无机化学(第二版)第八章 配合化合物

合集下载

无机化学中的配位化合物

无机化学中的配位化合物

无机化学中的配位化合物无机配位化合物是指由中心金属离子或原子与周围配体形成的稳定化合物,其中配体可以是有机分子、无机物以及某些复杂的大分子。

这些化合物在化学、材料和生物领域具有广泛的应用。

本文将对无机化学中的配位化合物进行详细介绍。

一、配位键的形成在配位化合物中,中心金属离子通过与配体的配位键结合在一起。

配位键可以是共价键,也可以是离子键。

在共价配位键中,金属离子与配体共享电子对,形成共有的化学键。

而离子配位键中,金属离子通过吸引配体上的电子形成离子键。

二、常见的配体在配位化合物中,各种不同的配体可以与中心金属离子形成配位键。

常见的配体包括一价的阴离子(如Cl-、Br-、I-)、二价的阴离子(如O2-、OH-)以及有机分子(如NH3、CO、CN-等)。

这些配体的不同基团和电性决定了它们与金属离子之间的相互作用方式和配位键的强度。

三、配位化合物的结构配位化合物的结构可以是简单的一对一结构,也可以是复杂的多中心配位结构。

在一对一结构中,一个中心金属离子配位于一个配体上。

而在多中心配位结构中,一个或多个中心金属离子与多个配体形成配合物。

四、配位化合物的性质配位化合物的性质受到配体和中心金属离子的影响。

配合物的颜色、溶解度、稳定性以及一些化学反应都与配体和金属离子的性质密切相关。

例如,某些过渡金属离子与氮、氧等电负性较高的配体形成的配合物具有较强的酸性;而某些具有大的络合度的配合物则具有较好的溶解性和稳定性。

五、应用无机配位化合物在化学、材料和生物领域具有广泛的应用。

在催化剂中,配合物的金属离子可以提供活性位点,从而促进化学反应的进行。

在生物医学中,金属配合物可以用作药物,通过与特定的生物分子相互作用来治疗疾病。

此外,配位化合物也广泛应用于材料科学领域,用于制备光电材料、磁性材料、液晶材料等。

六、进展与展望近年来,随着科学技术的不断发展,无机化学中的配位化合物在结构设计、属性调控以及应用领域方面取得了许多重要的进展。

无机化学第八章 配合物

无机化学第八章 配合物

氯化 一硝基 · 一氨 · 一羟氨基 · 一吡啶合铂 (Ⅱ)
K3[CrCl2(NH2)2(NO2)2] 配离子: [CrCl2(NH2)2 (NO2)2] 3中心离子: Cr3+ 配位体: Cl- NH2- NO2配位原子: Cl N
N
配位数: 6
配离子电荷: -3
中心离子氧化值: + 3
命名: 二氯·二氨基·二硝基合铬(Ⅲ)酸钾
≈1
Mn2+ : 3d5
[Mn(CN)6]4 -: d2sp3 正八面体 内轨型
例2:下列配离子中哪个磁矩最大? [Fe(CN)6]3- [Fe(CN)6]4- [FeF6]3解: n(n 2)
配离子 [Fe(CN)6]3[Fe(CN)6]4[FeF6]3M的d电子数
∴[FeF6]3-磁矩最大
配位数
直接与中心离子配位的配位原子的数目 半径越大,配位数大 半径:
中心离子 电荷越高,配位数越大 电荷:
半径越大,配位数小 半径: 数值
配体
电荷: 电荷越高,配位数越小
浓度: 增大配体浓度
外界条件
温度: 降低反应温度
高配位 数的配 合物
配离子的电荷 =中心离子的电荷+配位体的电荷 [Cu(NH3)4]2+ [HgI4]2[Ni(CO)4] +2 + 0×4 = +2 +2 + (-1)×4 = -2 0 + 0×4 = 0 +3 + (-1)×4 + 0 + 0 = -1
④配位原子相同
配体中原子个数少的在前
(NH3)(NH2OH) ② ①
⑤配体中原子个数相同 按与配位原子直接相连的其他原子的元 素符号英文字母顺序 (NO2-)(NH2-) ② ①

