质谱基础知识-飞行时间质谱仪原理及应用
飞行时间质谱

飞行时间质谱技术及发展前言:质谱分析是现代物理与化学领域使用的极为重要的工具。
目前日益广泛的应用于原子能,石油以及化工,电子,医药等工业生产部门,农业科学研究部门及物理电子与粒子物理,地质学,有机,生物,无机,临床化学,考古,环境监测,空间探索等领域[1]。
飞行时间质谱飞行时间质谱仪较其他质谱仪具有灵敏度好、分辨率高、分析速度快、质量检测上限只受离子检测器限制等优点,再配合电喷雾离子源基体辅助激光解析离子源[2]大气压化学电离源等离子源,使之成为当今最有发展前景的质谱仪。
飞行时间质谱已用于研究许多国际最前沿的热点问题,是基因及基因组学、蛋白质及蛋白质组学、生物化学、医药学以及病毒学等领域中不可替代的有力工具,例如肽和蛋白分析、细菌分析、药物的裂解研究以及病毒检测。
特别是在大通量、分析速度要求快的生物大分子分析中,飞行时间质谱成为唯一可以实现的分析手段,例如与激光离子源联用或作为二维气相色谱的检测器等。
本文将介绍飞行时间质谱的基本原理、技术及仪器的发展历程。
力求对该仪器技术有一个较清楚的认识,并对今后相关的研究工作提供建设性帮助。
1.飞行时间质谱的工作原理:TOF-MS分析方法的原理非常简单。
这种质谱仪的质量分析器是一个离子漂移管。
样品在离子源中离子化后即被电场加速,由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器,假设离子在电场方向上初始位移和初速度都为零,所带电荷数为q,质量数为m, 加速电场的电势差为V, 则加速后其动能应为:m v2 / 2= qe V其中,v 为离子在电场方向上的速度。
离子以此速度穿过负极板上的栅条,飞向检测器。
离子从负极板到达检测器的飞行时间t,就是TOFMS 进行质量分析的判据。
在传统的线性TOFMS,离子沿直线飞行到达检测器;而在反射型TOFMS 中,离子经过多电极组成的反射器后反向飞行到达检测器,后者在分辨率方面优于前者。
2.飞行时间质谱的发展:由于存在初始能量分散的问题,提高飞行时间质谱分辨率一直是研究者和仪器制造上努力的目标。
质谱仪原理及应用 质谱仪操作规程

质谱仪原理及应用质谱仪操作规程质谱仪原理及应用质谱仪又称质谱计(massspectrometer)。
进行质谱分析的仪器,即依据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分别和质谱仪原理及应用质谱仪又称质谱计(massspectrometer)。
进行质谱分析的仪器,即依据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分别和检测物质构成的一类仪器。
质谱仪以离子源、质量分析器和离子检测器为核心。
离子源是使试样分子在高真空条件下离子化的装置。
电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。
它们在加速电场作用下取得具有相同能量的平均动能而进入质量分析器。
质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分别的装置。
分别后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。
离子源、质量分析器和离子检测器都各有多种类型。
质谱仪按应用范围分为同位素养谱仪、无机质谱仪和有机质谱仪;按辨别本领分为高辨别、中辨别和低辨别质谱仪;按工作原理分为静态仪器和动态仪器。
分别和检测不同同位素的仪器。
仪器的紧要装置放在真空中。
将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。
质谱方法*早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。
现代质谱仪经过不断改进,仍旧利用电磁学原理,使离子束按荷质比分别。
质谱仪的性能指标是它的辨别率,假如质谱仪恰能辨别质量m和m+Δm,辨别率定义为m/Δm。
现代质谱仪的辨别率达105~106量级,可测量原子质量精准明确到小数点后7位数字。
质谱仪*紧要的应用是分别同位素并测定它们的原子质量及相对丰度。
测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精准明确质量是用质谱方法测定的。
质谱基础知识飞行时间质谱仪原理及应用

