第八章功率放大电路

合集下载

第8章 功率放大电路

第8章 功率放大电路
7 功率放大电路
7.1 概述 *7.2 小功率放大器 7.3 互补对称功率放大电路 7.4 集成功率放大器 7.5 功率放大器实际应用电路
7.1
概述
功率放大就是在有较大的电压输出的同时,又 要有较大的电流输出。 前面学过的放大电路多用于多级放大电路的输 入级或中间级,主要用于放大微弱的电压或电 流信号。
7.3.2 单电源互补对称功率放大器 (OTL--无输出变压器电路) 当在电路中采用单电源供电 时,可采用图7-3-3所示的 电路。
图7-3-3 单电源互补对称功率放大器
图7-3-3中,功效管工作在乙类状态。静态时因电路对称, E点电位为 1 VCC ,负载中没有电流。
2
① vi正半周,T1导通,T2截止,io=iC1,负载RL上得到正半 周点
1、任务和特点:


(1)大信号工作状态
为输出足够大的功率,功放管的动态工作范围很大,功放管中的电 压、电流信号都是大信号,一般以不超过功放管的极限参数为限度。


(2)非线性失真问题
输出功率越大,电压和电流的幅度就越大,信号的非线性失真就越 严重,如何减小非线性失真是功放电路的一个重要问题。


4
78 .5%
7.3.1 双电源互补对称 电路(OCL电路) (4)管耗PT

2 1 1 2 Vom 1 Vom PT 1 PT 2 PV PO · ·CC V 2 2 RL 2 RL 2 1 VomVCC Vom R 4 L
dVom
2 VomVCC Vom 4

代入式(7-3-7)得,T1、T2消耗功率的极限值为:

《模拟电子技术基础(第五版 康华光主编)》 复习提纲

《模拟电子技术基础(第五版 康华光主编)》 复习提纲

模拟电子技术基础复习提纲第一章绪论)信号、模拟信号、放大电路、三大指标。

(放大倍数、输入电阻、输出电阻)第三章二极管及其基本电路)本征半导体:纯净结构完整的半导体晶体。

在本征半导体内,电子和空穴总是成对出现的。

N型半导体和P型半导体。

在N型半导体内,电子是多数载流子;在P型半导体内,空穴是多数载流子。

载流子在电场作用下的运动称为漂移;载流子由高浓度区向低浓度区的运动称为扩散。

P型半导体和N型半导体的接触区形成PN结,在该区域中,多数载流子扩散到对方区域,被对方的多数载流子复合,形成空间电荷区,也称耗尽区或高阻区。

空间电荷区内电场产生的漂移最终与扩散达到平衡。

PN结最重要的电特性是单向导电性,PN结加正向电压时,电阻值很小,PN结导通;PN结加反向电压时,电阻值很大,PN结截止。

PN 结反向击穿包括雪崩击穿和齐纳击穿;PN结的电容效应包括扩散电容和势垒电容,前者是正向偏置电容,后者是反向偏置电容。

)二极管的V-I 特性(理论表达式和特性曲线))二极管的三种模型表示方法。

(理想模型、恒压降模型、折线模型)。

(V BE=)第四章双极结型三极管及放大电路基础)BJT的结构、电路符号、输入输出特性曲线。

(由三端的直流电压值判断各端的名称。

由三端的流入电流判断三端名称电流放大倍数))什么是直流负载线什么是直流工作点)共射极电路中直流工作点的分析与计算。

有关公式。

(工作点过高,输出信号顶部失真,饱和失真,工作点过低,输出信号底部被截,截止失真)。

)小信号模型中h ie和h fe含义。

)用h参数分析共射极放大电路。

(画小信号等效电路,求电压放大倍数、输入电阻、输出电阻)。

)常用的BJT放大电路有哪些组态(共射极、共基极、共集电极)。

各种组态的特点及用途。

P147。

(共射极:兼有电压和电流放大,输入输出电阻适中,多做信号中间放大;共集电极(也称射极输出器),电压增益略小于1,输入电阻大,输出电阻小,有较大的电流放大倍数,多做输入级,中间缓冲级和输出级;共基极:只有电压放大,没有电流放大,有电流跟随作用,高频特性较好。

