对角线作□BDEF ,此时□BDEF 即为所求作的菱形;(2) 22.(1)3条;(2)平行线间距离处处相等;解决:①连接AC 、BD ,②取BD 中点E ,③作EM ∥AC 交CD 于M ,连接AM ,此时AM 即为所求作的直线.23.(1)12种;(2)56. 24.(1)10%;(2)72°;(3)画图略,图上数据标5;(4)330名. 25.(1)327y x =-+;(2)故车辆安排有三种方案,即:方案一:A 型车5辆,B 型车12辆,C 型车4辆;方案二:A 型车6辆,B 型车9辆,C 型车6辆;方案三:A 型车7辆,B 型车6辆,C 型车8辆;(3)为节约运费,应采用(2)中方案一,最少运费为37100元. 26.(1)1.(2)22274(1),1232149,323310(310)18,3231018,3t t t t S t t t ⎧-<≤⎪⎪⎪-<≤⎪=⎨⎪--+<≤⎪⎪⎪>⎩;(3)55+. 27.(1)2t =; (2)3t =; (3)63t -≤. 28.(1)243y x x =-+;(2)P(2,2)或(2,2-;11 4,14),面积为54.(3)Q(。