无机化学第八章

无机化学第八章
(1)稀HNO3 (2)NH3•H2O (3)Na2S溶液
试问下列平衡的移动方向?
[Ag(NH3)2]+ Ag+ + 2NH3
解:(1)平衡向右移动; (2) 平衡向左移动; (3) 平衡向右移动。
13. AgI在下列相同浓度的溶液中,溶解度最大的是哪一个?
KCN Na2S2O3 KSCN NH3•H2O
CFSE=[6×(-0.4Δo)+2Ep] (kJ•mol-1)
=-156 kJ•mol-1.
[Fe(H2O)6]2+ Fe2+(3d6).
CFSE=[4×(-0.4Δo)+2×0.6Δo] (kJ•mol-1)
=-49.6 kJ•mol-1.
10. 试解释下列事实:
(1) 用王水可溶解Pt,Au等惰性较大的贵金属,但单独用硝酸或盐酸则不能溶解。
[PtCl5(NH3)]- Pt4+ Cl-,NH3 Cl,N 6
2. 命名下列配合物,并指出配离子的电荷数和形成体的氧化数。
配合物 名 称 配离子电荷 形成体的氧化数
[Cu(NH3)4][PtCl4] 四氯合铂(Ⅱ)酸四氨合铜(Ⅱ) +2,-2 +2,+2
Cu[SiF6] 六氟合硅(Ⅳ)酸铜 -2 +4
[Mn(CN)6]3-的几何构型为正八面体。
7.在50.0mL0.20mol•L-1 AgNO3溶液中加入等体积的1.00mol•L-1的NH3•H2O,计算达平衡时溶液中Ag+,[Ag(NH3)2]+和NH3的浓度。
8.10mL0.10mol•L-1 CuSO4溶液与l0mL6.0mol•L-1 NH3•H2O 混合并达平衡,计算溶液中Cu2+、NH3及[Cu(NH3)4]2+的浓度各是多少? 若向此混合溶液中加入0.010molNaOH固体,问是否有Cu(OH)2沉淀生成?

无机化学第8章 配位化合物

无机化学第8章 配位化合物

HBNU-Liujy
2. 四面体场(Td, Tetrahedron Field)中d轨道的分裂
Z
Z
Y
dz2
Z
X Y
Z
X
dX2-Y2
Z
X
X
X
Y
dXY
Y
dXZ
Y
dYZ
18
第08章 配位化合物
HBNU-Liujy
Td
Splitting分裂能Δt =Et2-Ee
d
d
自由离子 free ion
球形场 sphere
Py
Px
Px
S
S
Py
pz
Py
Py
Px
Px
Pz
pz
Py
Py dx2-y2
pz
dz2
杂化轨 直 道的空 线 间构型 形
平面 正四 平面 三角 三角形 面体 正方形 双锥

四方 锥形
正八 面体 形
正八 面体 形
10
第08章 配位化合物
HBNU-Liujy
3. Inner-Orbital and Outer-Orbital Complex
16
第08章 配位化合物
HBNU-Liujy
Oh
Splitting分裂能Δo =Eeg-Et2g
d
d
自由离子 free ion
球形场 sphere
eg(dz2,dx2-y2)
Δo=10Dq
160Δo 140Δo
t2g(dxy,dxz,dyz)
四面体场 tetrahedron
17
第08章 配位化合物
22
第08章 配位化合物
HBNU-Liujy