功率放大电路工作原理

功率放大电路工作原理

功率放大电路工作原理功率放大电路是电子设备中常见的一种电路,它能够将输入信号的功率放大到更大的输出功率,从而驱动负载实现相应的功能。

在现代电子产品中,功率放大电路被广泛应用于音频放大、射频放大、功率放大等领域。

本文将介绍功率放大电路的工作原理,以便读者能够更好地理解和应用功率放大电路。

功率放大电路的工作原理主要包括输入信号放大、功率放大和输出负载驱动三个方面。

首先,输入信号放大是功率放大电路的基本功能之一。

当输入信号进入功率放大电路时,经过放大器的放大作用,输入信号的幅值会得到增大,从而实现对输入信号的放大处理。

而放大器的放大倍数则取决于放大器本身的增益特性,通常通过调节放大器的电路参数来实现不同的放大倍数。

其次,功率放大是功率放大电路的核心功能之一。

在输入信号经过放大器放大后,功率放大电路会将输入信号的功率放大到更大的输出功率。

这通常通过功率放大器来实现,功率放大器能够将输入信号的电压和电流进行放大,从而实现对输入信号功率的放大。

在功率放大的过程中,需要注意功率放大器的工作状态和输出功率的稳定性,以确保输出信号的质量和稳定性。

最后,输出负载驱动是功率放大电路的另一个重要功能。

在输出信号经过功率放大后,需要通过输出负载来驱动相应的负载,实现对负载的驱动和控制。

输出负载通常是电阻、电容、电感等元件,通过合理设计输出负载电路,可以实现对负载的匹配和驱动,从而实现对输出信号的有效控制和传输。

总的来说,功率放大电路的工作原理是通过输入信号放大、功率放大和输出负载驱动三个方面的功能实现对输入信号的处理和输出功率的放大。

在实际应用中,需要根据具体的需求和电路设计要求来选择合适的功率放大电路,并合理设计电路参数和工作状态,以实现对输入信号的有效放大和输出功率的稳定控制。

希望通过本文的介绍,读者能够更好地理解和应用功率放大电路,为相关领域的电子设备设计和应用提供参考和帮助。

电工电子技术第八章集成运算放大电路

电工电子技术第八章集成运算放大电路

8.1 集成运算放大器的简单介绍
• 运算放大器开环放大倍数大,并且具有深 度反馈,是一种高级的直接耦合放大电路。 它通常是作为独立单元存在电路中的。最 初是应用在模拟电子计算机上,可以独立 地完成加减、积分和微分等数学运算。早 期的运算放大器由电子管组成,自从20世 纪60年代初第一个集成运算放大器问世以 来,运算放大器才应用在模拟计算机的范 畴外,如在偏导运算、信号处理、信号测 量及波形产生等方面都获得了广泛的应用。
• 4.在集成电路中,比较合适的电阻阻值范 围大约为100 ~300 Ω。制作高阻值的电阻 成本高、占用面积大并且阻值偏差也较大 (10~20%)。因此,在集成运算放大器中 往往用晶体管恒流源代替高电阻,必须用 直流高阻值时,也常采用外接的方式。
8.1.2 集成运算放大器的简单说明
• 集成运算放大器的的电路常可分为输入级、 中间级、输出级和偏置电路四个基本组成 部分,如图8-1所示。
• 2.信号的输入 • 当有信号输入时,差动放大电路(见图8-5)的工作情况可以分为以下几种情
况。
• (1)共模输入。 • 若两管的基极加上一对大小相等、极性相同的共模信号(即vi1 = vi2),这种
输入方式称为共模输入。这将引起两管的基极电流沿着相同的方向发生变化, 集电极电流也沿相同方向变化,所以集电极电压变化的方向与大小也相同, 因此,输出电压vo = ΔvC1-ΔvC2 = 0,可见差动放大电路能够抑制共模信号。 而上述差动放大电路抑制零点漂移则是该电路抑制共模信号的一个特例。因 为输出的零点漂移电压折合到输入端,就相当于一对共模信号。
u
u
u0 Au 0
0
u+≈u-
(8-2)
• 当反向输入端有信号,而同向端接地时,u+=0,由上式 可见,u-≈u+=0。此时反向输入端的电位近似等于地电位, 因此,它是一个不接地的“地”电位端,通常称为虚地端。