飞行时间质谱仪能够检测食品中的营养成分和功能成分,为食品的 营养评价和功能研究提供依据。
04
质谱技术的发展趋势
高灵敏度质谱技术的发展
灵敏度提升
随着技术的不断进步,质谱仪的 灵敏度不断提高,能够检测到更 低浓度的物质,为痕量物质的分 析提供了可能。
选择性增强
高灵敏度质谱技术通过改进离子 化方法和分离技术,提高了对复 杂样品的选择性,降低了干扰物 质的影响。
质谱的应用领域
01
02
03
04
生物医药
用于蛋白质、核酸等生物大分 子的检测和鉴定。
环境监测
检测空气、水体中的有害物质 和污染物。
食品安全
检测食品中的添加剂、农药残 留等。
化学分析
对有机化合物进行定性和定量 分析,用于化学反应机理研究
等。
02
飞行时间质谱仪原理
飞行时间质谱仪的结构
电离源
用于将样品分子转化为带电离 子,常见电离源有电子轰击、 化学电离、电喷雾等。
飞行管
离子在其中进行无散射的飞行 ,通常由真空密封的管子组成 。
ቤተ መጻሕፍቲ ባይዱ
进样系统
用于将样品引入质谱仪中,通 常采用气相色谱或直接进样方 式。
加速电场
用于加速离子,使其获得足够 的能量进入飞行管。
检测器
用于检测到达终端的离子,通 常采用电子倍增器或微通道板 。
飞行时间质谱仪的工作原理
01
02
03
04
进样系统将样品引入电离源, 电离源将样品分子转化为带电
在化学领域的应用
在化学领域,质谱技术用于研究化合物的结构、组成、反应机理等,可以用于合成路线的确定、反应条件的优化等。
飞行时间质谱仪

Q-TOF
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
飞行时间质谱仪工作原理
1 2 v t L v 2 qV / m L 2 qV / m 2t V L m /z 2t V eL
2 2 2 2
ห้องสมุดไป่ตู้
mv
2
qV
m / q m / ze
质荷比与时间的平方成正比,只要测定出飞行时间,就 可换算成质荷比。在检测时,显然是质荷比小的先到达检 测器,质荷比大的后到达。在通常情况下,离子的飞行时 间为微秒数量级。
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
CENTER FOR DRUG METABOLISM
前体离子扫描
飞行时间质谱仪的性能指标
分辨率
RP = M / M (M:为测定的质量, M:半峰高的峰宽)
线性模式,分辨串较低;反射模式,分辨率可高达15000 “延迟引出”(DE)技术或称“脉冲离子引出”(PIE)
质量范围
目前的商品仪器.—般可测到几十万原子质量单位(u)
飞行时间质谱仪在药物分析中应用举例
MALDI-TOF反射模式:
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
Q-TOF 分析中应用举例
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
JILIN UNIVERSITY RESEARCH CENTER FOR DRUG METABOLISM
质谱分析仪原理

质谱分析仪原理
质谱分析仪是一种重要的分析仪器,它基于质谱技术,可以用于检测和分析样品中的化学成分。
质谱分析仪原理主要包括样品的进样、电离、分离、检测和数据分析等几个步骤。
首先,样品被进样器引入质谱仪中,通常采用气相色谱、液相色谱或直接进样的方式。
然后,样品中的物质被电离器中的电子束或激光束击中,使物质失去部分或全部电子,生成带正电荷的离子。
接下来,离子会通过质谱分析仪中的质量过滤器或质量分析器进行分离。
最常用的质量过滤器是质子化子飞行时间法(TOF)和四极杆法。
四极杆法利用离子在电场、磁场中的轨迹运动特性,按质量进行分离和筛选。
在离子分离后,离子会被引导到离子检测器中进行检测。
离子检测器通常采用多种技术,如电子倍增器、离子对撞器、荧光屏和测量器等。
这些器件可以检测到离子的数量和离子种类,并将其转化为电信号。
最后,质谱仪的数据系统会将电信号转化为质谱图。
质谱图能够显示不同质量的离子相对于离子丰度的分布情况。
利用质谱图,可以确定样品中存在的化合物的种类、质量和相对丰度信息。
总的来说,质谱分析仪原理是基于离子电离、分离、检测和数
据分析等步骤完成的。
通过这些步骤,质谱分析仪能够精确、快速地检测和分析样品中的化学成分,具有广泛的应用价值。
质谱基础知识-飞行时间质谱仪原理及应用 PPT