《无机化学》第8章.配位化合物PPT课件

《无机化学》第8章.配位化合物PPT课件

配位化合物的发展趋势与展望
新材料与新能源
随着人类对新材料和新能源需求的不断增加,配位化合物有望在太 阳能电池、燃料电池等领域发挥重要作用。
生物医药领域
配位化合物在药物设计和治疗方面的应用前景广阔,有望为人类疾 病的治疗提供新的解决方案。
环境科学领域
配位化合物在处理环境污染和保护生态环境方面具有潜在的应用价值, 未来有望为环境保护做出贡献。
螯合物
由两个或更多的配位体与同一 中心原子结合而成的配合物,
形成环状结构,如: Fe(SCN)3。
命名
一般命名法
根据配位体和中心原子的名称,加上 “合”字和数字表示配位数的顺序来 命名,如:Co(NH3)5Cl。
系统命名法
采用系统命名法,将配位体名称按照 一定的顺序列出,加上“合”字和数 字表示配位数的顺序,最后加上中心 原子名称,如: (NH4)2[Co(CO3)2(NH3)4]·2H2O。
配位化合物的种类繁多,其组成和结 构取决于中心原子或离子和配位体的 性质。
配位化合物的形成条件
01
存在可用的空轨道 和孤对电子
中心原子或离子必须有可用的空 轨道,而配位体则需提供孤对电 子来形成配位键。
02
能量匹配
中心原子或离子和配位体的能量 状态需要匹配,以便形成稳定的 配位化合物。
03
空间和电子构型适 应性
中心原子或离子和配位体的空间 和电子构型需相互适应,以形成 合适的几何构型和电子排布。
02
配位化合物的组成与结构
组成
配位体
提供孤电子对与中心原子形成配位键的分子或离子。常见的配位 体有:氨、羧酸、酰胺、酸酐、醛、酮、醇、醚等。
中心原子
接受配位体提供的孤电子对形成配位键的原子。常见的中心原子有: 过渡金属元素的离子。

第八章_配位化合物

第八章_配位化合物

0.10 21 1.0 10 2 y (0.10)
y 1.0 10
20
即Ag+的平衡浓度为1.0×10-20 mol/L。
2、判断配位反应进行的方向
[Ag(NH3)2] ++ 2CN反应向哪个方向进行?
2 [ Ag ( CN ) ][ NH ] 2 3 K [ Ag ( NH 3 ) 2 ][CN ]2
[Cu( NH 3 ) ] 1 2 [Cu ][NH 3 ]

2
2

[Cu( NH 3 ) 2 ] [Cu 2 ][NH 3 ]2
2
3

[Cu( NH 3 ) 3 ] [Cu 2 ][NH 3 ]3
2
2
4

[Cu( NH 3 )4 ] K稳 2 4 [Cu ][ NH 3 ]
[Zn(NH3)4]2+ [Zn(CN)4]2+ 5×108 1.0×1016
中心离子不同,配体相同,配位数相同。
[Zn(NH3)4]2+ [Cu(NH3)4]2+ 5×108 4.8×1012
不同类型配合物稳定性要通过计算 求出溶液中的离子浓度。
CuY2[Cu(en)2]2+ 6.3×1018 4.9×1019
配位离子 [Cu(NH3)4]2+ 配位单元 配合物 配位分子 Fe(SCN)3 配离子与带有异电荷的离子 组成的中性化合物。 [Cu(NH3)4]SO4
Hale Waihona Puke 1.2 配合物的组成中心离子和配位体之 间以配位键结合。
NH3 H3N Cu NH3 NH3
2+ 2 SO4 2
配合物的组成分为内 界和外界两部分。

无机化学:第八章配位化合物

无机化学:第八章配位化合物第八章配位化合物一、配合物的基本概念1、配位化合物的定义及其组成定义:把由一定数目的阴离子或中性分子与阳离子或原子以配位键形成的复杂分子或离子称配合单元。