模电第08章功率放大器(康华光)

模电第08章功率放大器(康华光)
一个管子的管耗: PT1 1 (VCCVo m Vo m ) RL π 4 当Vom=2VCC/ 时PT1最大: PT1m≈0.2Pom (4) 电源供给的功率PV : PV = Po+2PT1
Po (5) 效率 : = PV
(1-22)
2
5.缺点:不易调整Q点(VBE)
6. 电路的改进
O
iC
O
VCE
t
——晶体管导通的时 间大于半个周期,导通 角>180º 静态IC 0,管 , 耗较小效率较高,不失 真,一般功放常采用。
4.丙类工作状态——导通角小于180°
(1-4)
§8.2 甲类功率放大器实例
一. 共射极放大器
Rb R b1
ui vi
– vo +
+V +VCC CC
交流通路
+ vi –
若忽略VCES
: Pom 1 VCQ I CQ 1 VCC VCC 2 2 2 2 RL
=PVC静
上一页
(2)动态时电源提供的平均功率PVC
1 PVC 2

2
0
1 VCC iC d ( t ) 2

2
0
VCC ( I CQ I Cm sin t )d t =ICQ· CC V
2 (VCC VCES ) VCC PVC VCC 2 RL 2 RL
VCC VCES 当Q在中点时: I CQ 2 RL (3)电路的效率 定义: = Po/PVC 电路的最高效率: m=Pom/PVC 0.25
(4)甲类功率放大器的优缺点 优点:信号不失真。 缺点:静态功率大,输出功率小,效率低。

电工学第八章 基本放大电路

电工学第八章 基本放大电路

RL RC//RL
返回
(3)电压放大倍数的计算


Ui I b rbe



UoIcRL IbRL
式中 RL RC//RL 则放大电路的电压放大倍数

Au
U0

Ui
R' L rbe
输出端开路时(未接RL)
Au
RC rbe
结 论
❖ Au与β、rbe和并联电阻 有关;
❖负载电阻RL越小,放大倍数越小; ❖ 输入电压与输出电压相位相反。
返回
放大电路可分为静态和动态两种情况来分析。
动态:输入端加上输入信号时,放大电路的工作状态。
❖ 此时,电路中电流和电压值是直流和交流分量叠加。 ❖ iB、iC、iE、uBE和uCE,称为动态值(直流分量和交流 分量的叠加) ❖ 对放大电路的动态分析就是采用放大电路的交流通道, 确定电压放大倍数Au,输入电阻ri,输出电阻ro等。 ❖ 动态分析方法:微变等效电路法和图解法 直流通道——只考虑直流信号的分电路。 交流通道——只考虑交流信号的分电路。
步骤: ❖ 用估算法确定IB; ❖ 由输出特性曲线确定IC和UCE。
由 U CE U CC ICR C 得
IC=0时, UCEUCC
UCE=0时,I C
U CC RC
返回
(1)输入输出特性曲线
如下图所示,(IBQ,UBEQ) 和( ICQ,UCEQ )分别对 应于输入输出特性曲线上的一个点,称为静态工
0.0m 4 A40A
IC IB
3.750.04
1.5mA
U CE U CC ICR C
1 2 1.5 1 0 34 130
6V
返回

