最新上海财经大学时间序列分析试题

合集下载

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

时间序列习题(含答案)

时间序列习题(含答案)

一、单项选择题 1.时间数列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是( )A 平均数时间数列B 时期数列C 时点数列D 相对数时间数列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D 无法确定 7.由一个9项的时间数列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58 B 5%6.158 C 6%6.58 D 6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法 11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B 二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A %100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E %100⨯=基期水平报告期水平增长速度 5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a nx Ba a nx n =C 1a a nx n= D nR x = E n xx ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A 第二年的环比增长速度=定基增长速度=10%B 第三年的累计增长量=逐期增长量=200万元C 第四年的定基发展速度为135%D 第五年增长1%绝对值为14万元E 第五年增长1%绝对值为13.5万元 7.下列关系正确的有( )A 环比发展速度的连乘积等于相应的定基发展速度B 定基发展速度的连乘积等于相应的环比发展速度C 环比增长速度的连乘积等于相应的定基增长速度D 环比发展速度的连乘积等于相应的定基增长速度E 平均增长速度=平均发展速度-1 8.测定长期趋势的方法主要有( )A 时距扩大法B 方程法C 最小平方法D 移动平均法E 几何平均法9.关于季节变动的测定,下列说法正确的是( ) A 目的在于掌握事物变动的季节周期性 B 常用的方法是按月(季)平均法 C 需要计算季节比率D 按月计算的季节比率之和应等于400%E 季节比率越大,说明事物的变动越处于淡季 10.时间数列的可比性原则主要指( )A 时间长度要一致B 经济内容要一致C 计算方法要一致D 总体范围要一致E 计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE8.ACD 9.ABC 10.ABCDE 三、判断题1.时间数列中的发展水平都是统计绝对数。

《时间序列》试卷答案

《时间序列》试卷答案

《时间序列》试卷答案【篇一:时间序列分析试卷及答案3套】>一、填空题(每小题2分,共计20分)1. arma(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列?xt?,则其一阶差分为_________________________。

3. 设arma (2, 1):xt?0.5xt?1?0.4xt?2??t?0.3?t?1则所对应的特征方程为_______________________。

4. 对于一阶自回归模型ar(1): xt?10+?xt?1??t,其特征根为_________,平稳域是_______________________。

5. 设arma(2, 1):xt?0.5xt?1?axt?2??t?0.1?t?1,当a满足_________时,模型平稳。

6. 对于一阶自回归模型______________________。

7. 对于二阶自回归模型ar(2):xt?0.5xt?1?0.2xt?2??tma(1):xt??t?0.3?t?1,其自相关函数为则模型所满足的yule-walker方程是______________________。

8. 设时间序列?xt?为来自arma(p,q)模型:xt??1xt?1?l??pxt?p??t??1?t?1?l??q?t?q则预测方差为___________________。

9. 对于时间序列?xt?,如果___________________,则xt~i?d?。

10. 设时间序列?xt?为来自garch(p,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列?xt?来自arma?2,1?过程,满足1b0.5bx2t1?0.4bt,2其中??t?是白噪声序列,并且e??t??0,var??t。

(1)判断arma?2,1?模型的平稳性。

(完整word版)时间序列分析试题

(完整word版)时间序列分析试题

第九章时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为()等四种成分,各种成分之间(),要测定某种成分的变动,只须从原时间序列中()。

A.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案: C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为()等四种成分,各种成分之间(),要测定某种成分的变动,只须从原时间序列中()。

A.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C.长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D..长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案: B3、利用最小二乘法求解趋势方程最基本的数学要求是()。

A. (Y? 2任意值 B. (Y? 2min Y t ) Y t )C. (Y? 2max D. (Y? 20 Y t ) Y t )答案: B4、从下列趋势方程?125 0.86t 可以得出()。

Y tA. 时间每增加一个单位,Y 增加 0.86 个单位B. 时间每增加一个单位,Y 减少 0.86 个单位C. 时间每增加一个单位,Y 平均增加0.86 个单位D. 时间每增加一个单位,Y 平均减少0.86 个单位答案: D.5、时间序列中的发展水平()。