含有配合单元(配位键)的化合物即配合物。

配合物可看成是一类由简单化合物反应生成的复杂化合物。

配合单元相对稳定,存在于晶体及溶液中,在溶液中不能完全离解为简单组成的部分。

配位键——由配体单方面提供电子对给中心原子(离子)而形成的共价键。

中心离子(或中心原子)——又称“配合物形成体”。

特征:带有空轨道。

组成中心离子的元素种类:◆能充当中心离子的元素几乎遍及元素周期表的各个区域,但常见的是金属离子,尤其是一些过渡金属离子,如[Co(NH3)6]3+、[Fe(CN)6]4—、[HgI4]2—。

◆高氧化态非金属元素原子:如B、Si、P等形成[ BF4]—、[SiF6]2—、PF6—。

◆金属元素电中性原子:如[ Ni(CO)4]、[ Fe(CO)5]、[Cr(CO)6]配合物的组成:配合物由内界和外界组成。

内界为配合物的特征部分(即配位个体),是一个在溶液中相当稳定的整体,在配合物的化学式中以方括号表明。

方括号以外的离子构成配合物的外界。

内外界之间以离子键结合,故在水溶液中易解离出外界离子,而内界即配合单元很难发生离解。

如[Cu (NH3)4] SO4↓↓↓中心原子,配位体,外界在配合物中同中心原子/离子配位的分子如NH3、H2O或阴离子如Cl—、CN—、SCN—称为配位体,简称配体。

配体属于Lewis碱,都含有孤对电子,是电子对的给予体。

中配体无机化学配位化学CO 一氧化碳羰基OH—氢氧根离子羟基NO2—亚硝酸根硝基ONO—亚硝酸根亚硝酸根SCN—硫氰酸根硫氰酸根NCS—硫氰酸根异硫氰酸根Cl—氯离子氯配位体中与中心离子(或原子)直接成键的离子称为配位原子。

配位体所提供的孤对电子即是配位原子所具有的孤对电子。

常见的配位原子有:F、Cl、Br、配位体分类——单齿配体和多齿配体单齿配体:一个配位体只提供1个孤对电子与1个中心离子结合形成1个配位键。

《无机化学》第8章


钴(Ⅲ)
Co3+ NH3 N 6
+2
溴化二(乙二胺)
④[Cu(en)2]Br2 合铜(Ⅱ) Cu2+ en N 4 +2
二、2、
① 六氯合铂(Ⅳ)酸 ② 硫酸四氨合铜(Ⅱ) ③ 四硫氰·二氨合钴(Ⅲ)酸铵 ④ 五羰基合铁 ⑤ 二氢氧化四氨合铜(Ⅱ) ⑥ 一氯化二氯·一水·三氨合钴(Ⅲ)
习题:
一、选择题。
(2)形成体:(中心离子或中心原子)
接受孤对电子的阳离子或原子 ①特点:具有接受孤对电子的空轨道 ②常见中心原子:过渡元素(特别是ⅧB族)
或具有高氧化态的P区非金属元素
③举例:
形成体 (中心离子或中心原子)
[Cu(NH3)4]2+ [Fe(CN)6]3[PtCl2(NH3)I2] [Fe(CO)5] [SiF6]2-
Cu2+ Fe3+ Pt4+ Fe原子 Si4+
(3)配位体和配位原子:
①配位体:(配体) 在配合物中,与中心离子(或原子)
相结合的分子或离子,称为配位体,简 称配体。 例如:
[Cu(NH3)4]SO4 配体: NH3
②配位原子: 在配体中,与中心离子(或原子)
相结合的原子,称为配位原子。
❀常见配位原子:X、O、S、N、C
一、指出下列配合物的配位原子和配位数:
配合物
[PtCl2(NH3)2]2+ [Fe(en)3] 3+ [Ag(NH3) 2] [Pt (NH3)6] 4+ [Cr Cl2 (en)2] 2+
配位原子 Cl、N
N N N Cl、N
配1、配合物的内界和外界以_离__子__键相结合。 2、配合物的配体和中心离子(或原子)以

