八数码问题实验报告讲解
八数码问题C语言A星算法详细实验报告含代码

一、实验内容和要求八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:图1 八数码问题示意图请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或A* 算法)编程求解八数码问题(初始状态任选)。
选择一个初始状态,画出搜索树,填写相应的OPEN 表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。
二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、实验算法A*算法是一种常用的启发式搜索算法。
在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。
A*算法的估价函数可表示为:f'(n) = g'(n) + h'(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。
由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:f(n) = g(n) + h(n)其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。
在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。
用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。
这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。
(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费h(n)<=h'(n)。
八数码问题 实验报告

八数码问题实验报告八数码问题实验报告引言:八数码问题是一种经典的数学难题,在计算机科学领域有着广泛的研究和应用。
本实验旨在通过探索八数码问题的解法,深入理解该问题的本质,并通过实验结果评估不同算法的效率和准确性。
一、问题描述:八数码问题是一个在3×3的棋盘上,由1至8的数字和一个空格组成的拼图问题。
目标是通过移动棋盘上的数字,使得棋盘上的数字排列按照从小到大的顺序排列,最终形成如下的目标状态:1 2 34 5 67 8二、解法探索:1. 深度优先搜索算法:深度优先搜索算法是一种经典的解决拼图问题的方法。
该算法通过不断尝试所有可能的移动方式,直到找到目标状态或者无法再继续移动为止。
实验结果显示,该算法在八数码问题中能够找到解,但由于搜索空间庞大,算法的时间复杂度较高。
2. 广度优先搜索算法:广度优先搜索算法是另一种常用的解决八数码问题的方法。
该算法通过逐层扩展搜索树,从初始状态开始,逐步扩展所有可能的状态,直到找到目标状态。
实验结果显示,该算法能够找到最短路径的解,但同样面临搜索空间庞大的问题。
3. A*算法:A*算法是一种启发式搜索算法,结合了深度优先搜索和广度优先搜索的优点。
该算法通过使用一个估价函数来评估每个搜索状态的优劣,并选择最有希望的状态进行扩展。
实验结果显示,A*算法在八数码问题中表现出色,能够高效地找到最优解。
三、实验结果与分析:通过对深度优先搜索、广度优先搜索和A*算法的实验,得出以下结论:1. 深度优先搜索算法虽然能够找到解,但由于搜索空间庞大,时间复杂度较高,不适用于大规模的八数码问题。
2. 广度优先搜索算法能够找到最短路径的解,但同样面临搜索空间庞大的问题,对于大规模问题效率较低。
3. A*算法在八数码问题中表现出色,通过合理的估价函数能够高效地找到最优解,对于大规模问题具有较好的效果。
四、结论与展望:本实验通过对八数码问题的解法探索,深入理解了该问题的本质,并评估了不同算法的效率和准确性。
八数码 实验报告

八数码实验报告八数码实验报告引言:八数码,也称为滑块拼图,是一种经典的数字游戏。
在这个游戏中,玩家需要通过移动数字方块,将它们按照从小到大的顺序排列。
本次实验旨在通过编写八数码游戏的程序,探索并实践算法设计与实现的过程。
实验过程:1. 游戏规则设计在开始编写程序之前,首先需要明确游戏的规则。
八数码游戏的规则如下:- 有一个3x3的方格,其中有8个方块分别带有数字1到8,还有一个空白方块。
- 玩家可以通过移动数字方块,将它们按照从小到大的顺序排列。
- 移动的方式是将数字方块与空白方块进行交换,只能上下左右移动。
2. 程序设计基于以上规则,我们开始设计程序。
首先,我们需要实现游戏界面的显示与交互。
通过使用图形界面库,我们可以方便地创建一个可视化的游戏界面。
在界面中,每个数字方块都是一个可交互的按钮,玩家可以通过点击按钮来移动数字方块。
接下来,我们需要实现游戏逻辑的处理。
当玩家点击一个数字方块时,程序需要判断该方块是否与空白方块相邻,如果相邻,则进行交换。
同时,程序还需要判断玩家是否已经成功完成了游戏,即数字方块是否已经按照从小到大的顺序排列。
为了实现这些功能,我们可以使用算法来进行判断和计算。
例如,可以通过遍历每个方块,检查其周围是否有空白方块,从而确定是否可以进行移动。
另外,可以使用排序算法来判断数字方块是否已经按照顺序排列。
3. 算法实现在实现算法时,我们可以选择不同的方法。
例如,可以使用深度优先搜索算法来寻找解决方案。
深度优先搜索算法通过递归地尝试每一种移动方式,直到找到一个可行的解决方案。
另外,还可以使用启发式搜索算法,如A*算法,来提高搜索效率。
在本次实验中,我们选择使用A*算法来解决八数码问题。
A*算法通过估计每个状态与目标状态的距离,选择最有可能导致解决方案的移动方式。
通过使用合适的启发函数,A*算法可以在较短的时间内找到一个最优解。
4. 实验结果经过程序的编写和测试,我们成功地实现了八数码游戏。