功率放大电路工作原理

功率放大电路工作原理

功率放大电路工作原理功率放大电路是指能够将输入信号的功率放大的电路。

在现代电子设备中,功率放大电路被广泛应用于音频放大、射频放大等领域。

本文将介绍功率放大电路的工作原理,帮助读者更好地理解其工作原理。

首先,功率放大电路的基本结构包括输入端、输出端和放大器。

输入端接收输入信号,经过放大器放大后,输出到输出端。

放大器是功率放大电路的核心部件,它能够将输入信号的功率放大到一定的水平,以满足实际应用的需求。

在功率放大电路中,放大器通常采用晶体管、场效应管等器件。

这些器件能够根据输入信号的变化,控制电流或电压的变化,从而实现对输入信号的放大。

在放大器中,通常还会加入负载电阻、耦合电容等元件,以提高放大器的稳定性和线性度。

功率放大电路的工作原理可以通过以下步骤来解释,首先,输入信号经过输入端进入放大器,放大器根据输入信号的变化,控制输出端的电流或电压变化;其次,输出端的信号经过负载电阻等元件,最终输出到外部电路。

在这个过程中,放大器起到了将输入信号功率放大的作用。

在实际应用中,功率放大电路通常需要满足一定的性能要求,比如输出功率、频率响应、失真度等。

为了实现这些性能要求,设计功率放大电路需要考虑放大器的工作点、负载匹配、反馈电路等因素。

通过合理的设计,可以使功率放大电路达到较好的性能指标。

除了单级功率放大电路外,还有级联放大、并联放大等多种功率放大电路结构。

这些结构能够根据实际应用的需求,灵活地组合使用,以满足不同的功率放大要求。

总的来说,功率放大电路是现代电子设备中不可或缺的部分,它能够将输入信号的功率放大到一定水平,满足实际应用的需求。

通过合理的设计和优化,可以使功率放大电路达到较好的性能指标,为各种电子设备的正常工作提供保障。

综上所述,功率放大电路的工作原理是基于放大器对输入信号功率的放大,通过合理的设计和优化,能够实现对输入信号的有效放大,满足实际应用的需求。

希望本文能够帮助读者更好地理解功率放大电路的工作原理,为相关领域的研究和应用提供参考。

模电第四版习题答案

模电第四版习题答案

模电第四版习题答案模拟电子技术是电子工程领域中非常重要的基础课程,其习题答案对于学生理解和掌握课程内容至关重要。

以下是模拟电子技术第四版习题的部分答案,供参考:第一章:半导体基础1. 半导体材料的导电性介于导体和绝缘体之间。

在室温下,硅的电阻率大约是1kΩ·cm,而锗的电阻率大约是0.6kΩ·cm。

2. N型半导体中,多数载流子是自由电子,而P型半导体中,多数载流子是空穴。

3. PN结的正向偏置是指给P型半导体加上正电压,N型半导体加上负电压,此时PN结导通。

第二章:二极管1. 整流二极管主要用于将交流电转换为脉动直流电,稳压二极管主要用于电路中稳定电压。

2. 一个理想的二极管在正向偏置时电阻为零,反向偏置时电阻无穷大。

3. 齐纳二极管是一种特殊类型的稳压二极管,它在反向偏置时具有稳定的电压。

第三章:双极型晶体管1. 双极型晶体管(BJT)分为NPN和PNP两种类型,其中NPN型BJT在基极-发射极结正向偏置时导通。

2. 晶体管的放大区是基极电流变化引起集电极电流变化的区域。

3. 晶体管的饱和区是指基极电流足够大,使得集电极电流达到最大值,此时晶体管不能进一步放大信号。

第四章:场效应晶体管1. 场效应晶体管(FET)的工作原理是通过改变栅极电压来控制源极和漏极之间的电流。

2. JFET(结型场效应晶体管)和MOSFET(金属-氧化物-半导体场效应晶体管)是两种常见的FET。

3. MOSFET在截止状态下,其源极和漏极之间的电阻非常大,几乎相当于断路。

第五章:放大器基础1. 放大器的主要功能是接收一个电信号并将其转换为更大的电流或电压信号。

2. 共射放大器是最常见的BJT放大器配置之一,它具有较高的电压增益和中等的电流增益。

3. 差分放大器能够放大两个输入信号之间的差值,对共模信号不敏感。

第六章:反馈放大器1. 反馈放大器通过将输出信号的一部分反馈到输入端来稳定放大器的性能。

2. 负反馈可以提高放大器的稳定性和线性度,但可能会降低增益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