A. 只能是绝对数B. 只能是相对数C.只能是平均数D. 上述三种指标均可以答案: D.6、下列时间序列中,属于时点序列的有()。

8章-时间序列分析练习题参考答案

8章-时间序列分析练习题参考答案

第八章 时间数列分析一、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 C2.时间序列中,数值大小与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 B5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人 C6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A 150万人B 150.2万人C 150.1万人D 无法确定 C7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 A9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 D11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。

A.时期数列B.时点数列C.相对数数列D.平均数数列A13.按几何平均法计算的平均发展速度侧重于考察现象的()A.期末发展水平B.期初发展水平C.中间各项发展水平D.整个时期各发展水平的总和A14.累计增长量与其相应的各逐期增长量的关系表现为()A.累计增长量等于相应各逐期增长量之和B.累计增长量等于相应各逐期增长量之差C.累计增长量等于相应各逐期增长量之积D.累计增长量等于相应各逐期增长量之商A15.已知某地区2010年的粮食产量比2000年增长了1倍,比2005年增长了0.5倍,那么2005年粮食产量比2000年增长了()。

《时间序列》试卷答案

《时间序列》试卷答案

《时间序列》试卷答案【篇一:时间序列分析试卷及答案3套】>一、填空题(每小题2分,共计20分)1. arma(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列?xt?,则其一阶差分为_________________________。

3. 设arma (2, 1):xt?0.5xt?1?0.4xt?2??t?0.3?t?1则所对应的特征方程为_______________________。

4. 对于一阶自回归模型ar(1): xt?10+?xt?1??t,其特征根为_________,平稳域是_______________________。

5. 设arma(2, 1):xt?0.5xt?1?axt?2??t?0.1?t?1,当a满足_________时,模型平稳。

6. 对于一阶自回归模型______________________。

7. 对于二阶自回归模型ar(2):xt?0.5xt?1?0.2xt?2??tma(1):xt??t?0.3?t?1,其自相关函数为则模型所满足的yule-walker方程是______________________。

8. 设时间序列?xt?为来自arma(p,q)模型:xt??1xt?1?l??pxt?p??t??1?t?1?l??q?t?q则预测方差为___________________。

9. 对于时间序列?xt?,如果___________________,则xt~i?d?。

10. 设时间序列?xt?为来自garch(p,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列?xt?来自arma?2,1?过程,满足1b0.5bx2t1?0.4bt,2其中??t?是白噪声序列,并且e??t??0,var??t。

(1)判断arma?2,1?模型的平稳性。

模拟试题2-上海财经大学

模拟试题2-上海财经大学

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。

上海财经大学《时间序列分析》课程考试卷课程代码 课程序号20 —20 学年第一学期姓名 学号 班级一、填空题(每小题2分,共计20分)1. 设时间序列{}t X ,当__________________________序列{}t X 为严平稳。

2. AR(p)模型为_____________________________,其中自回归参数为______________。

3. ARMA(p,q)模型_________________________________,其中模型参数为____________________。

4. 设时间序列{}t X ,则其一阶差分为_________________________。

5. 一阶自回归模型AR(1)所对应的特征方程为_______________________。

6. 对于一阶自回归模型AR(1),其特征根为_________,平稳域是_______________________。

7. 对于一阶自回归模型MA(1),其自相关函数为______________________。

8. 对于二阶自回归模型AR(2):1122t t t t X X X φφε--=++,其模型所满足的Yule-Walker方程是___________________________。

9. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p tp t t q t q X X Xφφεθεθε----=++++++L L ,则预测方差为___________________。

10. 设时间序列{}t X 为来自GARCH(p, q)模型,则其模型结构可写为_____________。

二、(20分)设{}t X 是二阶移动平均模型MA(2),即满足t t t-2X εθε=+,其中{}t ε是白噪声序列,并且()()2t 0,t E Var εεσ==……………………………………………………………装订线…………………………………………………2(1) 当1θ=0.8时,试求{}t X 的自协方差函数和自相关函数。

