三倍频变压器原理

合集下载

电压互感器三倍频感应耐压试验详解

电压互感器三倍频感应耐压试验详解

电压互感器三倍频感应耐压试验详解目录一、前言 (2)1.1 试验目的 (2)1.2 试验意义 (3)1.3 试验设备简介 (4)二、试验原理 (6)2.1 电压互感器工作原理 (6)2.2 三倍频感应耐压试验原理 (7)2.3 试验设备工作原理 (8)三、试验设备 (10)3.1 试验变压器 (11)3.2 控制系统 (13)3.3 保护装置 (14)3.4 试验接线方法 (15)四、试验步骤 (16)4.1 试验前的准备工作 (17)4.2 试验过程 (18)4.3 试验结果分析 (19)4.4 试验注意事项 (20)五、试验结果评估 (21)5.1 试验结果的判断标准 (22)5.2 试验结果的记录与报告 (22)5.3 试验结果的应用 (23)六、安全注意事项 (24)6.1 人员安全 (25)6.2 设备安全 (26)6.3 试验过程中的安全措施 (27)七、试验过程中的问题及处理 (28)7.1 试验过程中的异常情况 (29)7.2 问题的分析与解决 (30)7.3 防范措施 (31)一、前言随着电力系统的不断发展,电压互感器(VT)作为其关键设备之一,在电力传输和分配过程中发挥着越来越重要的作用。

电压互感器是一种专门用于测量高电压的设备,它可以将高电压降低到可以安全测量的水平。

为了确保电压互感器的正常运行和延长其使用寿命,对其进行耐压试验是非常必要的。

在三倍频感应耐压试验中,我们将测试电压互感器在高频下的绝缘性能。

这种试验方法可以有效地模拟电压互感器在实际工作中可能遇到的高频过电压情况,从而检验其绝缘结构的可靠性和稳定性。

通过三倍频感应耐压试验,我们可以及时发现并处理潜在的安全隐患,确保电力系统的安全稳定运行。

1.1 试验目的电压互感器三倍频感应耐压试验是针对电力系统中电压互感器的一种重要检测方法,旨在评估其在实际运行中的绝缘性能和耐压能力。

通过该试验,可以发现电压互感器在设计和制造过程中可能存在的绝缘缺陷,以及在实际运行中可能出现的绝缘老化、疲劳等问题。

电子变压器的工作原理 电子变压器材料及分类

电子变压器的工作原理 电子变压器材料及分类

电子变压器的工作原理电子变压器材料及分类电子变压器简介电子变压器,输入为AC220V,输出为AC12V,功率可达50W。

它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。

电子变压器工作原理工作原理与开关电源相似,二极管VD1~VD4构成整流桥把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。

R1为限流电阻。

电阻R2、电容C1和双向触发二极管VD5构成启动触发电路。

三极管VT1、VT2选用S13005,其B为15~20倍。

也可用C3093等BUceo>=35OV 的大功率三极管。

触发二极管VD5选用32V左右的DB3或VR60。

振荡变压器可自制,用音频线绕制在H7X10X6的磁环上。

TIa、T1b绕3匝,Tc绕1匝。

铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。

T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm 高强度漆包线绕8匝。

二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。

电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。

如果电压不满足上述数值,或电路不振荡,则应检查电路有无错焊、漏焊或虚焊。

然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。

整个电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。

引外,改变T2a、b二线圈的匝数,则可改变输出的高频电压。

电子变压器作用在电子线路中起着升压、降压、隔离、整流、变频、倒相、阻抗匹配、逆变、储能、滤波等作用。

电子变压器分类A按工作频率分类:工频变压器:工作频率为50Hz或60Hz中频变压器:工作频率为400Hz或1KHz音频变压器:工作频率为20Hz或20KHz超音频变压器:20KHz以上,不超过100KHz高频变压器:工作频率通常为上KHz至上百KHz以上。