符合要求吗?
VT
+
Re
uo
RL

输入为零时输出为零
双电源供电时Uom的峰值接近电源电压。 单电源供电Uom的峰值接近二分之一电源电压。
2.基本电路
(1)特征:T1、T2特性理想对称。
(2)静态分析
+VCC
VT1
ui
+
VT2 RL uo

−VCC
静态时T1、T2均截止,VB= VE=0
T1的输入特性 理想化特性
6.单电源互补对称功率放大电路 (OTL)
+VCC
计算Po、PT、PV和PTm的公式必须加以修正,以VCC/2 代替原来公式中的VCC。
R1
VD1 VD2
VT1 +−
C
+
VT2 RL uo
ui
VT3

R2
7. 平衡桥式功率放大电路 OCL和OTL两种功放电路的效率虽很高,但是它们的缺点就是电源的利用率都不高
O
π

3π ωt
(d) 丙类 丙类:导通角小于180°
8.2 互补对称功率放大电路(OCL)
1. 输出级的要求 互补输出级式直接耦合的功率放大电路。 对输出级的要求:带负载能力强;直流功耗小;负载电阻上无直流功耗; 最大不失真输出电压最大。
射极输出形式
静态工作电流小
+VCC
Rb1 Rb2 + ui −
ui

VT3
VT4
BTL电路输出功率近似为OTL电路输出功率的4 倍,即BTL电路电源利用率高
最大的不足是负载RL不能接地 !!
效率近似为78.5%
8.3 复合管在功率放大电路中的应用
1、复合管 复合管的组成:多只管子合理连接等效成一只管子。
目的:增大β,减小前级驱动电流,改变管子的类型。
c c
iC
(3) 晶体管的极限参数
将UOM代入PT的表达式,可得
PTmax
VC2C π2 RL
若 U C E 0 , SP o m 则 2 V R C 2 L , C P Tm π 2 2 a P o xU m C 0 E S 0 .2 P oU m C 0 ES
因此,选择晶体管时,其极限参数
ICM
1 2
1、复合管
① 复合管的类型与前级T1管相同; ② 复合管的电流放大系数近似等于两管的β 相乘;
③ 两管正确连接成复合管,必须保证各自的电流方向正确。
iB1
iB1
b
e iE
iC1 iB2
不能构成复合管
iC1
iB2
iC
c
能构成复合管
e b
c
等效为PNP管
2. 准互补输出级
+VCC
R1
VT1 VD1
在输出功率最大时,因管压降最小,故管子损耗不大;输出功率最小 时,因集电极电流最小,故管子损耗也不大。
VT2 RL −VCC
+
uo
管子功耗与输出电压峰值的关系为

P T 2 1 π0 π (V C C U O M sint)U O M R siL ntdt
管压降
发射极电流
(3) 晶体管的极限参数
CUC 2RL
ES)2
大功率管的UCES常为2~3V。
若忽略UCES
Pom
V
2 CC
2 RL
数值较大不可忽 略

ui -
(2) 效率
+VCC
IC2 1 π0 πU R o L m sintd(t)π 1U R o L m
VT1
PV2VCCICπ 2VCC RU Lom
若忽略UCES
+
Uom VCC
-
1、通用功放芯片LM386
【例8.4.1】 在图示的LM386组成的功放电路中,试求:(1)当可变电阻RW2从调整时,Auf的变化范围为多少? (2)为使扬声
VD2
+ VT2 RL uo
VT3