《时间序列》试卷答案

《时间序列》试卷答案

《时间序列》试卷答案【篇一:时间序列分析试卷及答案3套】>一、填空题(每小题2分,共计20分)1. arma(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列?xt?,则其一阶差分为_________________________。

3. 设arma (2, 1):xt?0.5xt?1?0.4xt?2??t?0.3?t?1则所对应的特征方程为_______________________。

4. 对于一阶自回归模型ar(1): xt?10+?xt?1??t,其特征根为_________,平稳域是_______________________。

5. 设arma(2, 1):xt?0.5xt?1?axt?2??t?0.1?t?1,当a满足_________时,模型平稳。

6. 对于一阶自回归模型______________________。

7. 对于二阶自回归模型ar(2):xt?0.5xt?1?0.2xt?2??tma(1):xt??t?0.3?t?1,其自相关函数为则模型所满足的yule-walker方程是______________________。

8. 设时间序列?xt?为来自arma(p,q)模型:xt??1xt?1?l??pxt?p??t??1?t?1?l??q?t?q则预测方差为___________________。

9. 对于时间序列?xt?,如果___________________,则xt~i?d?。

10. 设时间序列?xt?为来自garch(p,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列?xt?来自arma?2,1?过程,满足1b0.5bx2t1?0.4bt,2其中??t?是白噪声序列,并且e??t??0,var??t。

(1)判断arma?2,1?模型的平稳性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。

上海财经大学《时间序列分析》课程考试卷
课程代码 课程序号
20 —20 学年第一学期
姓名 学号 班级
一、
填空题(每小题2分,共计20分)
1. ARMA(p, q)模型_________________________________,其中模型参数为
____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):
1210.50.40.3t t t t t X X X εε---=++-
则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域
是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型
平稳。

6. 对于一阶自回归模型MA(1): 10.3t t t X εε-=-,其自相关函数为______________________。

7.
8. 对于二阶自回归模型AR(2)
:
120.50.2t t t t
X X X ε--=++
则模型所满足的Yule-Walker 方程是______________________。

9.
10. 设时间序列{}t X 为来自ARMA(p,q)模型:
1111t t p t p t t q t q
X X X φφεθεθε----=++++++L L
……………………………………………………………


线…………………………………………………
则预测方差为___________________。

11. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

12.
13. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足
()()2
10.510.4t
t
B B X B ε-+=+,
其中
{}t ε是白噪声序列,并且()()2
t t 0,E Var εεσ==。

(1)
(2) 判断()2,1ARMA 模型的平稳性。

(5分)
(3) 利用递推法计算前三个格林函数012,,G G G 。

(5分) 三、(20分)某国1961年1月—2002年8月的16~19岁失业女性的月度数
据经过一阶差分后平稳(N =500),经过计算样本其样本自相关系数
ˆ{}k ρ及样本偏相关系数ˆ{}kk
φ的前10个数值如下表 求
(1) 利用所学知识,对}{t X 所属的模型进行初步的模型识别。

(10分) (2) 对所识别的模型参数和白噪声方差2
σ给出其矩估计。

(10分) 四、(20分)设}{t X 服从ARMA(1, 1)模型:
110.80.6t t t t X X εε--=+-
其中1001000.3,0.01X ε==。

(1) 给出未来3期的预测值;(10分)
(2) 给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(10分)
五、(10分)设时间序列}{t X 服从AR(1)模型:
1t t t X X φε-=+,其中{}t ε为白噪声序列,()()2t t 0,E Var εεσ==,
1212,()x x x x ≠为来自上述模型的样本观测值,试求模型参数2,φσ的极大似然估计。

六、(20分)证明下列两题:
(1)
设时间序列{}t x 来自()1,1ARMA 过程,满足
110.50.25t t t t x x εε---=-,
其中()
2t ~0,WN εσ, 证明其自相关系数为
11,0
0.27
10.52
k k k k k ρρ
-=⎧⎪==⎨⎪≥⎩
(10分) (2)
若t X ~I(0),t Y ~I(0),且{}t X 和{}t Y 不相关,即(,)0,,r s cov X Y r s =∀。


证明对于任意非零实数a 与b ,有~(0)t t t Z aX bY I =+。

(10分)。

相关文档
最新文档