三相变压器基本工作原理 变压器工作原理

三相变压器基本工作原理 变压器工作原理

三相变压器基本工作原理变压器工作原理变压器的基本工作原理是电磁感应原理。

当交流电压加到一次侧绕组后交流电流流入该绕组就产生励磁作用,在铁芯中产生交变的磁通,这个交变磁通不仅穿过一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中引起感应电动势。

这时如果二次侧与外电路的负载接通,便有交流电流流出,于是输出电能。

在三相变压器建立新的中线-接地就可解除电网中共模干扰和其它中线的困扰,三相变压器将三线△接线转换为四线Yo系统,加屏蔽就进一步免除了由变压器内部耦合的高频脉冲干扰和噪音,虽然有屏蔽的三相变压器对各种N-G来的干扰(脉冲和高频噪声)能有效防止,但变压器必须正确妥善接地,十分严格,否则抗共模干扰将无效果。

1.国内的500、330、220与110kV的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法。

当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°角。

500/220/LVkV─YN,yn0,yn0或YN,yn0,d11220/110/LVkV─YN,yn0,yn0或YN,yn0,d11330/220/LVkV─YN,yn0,yn0或YN,yn0,d11330/110/LVkV─YN,yn0,yn0或YN,yn0,d112.国内60与35kV的输电系统电压有二种不同相位角。

如220/60kV变压器采用YNd11接法,与220/69/10kV变压器用YN,yn0,d11接法,这二个60kV输电系统相差30°电气角。

当220/110/35kV变压器采用YN,yn0,d11接法,110/35/10kV变压器采用YN,yn0,d11接法,以上两个35kV输电系统电压相量也差30°电气角。

所以,决定60与35kV级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。

电压互感器三倍频感应耐压试验详解

电压互感器三倍频感应耐压试验详解

35
66
110
220
3
4
5
8
试验仪器、设备的选择(补偿电感) 由于电压互感器感应耐压试验时呈容性 负荷状态,为减少实验设备容量、避免倍频 谐振,故应根据电压互感器不同电压等级在 其二次绕组或辅助绕组接入补偿电感。补偿 电感的选择原则是在试验频率下,被试电压 互感器仍呈容性。
试验仪器、设备的选择(补偿电感)
为了有目的的选择补偿电感,试验前应对电压互感 器辅助绕组加150Hz电压至额定电压100V,读取电 流 ,确定加压线圈的输入容抗值,然后按经验公式选 择补偿量,使补偿达到预期效果。输入容抗值应按下式 计算,即
u 1 u u d x d X c = * 2 = udxd i k 3 i u d x d u d x d
案例解答
(1)确定高压侧试验电压,根据规程规定试验电压为出厂 试验的80%,即
U x = 9 5 * 8 0 % = 7 6 ( k V )
(2)计算变比K为:
K = ( 3 5 /3 ) / ( 0 . 1 / 3 ) = 6 0 6 . 2
(3)不考虑“容升”时辅助绕组应施加的电压为
U s = 7 6 0 0 0 / 6 0 6 . 2 = 1 2 5 . 4 ( V )
现场试验步骤及要求
(二)试验步骤 (3)接通三相电源,合上电源开关,从零(或接 近与零)开始升压,试验过程中密切观察电流表 和电压表的变化情况,观察电压波形是否平滑。 升压速度在75%试验电压以前可以是任意的, 在75%试验电压开始应以每秒2%试验电压的 速率升压至试验电压,开始计时。 (4)耐压结束后,迅速降压到零(或接近于零), 然后切断电源。使用放电棒对被试电压互感器放 电,拆除试验接线,试验结束。

高频变压器工作原理

高频变压器工作原理

高频变压器工作原理开关电源中的拓扑结构有许多。

比如半桥式功率转换电路,工作时两个开关三极管轮番导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输出沟通电,高频变压器各个绕组线圈的匝数比例则打算了输出电压的多少。

典型的半桥式变压电路中最为惹眼的是三只高频变压器:主变压器、驱动变压器和帮助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。