R2
−VCC
VT1 VT2
VT1
VT2
Rc VD1 VD2
ui VT5
+VCC
VT1 VT2
+
VT3
RL uo
− VT4
Re −VCC
2. 准互补输出级 为保持输出管的良好对称性,输出管应为同类型晶体管。
Rc VD1 VD2
ui VT5
Re
VT1 VT3
+VCC
第八章 低频功率放大电路
8.1 功率放大电路概述 8.2 互补对称功率放大电路 8.3 复合管在功率放大电路中的应用 8.4 集成功率放大电路
8.1 功率放大电路概述
1、功率放大电路的特点
(1)输出功率尽可能大:即在电源电压一定的情况下,最大不失真输出电压最大。 (2)效率尽可能高:即电路损耗的直流功率尽可能小,静态时功放管的集电极电流近似为0。 (3)非线性失真小:提高输出功率和减小非线性失真是一对矛盾 。 (4)功放管的散热和保护问题:晶体管工作在极限状态,注意散热和保护。
(3)动态分析
+VCC

ui
VT1
+ VT2 RL uo

ui正半周,电流通路为 +VCC→T1→RL→地, uo = ui
ui负半周,电流通路为 地→ RL → T2 → VCC, uo = ui
−VCC
两只管子交替工作,两路电源交替供电,双向跟随。
+VCC
3. 交越失真
ui
VT1

O
ui
20kΩ
0.1μF C3
6 1 8 10μF
2 5 C1 250μF
LM386 +
3 +
C2 0.05μF
4
7 C4
R1 10Ω
RL 8Ω
10μF
解:(1)当RW2=0时
Auf
12R71215201
R5
0.15
当RW2=∞时
+ uo
A u f1R 5 2 R 7 R 610.1 2 5 1 1 5 .3521
使得VT2与VT4管型相同
Rc
+VCC
VT2 +
RL uo −
VT4
−VCC
VT3 VT4
VD1
VT1 VT2
VD2
Re1 Re2
R
+
VT3
RL uo
VT4
ui

VT5 Rc3 Re4
Re
−VCC
8.4 集成功率放大电路
1、通用功放芯片LM386
+Vs
增益 设定
8
旁路 电容
7
+VCC OUT
6
5
C5
1 2R7 R5 R6//R
LM386内部电路
1、通用功放芯片LM386
【例8.4.1】 在图示的LM386组成的功放电路中,试求:(1)当可变电阻RW2从调整时,Auf的变化范围为多少? (2)为使扬声
ui RW1 10kΩ
+Vs
器上得到600mW的信号功率,输入电压的最小值为多少毫伏?
C5
RW2
π

3π ωt
交越失真
4. 消除交越失真的互补输出级
+VCC
静 态UB: 1B2UD1UD2
R1
动 态ub: e1ube2ui
VD1
b1 VT1
可换为
ui VD2 b2
+
VT2 RL uo
R2

I R3 I1
R4
IB I2
b1

I

2
>I

B

VT
U B1B2
R3+R4 R4
UBE
b2
故称

为U
在每半个信号周期中,电路只有一个晶体管和一个电源在工作
为了提高电源的利用率,也就是在较低电源电压的作用下,使负载获得较大的输出功率,一般采 用平衡式无输出变压器电路,又称为BTL(Balanced Transformer Less)电路
7. 平衡桥式功率放大电路
+VCC
(1) 工作原理 ui正半周VT1、VT4导通,RL上获得正半周信 号
在功放中,晶体管集电极或发射极电流的最大值接近最大集电极电流ICM,管压降的最大值接 近c-e反向击穿电压U(BR)CEO, 集电极消耗功率的最大值接近集电极最大耗散功率PCM 。称为工作在 极限状态。
3. 功率放大电路的类型 提高效率,减小晶体管的静态管耗,减小其静态电流
(1)甲类方式:晶体管在信号的整个周期内均处于导通状态 (2)乙类方式:晶体管仅在信号的半个周期处于导通状态 (3)甲乙类方式:晶体管在信号的多半个周期处于导通状态
B

E



−VCC
R1 VD1 ui VD2
R2
4. 消除交越失真的互补输出级
+VCC
VT1 +
VT2 RL uo VT3为前级放大管,设有合适
的静态工作点
− −VCC
+VCC
R1
VT1 VD1
VD2
+
VT2 RL uo
ui VT3

R2
−V的分析计算 求解输出功率和效率的方法:
RW2
20kΩ
0.1μF C3
6 1 8 10μF
1
增益 设定
LM386
2
3
4
相关文档
最新文档