八个数字问题实验报告.doc
幼儿园中班数学教案《学习8的守恒》含反思

幼儿园中班数学教案《学习8的守恒》含反思一、教学目标1.理解数的守恒性质,即在具体操作过程中数量不变。
2.学会进行简单的加减法计算。
3.培养学生的观察能力和逻辑思维能力。
二、教学重难点1.掌握数字8的守恒性质。
2.进行数字8的加减法运算。
三、教学准备1.数字卡片8个。
2.加法、减法示例题若干。
3.板书工具。
四、教学过程1.导入新知识(5分钟)老师出示数字卡片8个,让学生数一数,然后教师说:“大家看到这些数字了吗?一共有8个,这些数字长什么样子呢?请一起说一说。
”学生回答后,教师再次确认一共有8个数字。
2.学习数字8的守恒性质(10分钟)教师说:“我们来玩一个游戏,我先把这些数字放在桌子上,然后我把它们分成两组,你们看看每组有几个数字。
”教师将数字的卡片分成两组后,让学生数一数每组的数字个数。
教师再次强调每组数字的个数是一样的,然后教师玩起了魔术,“我把这组数字拿走一个,看看还剩几个数字。
”教师拿走一个数字后,再让学生数一数剩下的数字个数。
接着,教师又拿走了一些数字,让学生数数剩下的数字个数。
再一次强调每次拿走的数字个数不变。
教师引导学生思考为什么每次拿走的数字个数是一样的。
学生思考后,教师提示学生,因为每次拿走的数字都是相同的,所以剩下的数字个数自然也是一样的。
这个性质就叫做守恒性质。
3.进行加法计算(20分钟)教师出示一道加法题:“8+3=?”学生们大声回答后,教师再次强调加法计算结果时,数字8的个数不变。
接着,教师出示多个加法题,让学生用数字卡片模拟计算过程,然后回答每道题的结果。
教师给予学生及时的肢体和口头反馈。
4.进行减法计算(20分钟)教师出示一道减法题:“8-3=?”学生们大声回答后,教师再次强调减法计算结果时,数字8的个数不变。
接着,教师出示多个减法题,让学生用数字卡片模拟计算过程,然后回答每道题的结果。
教师给予学生及时的肢体和口头反馈。
5.小结(5分钟)教师总结本节课的内容,强调守恒性质在加法和减法计算中的应用。
【精编范文】八数码实验报告-推荐word版 (17页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==八数码实验报告篇一:八数码实验报告利用人工智能技术解决八数码游戏问题1.八数码游戏问题简介九宫排字问题(又称八数码问题)是人工智能当中有名的难题之一。
问题是在3×3方格盘上,放有八个数码,剩下第九个为空,每一空格其上下左右的数码可移至空格。
问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始位置转化为目标位置。
2.八数码游戏问题的状态空间法表示①建立一个只含有初始节点S0的搜索图G,把S0放入OPEN表中②建立CLOSED表,且置为空表③判断OPEN表是否为空表,若为空,则问题无解,退出④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n⑤考察节点n是否为目标节点,若是,则问题有解,成功退出。
问题的解就是沿着n到S0的路径得到。
若不是转⑥⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记为集合M,将M 中的这些节点作为n的后继节点加入图G中⑦对未在G中出现过的(OPEN和CLOSED表中未出现过的)集合M中的节点, 设置一个指向父节点n的指针,并把这些节点放入OPEN表中;对于已在G中出现过的M中的节点,确定是否需要修改指向父节点的指针;对于已在G中出现过并已在closed表中的M中的节点,确定是否需要修改通向他们后继节点的指针。
⑧ 按某一任意方式或某种策略重排OPEN表中节点的顺序⑨ 转③3.八数码游戏问题的盲目搜索技术宽度优先搜索:1、定义如果搜索是以接近起始节点的程度依次扩展节点的,那么这种搜索就叫做宽度优先搜索(breadth-first search)。
2、特点这种搜索是逐层进行的;在对下一层的任一节点进行搜索之前,必须搜索完本层的所有节点。
3、宽度优先搜索算法(1) 把起始节点放到OPEN表中(如果该起始节点为一目标节点,则求得一个解答)。
八数码实验报告