而帮助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。

变压器的主要参数有电压比、频率特性、额定功率和效率等。

电压比n:变压器的电压比n与一次、二次绕组的匝数和电压之间的关系如下:n=V1/V2=N1/N2式中N1为变压器一次(初级)绕组,N2为二次(次级)绕组,V1为一次绕组两端的电压,V2是二次绕组两端的电压。

升压变压器的电压比n小于1,降压变压器的电压比n大于1,隔离变压器的电压比等于1。

额定功率P:此参数一般用于电源变压器。

它是指电源变压器在规定的工作频率和电压下,能长期工作而不超过限定温度时的输出功率。

变压器的额定功率与铁心截面积、漆包线直径等有关。

变压器的铁心截面积大、漆包线直径粗,其输出功率也大。

频率特性:是指变压器有肯定有工作频率范围,不同工作频率范围的变压器,一般不能互换使用。

由于变压器有其频率范围以外工作时,会消失工作时温度上升或不能正常工作等现象。

效率:是指在额定负载时,变压器输出功率与输入功率的比值。

该值与变压器的输出功率成正比,即变压器的输出功率越大,效率也越高;变压器的输出功率越小,效率也越低。

变压器的效率值一般在60%~100%之间自耦变压器:一般变压器的一、二次线圈是相互绝缘的,只有磁的耦合而没有电的直接联系。

假如将双绕组变压器的一、二次绕组串联起来作为新的一次侧,而二次绕组仍作二次侧与负载阻抗相连接,便得到一台降压自耦变压器,的原副线圈共用一个线圈使用时,转变滑动端的位置,便可得到不同的输出电压。

感应耐压(三倍频)测试仪说明书

感应耐压(三倍频)测试仪说明书

时基电力感应耐压(三倍频)测试仪说明书一、功能介绍感应耐压测试仪(简称三倍频),是用于电压互感器、电力变压器纵绝缘以及半绝缘变压器的主绝缘的感应耐压试验,采用三芯五柱结构,将铁芯工作磁通密度选择在饱和磁密以上,使开口接成三角形的次级绕组中的基波电势(正序向量)的向量和为0,而开口两端应出同相的150Hz三次谐波(零序)。

二、技术参数输入电压:三相380V 50Hz 正弦波输入电流:7.6A输出电压:0-300V 150Hz 波形失真≤5%输出电流:5A输出容量:5kVA空载运行时间:≤5分钟负载运行时间:40-60S三、试验接线图接线分为两种,一种为一体式,一种为分体式设计,下图是分体式匝间耐压仪的接线图:1022E时基电力下图是一体式接线图,一体式是时基电力根据用户需求结合产品性能,质量进行整体或者分体设计,这样最大的好处是相对体积小,重量轻便于移动式操作,12kvA~15kvA以下设计为一体式。

1022F四、操作方法1.感应耐压测试仪或者三倍频电源发生器按照上述方法接好连接线,二次绕组时基电力短接处理,仔细检查接线,确保输入、输出、仪表接地线准确无误后,通电进行操作,三倍频或匝间耐压仪的次级输出为150Hz的三倍频电源。

2.接通电源,合上空开,将调压器的手轮旋至零位处,零位开关合上,此时电源指示灯及零位指示灯亮。

按下启动按钮,接触器吸合,同时工作指示灯亮,并发出声光报警。

3.顺时针缓慢均匀旋转调压器的手轮,并密切注视仪表,当升到所需电压值时、应停止旋转,按下计时按钮,耐压时间到即发出声光报警,及时反向旋转手轮,直到调压器回到零位上。

4.试验完毕后,按下停止按钮,接触器断电,工作指示灯灭,零位指示灯亮,此时调压器断电。

5.本装置设有过流保护,出厂时按额定输出电源80%整定,于小负载时,应根据负载重新整定,当升压或耐压过程中出现过流或击穿现象时,接触器断电,切断主回路,起到保护作用。

6.感应耐压仪带有多抽头的电抗器,当三倍频发生器带JCCI类型高压串级式电压互感器负载时,其电流由感性为容性,功率因素很低,因此,可在被试验的高压互感器某一绕组上接入可调的电抗器进行电流补偿来提高整个试验回路的功率因素(增补内容);。