直线式VS反射式
直线型飞行时间质谱仪的 主要缺点:分辨率低。
离子初始能量不同,使得 具有相同质荷比的离子达 到检测器的时间有一定分 布,造成分辨能力下降。
改进的方法
在线性检测器前面的加上 一组静电场反射镜,将自 由飞行中的离子反推回去, 初始能量大的离子由于初 始速度快,进入静电场反 射镜的距离长,返回时的 路程也就长,初始能量小 的离子返回时的路程短, 这样就会在返回路程的一 定位置聚焦,从而改善了 仪器的分辨能力。
质量精度(mass accuracy):衡量质谱仪器测量物质 成分的准确度;ppm
质量范围(mass range ):质谱仪器测量物质成分的 质量大小范围;1~ ∞
灵敏度(sensitivity):质谱仪器所能测量物质成分 的最低含量;单分子检测
飞行时间质谱仪TOF-MS的构成
离子源:
电喷雾电离源(ESI)
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
飞行时间质谱仪TOF-MS的构成
质量分析器
TOF-MS分辨率低的原因
时间分散 空间分散 能量分散
改进方法
脉冲电离 离子延迟引出 反射器技术
目前, TOF -MS大都装有反射器,使离子 经过多电极组成的反射器后沿V型或W 型路线飞行到达检测器,使得分辨率可 达20 000 以上, 最高检测质量可超过 300 000 Da,且具有很高的灵敏度。
+ +
++ + ++
+
+++ +++
+++ +++
+
质谱仪工作原理

质谱仪工作原理
18
(3)快原子轰击 (fast atom bombardment
FAB)
高能量的Ar原子 轰击涂在靶上的样 品,溅射出离子流。
本法适合于高极 性、大分子量、低 蒸汽压、热稳定性 差的样品
质谱仪工作原理
19
(4) 场致电离源(FI)
电压:7-10 kV;d<1 mm;
强电场将分子中拉出一个电子;
•电喷雾源ESI,
•大气压化学电离源APCI, LC-MS
•激光解吸源LD
质谱仪工作原理
12
(1)电子轰击源
(electron impact ionization, EI)
++
: R1
: R2
+
: R3
: R4
++
:e
(M-R3)+
(M-R2)+
(M-R1)+ M+
Mass Spectrum
质谱仪工作原理
检测器 Detector
数据处理 系统
Data System
质谱仪工作原理
6
进样系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.快原子轰击
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
质谱仪工作原理
7
撞击
高速电子
顺序谱图
得到
气态分子
质谱仪工作原理
21
•ESI是软电离源,通常很少或没有碎片,准分 子离子,只能提供未知化合物的分子量信息, 不能提供结构信息。
Hale Waihona Puke 生成的气体离子再与样品分子M反应:
飞行时间质谱仪原理与应用