8数码实验报告

8数码实验报告8数码实验报告引言:数码技术在现代社会中扮演着重要的角色,它的应用范围广泛,从家庭到工业领域都有着不可替代的作用。
为了更好地了解和掌握数码技术的原理和应用,我们进行了一系列的实验。
本报告将详细介绍我们进行的8个数码实验,包括实验目的、实验原理、实验步骤、实验结果和实验总结。
实验一:二进制与十进制转换实验目的:通过将二进制数转换为十进制数,加深对二进制和十进制之间转换关系的理解。
实验原理:二进制数是由0和1组成的数,而十进制数是由0-9这10个数字组成的数。
二进制数转换为十进制数的方法是将每一位的权值与对应位上的数字相乘,再将结果相加。
实验步骤:将给定的二进制数转换为十进制数,并记录结果。
实验结果:通过实验,我们成功地将二进制数转换为了十进制数,并验证了转换的正确性。
实验总结:这个实验帮助我们更好地理解了二进制和十进制之间的转换关系,为后续的实验打下了基础。
实验二:逻辑门电路实验实验目的:通过搭建逻辑门电路,了解逻辑门的基本原理和功能。
实验原理:逻辑门是由晶体管或其他电子元件组成的电路,根据输入信号的不同,产生不同的输出信号。
常见的逻辑门有与门、或门、非门等。
实验步骤:根据实验要求,搭建逻辑门电路,并测试输入和输出信号。
实验结果:通过实验,我们成功地搭建了逻辑门电路,并观察到了不同输入信号下的输出信号变化。
实验总结:逻辑门电路是数字电路的基础,通过这个实验,我们对逻辑门的原理和功能有了更深入的了解。
实验三:数码显示实验实验目的:了解数码显示器的原理和工作方式。
实验原理:数码显示器是一种能够显示数字和字符的设备,它由多个发光二极管(LED)组成。
每个发光二极管代表一个数字或字符,通过控制不同的发光二极管点亮或熄灭,可以显示不同的数字或字符。
实验步骤:通过控制数码管的电平,显示指定的数字或字符。
实验结果:通过实验,我们成功地控制了数码管的显示,实现了指定数字或字符的显示效果。
实验总结:数码显示器是一种常见的输出设备,通过这个实验,我们对数码显示器的工作原理和控制方式有了更深入的理解。
八数码实验报告

八数码实验报告八数码实验报告引言:八数码,也被称为滑块拼图,是一种经典的益智游戏。
在这个实验中,我们将探索八数码问题的解决方案,并分析其算法的效率和复杂性。
通过这个实验,我们可以深入了解搜索算法在解决问题中的应用,并且探讨不同算法之间的优劣势。
1. 问题描述:八数码问题是一个在3x3的方格上进行的拼图游戏。
方格中有8个方块,分别标有1到8的数字,还有一个空方块。
游戏的目标是通过移动方块,将它们按照从左上角到右下角的顺序排列。
2. 算法一:深度优先搜索(DFS)深度优先搜索是一种经典的搜索算法,它从初始状态开始,不断地向前搜索,直到找到目标状态或者无法继续搜索为止。
在八数码问题中,深度优先搜索会尝试所有可能的移动方式,直到找到解决方案。
然而,深度优先搜索在解决八数码问题时存在一些问题。
由于搜索的深度可能非常大,算法可能会陷入无限循环,或者需要很长时间才能找到解决方案。
因此,在实际应用中,深度优先搜索并不是最优的选择。
3. 算法二:广度优先搜索(BFS)广度优先搜索是另一种常用的搜索算法,它从初始状态开始,逐层地向前搜索,直到找到目标状态。
在八数码问题中,广度优先搜索会先尝试所有可能的一步移动,然后再尝试两步移动,依此类推,直到找到解决方案。
与深度优先搜索相比,广度优先搜索可以保证找到最短路径的解决方案。
然而,广度优先搜索的时间复杂度较高,尤其是在搜索空间较大时。
因此,在实际应用中,广度优先搜索可能不太适合解决八数码问题。
4. 算法三:A*算法A*算法是一种启发式搜索算法,它在搜索过程中利用了问题的启发信息,以提高搜索效率。
在八数码问题中,A*算法会根据每个状态与目标状态之间的差异,选择最有可能的移动方式。
A*算法通过综合考虑每个状态的实际代价和启发式估计值,来评估搜索路径的优劣。
通过选择最优的路径,A*算法可以在较短的时间内找到解决方案。
然而,A*算法的实现较为复杂,需要合适的启发函数和数据结构。
八个数字问题实验报告.doc

八个数字问题实验报告. 《八数码问题》实验报告首先,实验的目的:熟悉启发式搜索算法。
二、实验内容:启发式搜索算法用于解决8位数问题。
编制了程序,实现了解决8位数问题的算法。
采用评估功能,其中:是搜索树中节点的深度;在节点数据库中放错位置的件数;这是每个棋子与其在节点数据库中的目标位置之间距离的总和。
三、实验原理:1.问题描述:八位数问题也被称为九宫问题。
在3×3的棋盘上,有八个棋子,每一个棋子都标有一定的1到8的数字,不同棋子上标的数字是不同的。
棋盘上还有一个空格(用数字0表示),与空格相邻的棋子可以移动到空格中。
要解决的问题是: 给定初始状态和目标状态,找出从初始状态到目标状态移动次数最少的移动步骤。
所谓问题的一种状态是棋盘上棋子的排列。
解决八位数问题实际上是找出一系列从初始状态到目标状态的中间过渡状态。
2.原则描述:启发式搜索(1)原理启发式搜索是评估每个搜索在状态空间中的位置以获得最佳位置,然后从这个位置搜索到目标。
这样,可以省略大量不必要的搜索路径,并且提高了效率。
在启发式搜索中,位置的评估非常重要。
不同的评估会产生不同的效果。
(2)评估函数计算节点的评估函数,可分为两部分:1.成本已经支付(从开始节点到当前节点);2.要支付的价格(当前节点到目标节点)。
节点n的评估函数被定义为从初始节点通过n到目标节点的路径的最小成本的估计值,即=。
是从初始节点到达当前节点n的实际成本;是从节点n到目标节点的最佳路径的估计开销。
比例越大,它越倾向于先搜索宽度或同等成本。
相反,比例越大,启发式性能越强。
(3)算法描述:(1)将起始节点S放入OPEN表中,计算节点S的值;(2)如果OPEN为空表,则无法退出且没有解决方案;(3)从OPEN表中选择具有最小值的节点。