配位化合物与配位滴定教案

第八章配位化合物与配位滴定第八章配位化合物与配位滴定第一节配位化合物一、配位化合物的定义配位化合物(简称配合物,也称络合物)是指独立存在的稳定化合物进一步结合而成的复杂化合物。

例:[Cu(NH3)4]SO4是由一个Cu2+和四个NH3分子组成的独立基团。

特点:1.在结构中都包含有中心离子和一定数目的中性分子或阴离子相结合而成的结构单元,此结构单元表现出新的特征。

2.在配位化合物中中心离子或阴离子或中性分子通过形成配位共价键而结成独立的结构单元。

配位化合物的定义:由中心离子(或原子)和一定数目的中性分子或阴离子通过形成配位共价键相结合而成的复杂结构单元称配位单元,凡是由配位单元组成的化合物称配位化合物。

若配位单元带电荷称配离子,如[Ag(CN)2]-,配离子与带相反电荷的离子组成中性配合物。

若配位单元不带电荷,则配位单元本身就是配合物,如Fe(CO)5另外,必须指出有一类叫复盐的化合物,如KCl·MgCl2·6H2O、KAl(SO4)2·12H2O无复杂离子和复杂的配位单元,不是配合物。

二、配合物的组成配合物在组成上一般包括内界和外界两部分。

中心体(离子或原子)内界配合物配体(单齿或多齿配体)外界现以[Cu(NH3)4]SO4为例说明配合物的组成。

内界外界[ Cu (NH3) 4 ]2+ SO42-中配配配外心位位位界离原体数离子子子组成:配合物的组成由外界离子、配体、中心离子(或原子)构成。

1.中心离子(或原子)也叫形成体,它位于配合物的中心,一般是金属离子,以过渡态金属离子最常见,也有中性原子或高氧化态的非金属元素。

如:Fe(CO)5中的Fe为形成体,是原子。

[PF6]-中的P是形成体,非金属元素。

作为中心离子的条件是:必须具有空的价电子轨道,可以接受配体所给予的孤对电子。

周期表中绝大多数元素可作为中心离子,常见的一些过渡元素如铁、铜、银、金、锌、汞、铂等元素的离子或原子,它们具有(n-1)d、ns、np、nd等的空的价电子轨道,都是强的形成体。