SF
(
X SF 2 X 3X SF
A2
)3/ 2
X
A2 )
U A2
U
2( X A2 X SF ) 3X SF
空间/能量聚焦条件下旳离子飞行时间
t m ( 2X A1 2X A2 X SF ) 2q U U A2 U U U A2 U
小结
为取得较高旳质量辨别:
A.飞行时间质谱旳几何尺寸和工作电压 都需调整。 B.几何尺寸和工作电压间有有关性。 C.可取得较“空间聚焦”条件下更高旳 质量辨别能力。
XSF
U UA2
双电极情况下旳空间聚焦条件
X SF
2
X
A1
U ( U A2
)3
/
2
(1X A2 X A1 NhomakorabeaU ( U A2
U )1) U A2
XA1 XA2
XSF
U
UA2
结论:
能够经过调整电极间距离和不同电 极上旳电压来变化离子焦点旳位置。
在设计飞行时间质谱时。能够先拟 定飞行管旳长度L,然后经过变化各个电 极间旳距离和工作电压旳设置来取得最 佳旳质量辨别成果。
则: 离子初始动能分布:ΔU=7.5 eV, XSF=20 cm, t1= 5 µs, t2=40 µs. 所以,Δt=0.3 ns
又假定:离子到达探测器表面旳时间 差为0.1ns
RFTOFMS质量辨别率:~105
t 1 ( 7.5 )2 5 3 ( 7.5 )3 40 45 4 1000 45 16 1000 45 t 6 *105
当飞行距离:L,和工作电压:V,一定时,离子 飞行时间:T,和离子质荷比一一相应。
飞行时间质谱仪旳质量辨别
全部质荷比(m/z)相同旳离子尽量同步到达离子探测 器,即具有尽量相同旳飞行时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气压光电离源(APPI)
主要用于芳烃、甾体等不宜用以上三种离子化的样品。
飞行时间质谱仪TOF-MS的构成
质量分析器
TOF-MS分辨率低的原因
时间分散 空间分散 能量分散
改进方法
脉冲电离 目前, TOF -MS大都装有反射器,使离子 离子延迟引出 经过多电极组成的反射器后沿V型或W 反射器技术 型路线飞行到达检测器 ,使得分辨率可
飞行时间质谱仪
庞钧文 12210300012
质谱仪简介
质谱仪是按照离子的质荷比 (m/z)不同 ,来分离不同分子量的分 质量过滤 /分析器 离子源 子.测定分子量进行成分和结构分析. 离子的生成方式有失去或捕获电荷(如:电子发射,质子化或去质 进样部分 +++ + + + + +++ 子化) +
样品板
LC或GC + + + ++ + + + + + + + + + + + + + ++ +++ +++
检 测 器
EI源
Quadruopole Ion trap Time-of-flight
电子倍增器 闪烁计数器
FAB源
MALDI源 ESI源
质谱的发展历史
1906年 J.JThomson在实验中发现带电荷离子在电磁场中的运动 轨迹与 它的质荷比(m/z)有关,并于1912年制造出第一台质谱仪. 1946年 发明飞行时间质量分析器(Time-of-flight Analyzer) 1953-1958年 出现四极杆质量分析器(Quadrupole) 1956年 GC-MS开始联用 1959年 质谱首次用于peptide sequencing 1965年 离子共振质谱出现 1968年 电喷雾离子源Electrospray Ionization 1973年 LC-MS 1974年 Fourier transform ion cyclotor resonance MS 1987-1988年 Matrise_assisted laser desorption ionization 1996年 电喷雾离子源开始用于生物大分子的研究
质量分辨(Mass resolution, m/△m):质谱仪器分 辨不同成分物质的能力;~10000 质量精度(mass accuracy):衡量质谱仪器测量物 质成分的准确度;ppm 质量范围(mass range ):质谱仪器测量物质成分 的质量大小范围;1~ ∞ 灵敏度(sensitivity):质谱仪器所能测量物质成分 的最低含量;单分子检测
在线性检测器前面的加上 一组静电场反射镜,将自 由飞行中的离子反推回去, 初始能量大的离子由于初 始速度快,进入静电场反 射镜的距离长,返回时的 路程也就长,初始能量小 的离子返回时的路程短, 这样就会在返回路程的一 定位置聚焦,从而改善了 仪器的分辨能力。
V1 V2
XA1
XD1
XA2
XD2
XSF
U
空 间 聚 焦
XS
XRef
US
反射式飞行时间质谱仪
飞行时间质谱仪的应用
质量分析器; 可以单独使用,也可以和其 他仪器串联使用
与四级杆质谱串联 与离子阱质谱串联 与粒子淌度质谱串联
广泛用于化学、生物学、环 境科学等领域。
中药分析 蛋白质组学
Thanks!
Thanks!
飞行时间质谱仪TOF-MS的构成
离子源:
电喷雾电离源(ESI)
主要用于极性、难气化的成分在液源自状态下的电离。 大气压化学电离源(APCI)
主要用于中等极性、易挥发的小分子化合物在气相状态下的电离
基质辅助激光解吸电离源(MALDI)
主要用于多肽、核苷酸、蛋白质和高分子聚合物等生物大分子的 电离
达20 000 以上, 最高检测质量可超过 300 000 Da,且具有很高的灵敏度。
直线式VS反射式
直线型飞行时间质谱仪的 主要缺点:分辨率低。
L
离子初始能量不同,使得 具有相同质荷比的离子达 到检测器的时间有一定分 布,造成分辨能力下降。
改进的方法
这种带有静电场反射镜的 飞行时间质谱仪被称为反 射式飞行时间质谱仪
基本原理
V
L
2V
基本原理——公式推导
m 1 m T L* L * ( )( ) 2neV 2V ne 1 m T L * ( )( ) .......... ....(n 1) 2V e
当飞行距离L和工作电压V一定时,离子飞行时间T和离子 质荷比一一对应。
飞行时间质谱仪性能指标