高频变压器工作原理及用途解析

高频变压器工作原理及用途解析

高频变压器工作原理及用途简介是作为开关电源最主要的组成部分。

开关电源中的拓扑结构有很多。

比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。

典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。

而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。

工作原理变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

用途高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。

按工作频率高低,可分为几个档次:10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。

传送功率比较大的情况下,功率器件一般采用 IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小的,可以采用MOSFET,工作频率就比较高。

制造工艺高频变压器的制造工艺要点一。

绕线A 确定BOBBIN的参数B 所有绕线要求平整不重叠为原则C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错D 横跨线必需贴胶带隔离1. 疏绕完全均匀疏开2. 密绕排线均匀紧密3. 线圈两边与绕线槽边缘保持足够的安全距离A,B4. 套管长度必须足够,一端伸入绕线管的安全胶带以内,另一端伸出BOBBIN上沿面,但不得靠近PIN5. 最外层胶带切割在铁芯组合面,切割处必须被铁芯覆盖。

电压互感器三倍频感应耐压试验

电压互感器三倍频感应耐压试验

电压互感器三倍频感应耐压试验xx年xx月xx日contents •试验目的•试验原理•试验系统及配置•试验过程•试验结果分析•试验影响因素及控制措施•安全防护及注意事项目录01试验目的用于变换电压的设备,将高电压转换为低电压,以便于测量和保护。