配位化合物


在分析化学中,将会接触较多的这类配合物。 3.特殊配合物 (1)多核配合物 内界中含有两个或两以上的配合物,称多核配合物,如Fe3+ 在水溶液中水解
形成三核配合物,配体OH-通过O原子向相邻的两个Fe 原子各提供一对孤对电子而将其联结,起着成 “桥”的作用,故称为“桥基”,又如:
如果在多核配合物中,中心原子除与配体结合外,中心原子之间还相互结合,这种配合物称为金属 原子簇配合物。 (2)π-配合物 配体没有孤电子对,是通过提供π电子与中心原子形成σ配键,中心原子提供nd电子给π键配体的空 白的π*轨道形成反馈π键,这样一类配合物称π- 配合物。 烯烃的过渡金属配合物是这类配合物的代表,
4、配位数,即直接同中心原子配位的配位原子的数目,如: [Ag(CN)2]-为2,[Cu(NH3)4]2+为4,[Co(NH3)6]3+为6 一般中心原子较常见的配位数是6(如Pt4+,Pt2+,Fe2+,Fe3+,Cr3+,Co2+, Ni2+的配合物多为6),其次 是4(如Cu2+,Al3+,Zn2+,Cd2+,Hg2+等的配合物), 少数是2(如Ag+,Cu+的配合物),配位数为3,5,7, 8的则更少见 。 中心原子配位数的计算: (1)确定配离子的中心离子和配体 (2)找出配位原子数目 对于单齿配体,在单核配合物中,配体数就是配位数,如:[Pt(NH3)4]Cl2 配体为NH3配位数为4; [Pt(NH3)2Cl2]配体为NH3和Cl-各2,配位数为4; 两者的中心离子均是Pt2+。 对于多齿配体,配体的数目就不等于配位数了,这需要根据配合物中实际配位情况来决定,如: en为乙二胺是双齿配体, 每一个en 以两个N 原子与中心Co3+配位, 因此Co3+的配位数应是6。 [Co(en)3]3+中, 中心原子配位数的影响因素: 中心原子配位数如同化合价一样是不变化的, 它主要决定于中心离子极化力 和配体的电荷、半径、 电子层构型和彼此间的极化作用,以及配合物形成时的外 界条件:温度和反应物浓度等因素,下面具体 讨论: (1)中心原子电荷数相同时,半径越大,越有利于形成高配位数的配合物,如 Al3+半径51pm,大于 B3+ 23pm它们的氟配合物分别是[AlF6]3-和[BF4]-,实际上 ,这里面也包含有价层轨道数的影响:B属第二 周期,无价层d轨道,Al 属第三周 期3d轨道可参与成键。 这种情况有时也有例外,如:ed2+的r=99pm小于Hg2+的110pm,前者形成 [CdCl6]4-而后者形成[HgCl4]2-,这是因为中心原子半径过大,与配体的作用反而减弱所致。 (2)中心原子的电荷越高,吸引配体的能力越大,配位数越高,如 +2 +4 [PtCl4]2[PtCl6]4一般中心原子电荷数和常见配位数有如下关系: 中心原子电荷数 +1 +2 +3 +4 常见配位数 2 4,(6) (4),6 6,(8) [AlBr4](3)对于同一种中心原子而言, 配体半径越大 (体积越大) , 配位数越少, 如[AlF6]3-和[AlCl4]-, rBr > rCl > rF 空间效应 (4)配体的电荷数增大,会使配位数降低,如 [CoCl4]2电性斥力 [Co(H2O)6]2+ (5)配体浓度增大,有利于形成高配位数配合物;温度升高,则可引起配位数降低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同配体的命名顺序规则为:
✓ 先阴离子后中性分子,如F- → H2O。 ✓ 先无机后有机,如H2O→en。 ✓ 同类配体,按配位原子元素符号的英文字母顺序排 列,如NH3→H2O。 ✓ 若配位原子又相同,则含原子数少的配体排在前面, 如NO2→NH3。 ✓ 同类配体中若配位原子和原子数目均相同,则在结 构式中与配位原子相连原子的元素符号在英文字母中在 前的排在前面,如NH2→NO2
联吡啶(双齿)
3. 核N 反N应类型
乙二胺四乙酸
(六齿)