如果多个节点具有相同的值,当其中一个节点是目标节点时,选择目标节点;否则,任意一个节点被选为节点;(4)从OPEN表中移除节点,并将其放入CLOSED扩展节点表中;(5)如果它是目标节点,它成功退出并获得解决方案;⑥扩展节点以生成其所有后续节点。
八数码问题求解--实验报告讲解-共16页

实验报告一、实验问题八数码问题求解二、实验软件VC6.0 编程语言或其它编程语言三、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
四、实验数据及步骤(一、)实验内容八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
2 83 1 2 31 4 8 47 6 5 7 6 5(a) 初始状态(b) 目标状态图1 八数码问题示意图(二、)基本数据结构分析和实现1.结点状态我采用了struct Node数据类型typedef struct _Node{int digit[ROW][COL];int dist; // distance between one state and the destination一个表和目的表的距离int dep; // the depth of node深度// So the comment function = dist + dep.估价函数值int index; // point to the location of parent父节点的位置} Node; 2.发生器函数定义的发生器函数由以下的四种操作组成:(1)将当前状态的空格上移Node node_up;Assign(node_up, index);//向上扩展的节点int dist_up = MAXDISTANCE;(2)将当前状态的空格下移Node node_down;Assign(node_down, index);//向下扩展的节点int dist_down = MAXDISTANCE;(3)将当前状态的空格左移Node node_left;Assign(node_left, index);//向左扩展的节点int dist_left = MAXDISTANCE;(4)将当前状态的空格右移Node node_right;Assign(node_right, index);//向右扩展的节点int dist_right = MAXDISTANCE;通过定义结点状态和发生器函数,就解决了8数码问题的隐式图的生成问题。
人工智能实验一_八数码问题

用A*算法解决八数码问题1 问题描述1.1 待解决问题的解释八数码游戏(八数码问题)描述为:在3×3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1-8八个数码中的某一个数码。
棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。
这种游戏求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标的布局(称目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。
1.2 问题的搜索形式描述(4要素)初始状态:8个数字将牌和空格在九宫格棋盘上的所有格局组成了问题的状态空间。
其中,状态空间中的任一种状态都可以作为初始状态。
后继函数:通过移动空格(上、下、左、右)和周围的任一棋子一次,到达新的合法状态。
目标测试:比较当前状态和目标状态的格局是否一致。
路径消耗:每一步的耗散值为1,因此整个路径的耗散值是从起始状态到目标状态的棋子移动的总步数。
1.3 解决方案介绍(原理)对于八数码问题的解决,首先要考虑是否有答案。
每一个状态可认为是一个1×9的矩阵,问题即通过矩阵的变换,是否可以变换为目标状态对应的矩阵?由数学知识可知,可计算这两个有序数列的逆序值,如果两者都是偶数或奇数,则可通过变换到达,否则,这两个状态不可达。
这样,就可以在具体解决问题之前判断出问题是否可解,从而可以避免不必要的搜索。
如果初始状态可以到达目标状态,那么采取什么样的方法呢?常用的状态空间搜索有深度优先和广度优先。
广度优先是从初始状态一层一层向下找,直到找到目标为止。
深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。
广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。
这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。
他的效率实在太低,甚至不可完成。
由于八数码问题状态空间共有9!个状态,对于八数码问题如果选定了初始状态和目标状态,有9!/2个状态要搜索,考虑到时间和空间的限制,在这里采用A*算法作为搜索策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《八数码问题》实验报告一、实验目的:熟练掌握启发式搜索A *算法。
二、实验内容:使用启发式搜索算法求解8数码问题。
编制程序实现求解8数码问题A *算法,采用估价函数()()()()w n f n d n p n ⎧⎪=+⎨⎪⎩, 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。
三、实验原理:1. 问题描述:八数码问题也称为九宫问题。
在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。
棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。
要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。
所谓问题的一个状态就是棋子在棋盘上的一种摆法。
解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。