电压互感器一种用于检验电压互感器性能的试验方法,通过模拟电源频率三倍的频率,检测互感器的耐压能力和绝缘水平。

三倍频感应耐压试验定义和概念电压互感器作为电力系统中的重要设备,需要保证其正常运行和可靠性。

三倍频感应耐压试验可以检验电压互感器的绝缘性能和耐压能力,预防潜在的故障和损坏,确保电力系统的安全稳定运行。

试验的重要性试验目的和意义验证电压互感器是否能够承受电源频率三倍的频率所带来的电压冲击。

对电压互感器的设计、制造和运行提供科学有效的依据,提高电力系统的安全性和可靠性。

检验电压互感器的性能和质量是否符合运行要求。

02试验原理电压互感器是一种变压器,用于将高电压转换为较低电压,以便于测量和保护。

电压互感器通常采用电磁感应原理进行能量传递,将一次侧的电压转换为二次侧的电压。

电压互感器工作原理三倍频感应耐压试验是一种用于检验电压互感器性能的试验方法。

通过将三倍于额定频率的交流电压加到电压互感器的一次侧,以模拟实际运行中的过电压情况。

三倍频感应耐压试验原理试验原理的细节和重点试验过程中需要关注电压互感器的饱和程度和热稳定性能。

需要确定合适的试验条件和参数,如电压等级、频率、波形等,以确保试验的有效性和安全性。

需要注意电压互感器的绝缘性能和保护措施,以避免试验过程中发生闪络或短路等故障。

03试验系统及配置试验系统的组成包括三倍频电源装置和调压器,提供试验所需的三倍频交流电。

电源部分变压器部分测量部分控制部分包括被试品电压互感器和试验变压器,将三倍频电源连接到被试品上。

包括隔离变压器、电压表、电流表等,用于测量被试品的电压、电流等参数。

包括继电器、接触器等控制元件,用于控制试验的启动、停止等操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E1=4.44fNBmS=4.44fNΦm
基本概念
Bm为磁感应强度(习惯叫磁通密度)矢量; Rm为磁阻;Rm=l/(μS); L为自感系数:L=N2 ∧m; 磁通:Φ=BmS μ为磁导率; 真空磁导率:μ0=4π×10-7(H/m); μFe≈2000 μ0~6000 μ0
∧m为磁导: ∧m=1/Rm;
为什么采用三倍频时,电压可增大2~3倍时,不会过饱和, 励磁电流不大?
当采用三倍频(150Hz),额定电压下时,励磁电抗Xm=ωL=2πf3L, 即励磁电流I0为工频的1/3,从而磁通Φ也为工频的1/3,远没有达到饱 和,当电压调到额定电压的3倍时,励磁电流I0才达到工频额定电流值, 此时磁通接近饱和状态,即额定状态。 也可由此式来理解:E1=4.44fNBmS=4.44fNΦm,在额定电压下,频 率f增加三倍时,因励磁电抗增大3倍→励磁电流减小3倍→从而磁密Bm 减小3倍→磁通Φm减小3倍。然后把额定电压增大3倍时,励磁电流会增 加3倍达到额定值→Bm达到额定值,即接近饱和状态。
Xm为励磁电抗:Xm=ωL=2πfL;
为什么在额定频率下,电压超过额定电压时,空载励磁电流会 急速增大?
在额定频率,额定电压下,铁芯接近饱和,当电压增加时,饱和程 度急速加大,即Rm急速↑→∧m↓→L↓→Xm急速↓,如下图 所示可知,Xm急速变小时,励磁电流I0会急剧增加。
注意:Xm>>X1σ,Rm,R1
三倍频变压器试验原理
程文锋
变压器变压器线圈的主绝缘和纵绝缘
主绝缘: 放在高压线圈与低压线圈之间的绝缘筒。 放在低压线圈与铁芯柱之间的绝缘筒。 铁轭与线圈之间的绝缘隔板。 相间绝缘隔板。 放在高压线圈内部边缘和纸绝缘筒之间的角环和纸筒等。 各线圈之间及线圈与铁轭之间的间隙充满的绝缘油。 此外,在线圈的支撑端圈和铁轭之间尚有绝缘纸圈和垫块,在铁轭绝 缘和铁轭夹铁的胶板之间有纸板、垫块或木料做成的平衡绝缘。 纵绝缘 包括匝间绝缘、层间绝缘和段间绝缘等。匝间绝缘主要是导线表 面的绝缘纸(或沙包)。圆筒式线圈的层间绝缘是电缆纸和软纸板。 连续式线圈和纠结式线圈的段间绝缘是绝缘垫 块。
仪器工作原理(一)
下图为利用三台单相变压器,一次侧接成星形,二次侧接成开口三角形。当一 次侧加压时,它很容易就铁心饱和,出现过励磁,由于采用的是星形中性点未接 地接法,零序电流形成回路,以漏磁通方式消耗。又因为零序电流以3次谐波电 流为主,所以磁通为平顶波,能感应出含有丰富的3倍频电压。 在二次侧当中,所采用的是开口三角形接法,正序和负序之和为零。所以只能 出现3次及以上的零序电压(超过3次分量非常少),形成3倍频电压,然后再经 变压器放大等。当然,还可对所获得的电压进行滤波等,得到更好的波形。
为什么要对力变压器及电压互感器感应试验电压大 致2-3倍最大工作相电压考虑。众所周知,变压器在额定频率,额定 电压下,铁芯接近饱和,若用工频电源在被试变压器绕组两端施加大 于额定电压的试验电压,则空载励磁电流会急剧增加,达到不可允许 的程度。三倍频变压器是为了满足<<GB1094.3—85>>、<<GB1207>>和 <<电气设备预防性试验规程>>—1995中三倍频感应耐压试验和局放试 验而设计。变压器、互感器感应耐压试验是检验该产品是否符合国家 标准的一项重要试验。
仪器工作原理(二)
下图由自耦调压器组成的三倍频原理,当加入工频三相电压过励磁时, 中性点处便流过含有丰富的3次以上谐波零序电流。然后对这电流进行升压, 便得到了3倍频电压。
谢谢!
三倍频发生器的基本原理
一、励磁电流对磁通的影响
图一为变压器正常运行时的波形图,因励磁电抗的非线性,电流波形为尖顶 波,含有丰富的三次谐波,但产生磁通为正弦的,从而感应出正弦电压。 图二中,把电流的三次谐波过滤掉后,电流成为了正弦波,所产生的磁通为 平顶波,因而感应出的电压为尖顶波,含有丰富的三次谐波分量。
相关文档
最新文档