(bpy)
(EDTA; H4Y)
3. 配位数:一个中心原子所结合的配位原子的总数称为
该中心原子的配位数。
配位数=配位体数×齿数
如:[Cu(NH3)4]2+ Cu2+的配位数=4 ×1=4
[Cu(en)2]2+ Cu2+的配位数=2 ×2=4
[CoF6]3-
其中: 带负电荷的配离子称为配阴离子
带正电荷的配离子称为配阳离子.
注:配合物均为电中性分子
§ 8.2 配位化合物的类型和命名
8.2.1 配合物的类型
1.简单配合物:由单齿配体与中心原子形成的配合物。
如 Fe(CN)64 Co(NH3)5(H2O) 3
2.螯合物:由多齿配体与同一中心原子配位而形成 一种环状结构的配合物。又称:内络盐
(5) 配体异构
CH2 CH 2 CH 2
NH2
NH2
1, 3-二氨基丙烷
Co(NH2 CH2
CH2 CH
CH
NH2
NH2
1, 2-二氨基丙烷
CH 2
CH 2
NH )Cl
22
Co(NH2 CH2 CH ( NH2) CH3)2Cl2
§ 8.4 配位化合物的化学键本性 8.4.1 价键理论
价键理论能够说明 ⑴ 配合物的配位数, ⑶ 磁矩及反应活性
(ABA 处 于 一 个 (ABA处于一个平面 三角面的三个顶 四边形的三个顶点 点并呈对称分布) 但呈不对称分布)
又如八面体构型的[CrCl2(NH3)4]+ 配离子,有如下的顺反
异构体:
+ NH3
Cl
+
H3N Cr
NH3
H3N Cr
NH3
H3N
Cl
H3N
NH3
Cl
Cl-Cl相邻为顺式,紫色
Cl
B
A
A
[MA3(BC)D](其中BC为不对称 二齿配体)也有面式和经式的区别。
A
B
A
在面式的情况下三个A处于一个三
面式
角面的三个顶点, 在经式中, 三个A
(ABA处于一个三角面的三个顶点)
在一个四方平面的三个顶点之上。
A
B
B
A
A
B
A
A
A
C
A
C
面式
经式 A
A
A
A
A
B
A
A
B
B
D
D
对称经式
不对称经式
[MABCDEF]型配合物应该有15 种几何异构体, 有兴趣的同学可以自 己画一下。
内界(配离子)
外界离子
[Cu(NH 3 )4 ]SO4
中心离子
配位体数目
(Cu2+)
配位原子(N) 配位体(NH3)
1. 中心原子(或中心离子):---处于配位单元的中
心位置, 具有接受配体孤电子对的空轨道的离子或原子。
一般为带正电的过渡金属离子 例:[Co(NH3)6]3+, [Fe(CN)6]4-, [HgI4]2电中性原子 例: Ni(CO)4 , Fe(CO)5 ,Cr(CO)6 非金属元素原子 例: SiF62- , PF6-
常见的配位原子:F、Cl、Br、I、C、N、P、O、S
常见单齿配体:一个配体中只含一个配位原子.
主要内容 中性分子 H2O NH3 CO CH3NH2
配体
水 氨 羰基 甲胺
阴配离位1.子原镧子F系- 、ClO-锕B系r- 元NI- 素O通HC-性CN-
N NO2-
配配位2原体. 子我氟国F 稀氯Cl土B溴元r 素碘I 资羟源O基和提氰C 取硝N基
[Co Cl2 (NH3)2 (en)]+
二氯• 二氨• 乙二胺合钴(Ⅰ)
Cl +
Cl +
N
Cl
Co
Cl
N
Co
N
NH3
H3N
N
2、结构异构:NH3
NH3
原子间连接方式不同引起的异构现象(键合异构,
电离异构,水合异构,配位异构,配位位置异构,
配位体异构)
(1)键合异构
[Co(NO2)(NH3)5]Cl2 硝基 黄褐色 酸中稳定 [Co(ONO)(NH3)5]Cl2 亚硝酸根 红褐色 酸中不稳定 (2) 解离异构
氯铂酸
➢ 系统命名法
1.外界: (1)外界为简单阴离子(X-、OH-) :称为“阴离子 化-配位个体” [Co(NH3)6]Cl3 三氯化六氨合钴 (Ⅲ)
(2)外界为复杂阴离子(SO42-、NO3-):称为“阴离
子酸-配位个体”
[Co(NH3)2(en)2](NO3)3 三硝酸二氨二(乙二胺)合钴(Ⅲ)