八数码实验报告八数码实验报告引言:八数码,也被称为滑块拼图,是一种经典的益智游戏。
在这个实验中,我们将探索八数码问题的解决方案,并分析其算法的效率和复杂性。
通过这个实验,我们可以深入了解搜索算法在解决问题中的应用,并且探讨不同算法之间的优劣势。
1. 问题描述:八数码问题是一个在3x3的方格上进行的拼图游戏。
方格中有8个方块,分别标有1到8的数字,还有一个空方块。
游戏的目标是通过移动方块,将它们按照从左上角到右下角的顺序排列。
2. 算法一:深度优先搜索(DFS)深度优先搜索是一种经典的搜索算法,它从初始状态开始,不断地向前搜索,直到找到目标状态或者无法继续搜索为止。
在八数码问题中,深度优先搜索会尝试所有可能的移动方式,直到找到解决方案。
然而,深度优先搜索在解决八数码问题时存在一些问题。
由于搜索的深度可能非常大,算法可能会陷入无限循环,或者需要很长时间才能找到解决方案。
因此,在实际应用中,深度优先搜索并不是最优的选择。
3. 算法二:广度优先搜索(BFS)广度优先搜索是另一种常用的搜索算法,它从初始状态开始,逐层地向前搜索,直到找到目标状态。
在八数码问题中,广度优先搜索会先尝试所有可能的一步移动,然后再尝试两步移动,依此类推,直到找到解决方案。
与深度优先搜索相比,广度优先搜索可以保证找到最短路径的解决方案。
然而,广度优先搜索的时间复杂度较高,尤其是在搜索空间较大时。
因此,在实际应用中,广度优先搜索可能不太适合解决八数码问题。
4. 算法三:A*算法A*算法是一种启发式搜索算法,它在搜索过程中利用了问题的启发信息,以提高搜索效率。
在八数码问题中,A*算法会根据每个状态与目标状态之间的差异,选择最有可能的移动方式。
A*算法通过综合考虑每个状态的实际代价和启发式估计值,来评估搜索路径的优劣。
通过选择最优的路径,A*算法可以在较短的时间内找到解决方案。
然而,A*算法的实现较为复杂,需要合适的启发函数和数据结构。
八数码问题

+0*6!+
3*7!+(98)*
8!=
55596<9!
具体的原因可以去查查一些数学书,其中
123456789的哈希值是
0最小,876543210
的哈希值是(9!1)
最大,而其他值都在
0到(
9!1)
中,且均唯一。
Q5:如何使搜索只求得最佳的解?
要寻找这一系列中间状态的方法是搜索,但搜索很容易遇到时间和空间上的问题。以下就是搜
索的基本原理:
由
137246852状态可以衍生三个状态,假如选择
了
123746855,则又衍生三个状态,继续按某策略进
行选择,一直到衍生出的新状态为目标状态
END为止。
容易看出,这样的搜索类似于从树根开始向茎再向叶
括两步操作
ld,可能与平时玩这类游戏的习惯不符合,但这是为了和
ACM例题相统一。
对应地,每种操作引起的状态变化如下:
r:num值++
l:num值u:
有点复杂
int
t0=
9num%
10+
1
int
t1=
num/1e(t0)
int
t2=
t1%1000
END,所以优先级高。
在计算
difference和
manhattan时,推荐都将空格忽略,因为在
difference中空格可有可无,对整
体搜索影响不大。
考虑下面两个状态(左需要
3步到达
END态,右需要
4步到达
八数码问题求解--实验报告讲解-共16页

实验报告一、实验问题八数码问题求解二、实验软件VC6.0 编程语言或其它编程语言三、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
四、实验数据及步骤(一、)实验内容八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
2 83 1 2 31 4 8 47 6 5 7 6 5(a) 初始状态(b) 目标状态图1 八数码问题示意图(二、)基本数据结构分析和实现1.结点状态我采用了struct Node数据类型typedef struct _Node{int digit[ROW][COL];int dist; // distance between one state and the destination一个表和目的表的距离int dep; // the depth of node深度// So the comment function = dist + dep.估价函数值int index; // point to the location of parent父节点的位置} Node; 2.发生器函数定义的发生器函数由以下的四种操作组成:(1)将当前状态的空格上移Node node_up;Assign(node_up, index);//向上扩展的节点int dist_up = MAXDISTANCE;(2)将当前状态的空格下移Node node_down;Assign(node_down, index);//向下扩展的节点int dist_down = MAXDISTANCE;(3)将当前状态的空格左移Node node_left;Assign(node_left, index);//向左扩展的节点int dist_left = MAXDISTANCE;(4)将当前状态的空格右移Node node_right;Assign(node_right, index);//向右扩展的节点int dist_right = MAXDISTANCE;通过定义结点状态和发生器函数,就解决了8数码问题的隐式图的生成问题。
人工智能实验报告,包括八数码问题八皇后问题和tsp问题