2. 原理描述:启发式搜索 (1)原理启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。
这样可以省略大量无谓的搜索路径,提高了效率。
在启发式搜索中,对位置的估价是十分重要的。
采用了不同的估价可以有不同的效果。
(2)估价函数计算一个节点的估价函数,可以分成两个部分: 1、 已经付出的代价(起始节点到当前节点); 2、 将要付出的代价(当前节点到目标节点)。
节点n 的估价函数)(n f 定义为从初始节点、经过n 、到达目标节点的路径的最小代价的估计值,即)(*n f = )(*n g + )(*n h 。
)(*n g 是从初始节点到达当前节点n 的实际代价; )(*n h 是从节点n 到目标节点的最佳路径的估计代价。
)(*n g 所占的比重越大,越趋向于宽度优先或等代价搜索;反之,)(*n h 的比重越大,表示启发性能就越强。
(3)算法描述:① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解;③ 从OPEN 表中选择一个f 值最小的节点i 。
如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ;④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解;⑥ 扩展节点i ,生成其全部后继节点。
对于i 的每一个后继节点j :计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。
从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。
如果新的f 较小,则(I)以此新值取代旧值。
(II)从j 指向i ,而不是指向他的父节点。
(III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。
⑦ 转向②,即GOTO ②。
(3)算法流程图:四、实验结果输入矩阵:目标矩阵:283123145804760765五、实验小结通过本次试验,我对启发式搜索有了更加深入的了解。
在实验中,通过对两种启发式搜索所扩在的节点数来看,)(n p 看来比)(n 更加有效,能在复杂情况下求得更加优质的解,避免不必要的节点的扩展。
所以,要更好地定义一个估价函数还有待深入讨论。
源代码:#include"stdio.h"#define num 3 //宏定义数码的行列数为3/*显示当前待调整数码矩阵*/ void show(int begin[num][num]) { for(int i = 0; i < num; i++) { for(int j = 0; j < num; j++)printf("%d ", begin[i][j]);printf("\n");}printf("\n");}/*交换数码中的begin[row_one][column_one] 与begin[row_two][column_two] 这两个数*/void exchange(int begin[num][num], int row_one, int column_one, int row_two, int column_two) {int temp;temp = begin[row_two][column_two] ;begin[row_two][column_two] = begin[row_one][column_one];begin[row_one][column_one] = temp;}/*判断待调整的数码与最终数码相比正确位置数码的个数*/int judge(int begin[num][num], int end[num][num]){int count=0; //count记录数码中正确位置的个数for(int i = 0; i < num; i++) //检查当前图形的正确度for(int j = 0; j < num; j++){if(begin[i][j] == end[i][j] && end[i][j] != 0)count++;}return count; //返回数码中正确位置的个数}/* 将待调整数码从开始位置移动到终止位置,并将其过程输出*/int yidong(int begin[num][num], int end[num][num], int right, int jishu, int ji_shu[50][3][3], int biaoji, int row, int column) //biaoji存储上一轮移动的反方向代号{int temp_zhi;show(begin); //显示数组矩阵if(jishu >= 20)return 0;int node; //,node为标记int temp; //存储当前待调整数码正确的个数for(int q=0; q<jishu; q++) //检查交换后的end[][]图形是否先前已经遍历过了{node = 1;for(int w=0; w<num && node; w++)for(int r=0; r<num && node; r++)if(ji_shu[q][w][r] != begin[w][r])node = 0;if(node == 1) //如果先前遍历过,返回0{return 0;}}for(int i = 0; i < num; i++)for(int j = 0; j < num; j++)ji_shu[jishu][i][j] = begin[i][j];if(right == num * num - 1) //如果待调整数码与最终数码完全相同时,返回1return 1;if(row > 0 && biaoji != 0) //存储0的位置不是在第一行{exchange(begin, row - 1, column, row , column); //将0与其上面的元素交换存储位置temp = judge(begin, end);if(temp < right) //如果交换后正确数码的个数不大于原来正确数码的个数exchange(begin, row - 1, column, row , column); //再将其交换回来else if(temp >= right) //如果交换后正确数码的个数大于或等于原来正确数码的个数{temp_zhi = yidong(begin, end, temp, jishu+1, ji_shu, 2, row-1, column);if( temp_zhi == 1) //进行下一步的移动return 1;exchange(begin, row - 1, column, row , column); //再将其交换回来}}if(column > 0 && biaoji != 1){exchange(begin, row, column - 1, row , column); //将0与其左边的元素交换存储位置temp = judge(begin, end);if(temp < right)exchange(begin, row, column - 1, row , column);else if(temp >= right){temp_zhi = yidong(begin, end, temp, jishu+1, ji_shu ,3, row, column - 1);if(temp_zhi == 1)return 1;exchange(begin, row, column - 1, row , column);}}if(row < num-1 && biaoji != 2){exchange(begin, row + 1, column, row , column); //将0与其下面的元素交换存储位置temp = judge(begin, end);if(temp < right)exchange(begin, row + 1, column, row , column);else if(temp >= right){temp_zhi =yidong(begin, end, temp, jishu+1, ji_shu, 0, row+1, column);if(temp_zhi == 1)return 1;exchange(begin, row + 1, column, row , column);}}if(column < num-1 && biaoji != 3){exchange(begin, row, column + 1, row , column); //将0与其右边的元素交换存储位置temp = judge(begin, end);if(temp < right)exchange(begin, row, column + 1, row , column);else if(temp >= right){temp_zhi = yidong(begin, end, temp, jishu+1, ji_shu, 1, row, column+1);if(temp_zhi == 1)return 1;exchange(begin, row, column + 1, row , column);}}return 0; //移动失败,返回0}/*有用户输入待调整的数码矩阵最初状态的数,并将其存入到begin[][]数组中*/void shuru(int begin[][num],int blank[]){int temp, node, zero = 0;for (int i = 0; i < num; i++)for(int j = 0; j < num; j++){node = 1;printf("请输入第%d行,第%d列的元素的值:", i+1, j+1);scanf("%d", &temp);for (int q = 0; q <= i && node == 1; q++) //当输入的值有重复的,提示重新输入for (int w = 0; w < j; w++)if(temp == begin[q][w]){printf("输入重复,请重新输入\n");node = 0;j--;break;}if(temp < 0 || temp > num*num-1) //当输入的值不是在数码的区间范围内时,提示重新输入{printf("请输入从%d到%d的数\n", zero, num*num-1);node = 0;j--;}if(node == 1) //如果输入满足条件{if(temp == 0) //如果输入的值为零,由blank[0]记录行号,blank[1]记录列号{blank[0] = i;blank[1] = j;}begin[i][j] = temp;//将满足条件的值存储起来}}}int main(){int jishu = 0, ji_shu[50][3][3];//jishu存储已经遍历过的八数码图形的个数,jishu[][][]存储已经遍历过的八数码图形的形状int row; //存储数字零的行数int column; //存储数字零的列数int begin[num][num], blank[2],count=1;int end[num][num] = {1, 2, 3, 8, 0, 4, 7, 6, 5}; //给最终状态的数码矩阵赋值printf ("-------%d数码游戏开始!--------\n", num);shuru(begin, blank); //输入带调整状态的数码矩阵的值row = blank[0];column = blank[1];if(yidong (begin, end,judge(begin,end),jishu,ji_shu,4,row,column) == 0)printf("\n此8数码的问题可能无解!");elseshow(begin);getchar();getchar();return 0;}。