中心原子的半径越大、电荷越高、则配位数越大; 配体的半径越大,配位数越小。
4.配离子的电荷
配离子的电荷 = 中心离子电荷 + 配位体总电荷
如: [PtCl4]2- [Ni(CN)4]2- [Ni(CO)4] [Cu(NH3)4]2+
其中:Pt (+2) Ni(+2)
Ni(0)
Cu(+2)
电中性的配位内界本身就是配合物,如: [Ni(CO)4] 带电荷的配位内界称为配离子:
Co
NH3
NH3 Cl
维尔纳 (Werner, A, 1866—1919) 瑞士无机化学家,配位化学的奠基人. 因创立配位化学而获得1913年诺贝尔化学奖
配合物的组成
配合物:
Co3+ 与NH3以配位共价键
内界
外界
牢固地结合着,是配合物的 主要特征,用[ ]标示,称为配
[Co (NH3) 6] Cl3 合物的内界(称:配离子)。
[Co(SO4)(NH3)5]Br [Co Br(NH3)5] (SO4)
(3) 水合异构 [Cr(H2O)6]Cl3 [CrCl(H2O)5]Cl2 ·H2O [CrCl2(H2O)4]Cl ·2H2O
紫色 亮绿色 暗绿色
(4) 配位异构
[Co(NH3)6][Cr(CN)6]和 [Cr(NH3)6][Co(CN)6]
(3)外界为阳离子:称为“配位个体酸 — 阳离子” K2[SiF6] 六氟合硅(Ⅳ)酸钾
✓中性配合物(没有外界的配合物):直接对配位个 体命名
[Ni(CO)4]
---四羰基合镍
[PtCl4(NH3)2] ---四氯 ·二氨合铂(IV)
[Cr(OH)3(H2O)(en)]
---三羟基 ·一水 ·一乙二胺合铬(III)
2.内界:
配体数—配体名称—“合”—中心离子氧化数
(用汉字表示)
(用罗马数字)
注: 不同配位名称之间用圆点“·”分开。 配体次序:离子—分子;无机物—有机物 阴离子次序为:简单离子—复杂离子—有机酸根离子。
✓ 含配阳离子的配合物命名
[CoCl2(NH3)4]Cl
---氯化二氯 ·四氨合钴(Ⅲ)
[Co(NH3)5(H2O)]Cl3 ---三氯化五氨 ·一水合钴(Ⅲ)
Cl-Cl相对为反式,绿色
(2) 旋光异构(对映异构):当配合物为手性分子,与 其镜像不能互相重叠时,产生旋光异构现象。该配合物
与其镜像分子为一对对映体,又称旋光异构或光学异构 体。 配位数为2,3(平面三角形),无旋光异构。
A
A
D
D
B
CC
B
旋光异构在八面体的配合物中常见,特别是有 双齿配体的配合物中更为常见。如:
以上化合物为配位化合物,简称配合物,旧称络 合物
1893年供职于苏黎世大学的Werner A 提出 了天才的见解,被后人称之为维尔纳学说.
● 大多数化学元素表现出两种类型的化合 价,即主价和副价
● 元素形成配合物时倾向于主价和副价都 能得到满足
● 元素的副价指向空间确定的方向
H3N Cl
H3N
NH3 Cl NH3
2. 配(位)体和配位原子
与中心离子结合的提供孤对电子的分子或阴离子 叫配(位)体。
配体中与中心离子直接配位的原子称为配位原子。 [SiF6]2-中配体是 F-,配位原子也是F[Co(NH3)6]3+中配体是 NH3,配位原子是N [Pt(NH3)2Cl]中配体是 NH3、Cl-,
配位原子是N、Cl-
H2C
NH 2
H2N
CH 2
Cu
H2C
NH 2
H2N
CH 2
二乙二胺合铜(Ⅱ)[Cu(en)2]2+ 结构
3.特殊配合物:自学
10.2.2 配合物的命名
➢ 习惯命名:
[Cu(NH3)4]SO4 K4[Fe(CN)6] H2[PtCl6]
硫酸铜氨 K3[Fe(CN)6]
铁氰化钾或赤血盐
亚铁氰化钾或黄血盐 H2[SiF6] 氟硅酸
⑵几何构型,
1. 配合物中的化学键 内界和外界的结合力:静电力(取向力)
AC
AB
AB
M
M
M
DB
DC
CD
[M(AB) (CD)] [M(AC) (BD)] [M(AD) (BC)]
③八面体配合物
相关文档
最新文档