八数码问题(一)问题描述在一个3*3的方棋盘上放置着1,2,3,4,5,6,7,8八个数码,每个数码占一格,且有一个空格。
这些数码可以在棋盘上移动,其移动规则是:与空格相邻的数码方格可以移入空格。
现在的问题是:对于指定的初始棋局和目标棋局,给出数码的移动序列。
该问题称八数码难题或者重排九宫问题。
(二)问题分析八数码问题是个典型的状态图搜索问题。
搜索方式有两种基本的方式,即树式搜索和线式搜索。
搜索策略大体有盲目搜索和启发式搜索两大类。
盲目搜索就是无“向导”的搜索,启发式搜索就是有“向导”的搜索。
1、启发式搜索由于时间和空间资源的限制,穷举法只能解决一些状态空间很小的简单问题,而对于那些大状态空间的问题,穷举法就不能胜任,往往会导致“组合爆炸”。
所以引入启发式搜索策略。
启发式搜索就是利用启发性信息进行制导的搜索。
它有利于快速找到问题的解。
由八数码问题的部分状态图可以看出,从初始节点开始,在通向目标节点的路径上,各节点的数码格局同目标节点相比较,其数码不同的位置个数在逐渐减少,最后为零。
所以,这个数码不同的位置个数便是标志一个节点到目标节点距离远近的一个启发性信息,利用这个信息就可以指导搜索。
即可以利用启发信息来扩展节点的选择,减少搜索范围,提高搜索速度。
启发函数设定。
对于八数码问题,可以利用棋局差距作为一个度量。
搜索过程中,差距会逐渐减少,最终为零,为零即搜索完成,得到目标棋局。
(三)数据结构与算法设计该搜索为一个搜索树。
为了简化问题,搜索树节点设计如下:struct Chess//棋盘{int cell[N][N];//数码数组int Value;//评估值Direction BelockDirec;//所屏蔽方向struct Chess * Parent;//父节点};int cell[N][N]; 数码数组:记录棋局数码摆放状态。
int Value; 评估值:记录与目标棋局差距的度量值。
Direction BelockDirec; 所屏蔽方向:一个屏蔽方向,防止回推。
八数码问题实验报告

八数码问题实验报告八数码问题实验报告引言:八数码问题,也被称为九宫格问题,是一种经典的数学谜题。
在一个3x3的方格中,摆放有1至8的数字,其中一个位置为空。
目标是通过交换数字的位置,将数字按照从小到大的顺序排列,最终使得空格位于最后一个位置。
本实验旨在通过编程实现八数码问题的求解,并探讨不同算法在解决该问题上的效果和优劣。
实验步骤:1. 算法选择在本次实验中,我们选择了广度优先搜索算法和A*算法作为求解八数码问题的两种不同方法。
广度优先搜索算法是一种盲目搜索算法,它通过逐层扩展搜索树,直到找到目标状态。
而A*算法则是一种启发式搜索算法,它结合了广度优先搜索和启发式函数,通过评估每个状态的代价来指导搜索过程,以找到最优解。
2. 算法实现我们使用Python语言实现了以上两种算法。
首先,我们定义了一个表示状态的类,并实现了状态的初始化、移动、判断是否达到目标状态等基本操作。
然后,我们分别编写了广度优先搜索算法和A*算法的求解函数。
在广度优先搜索算法中,我们使用队列数据结构来保存待扩展的状态,以实现逐层扩展的效果;在A*算法中,我们使用优先队列来保存待扩展的状态,并根据启发式函数的值进行优先级排序。
3. 实验结果我们使用了多个测试样例来验证两种算法的求解效果。
实验结果表明,广度优先搜索算法能够找到解,但是在面对状态空间较大的情况下,搜索时间会呈指数级增长。
而A*算法则能够更快地找到最优解,其效率相对较高。
然而,A*算法需要选择合适的启发式函数,并且对于某些特殊情况,可能会陷入局部最优解而无法找到最优解。
4. 结果分析通过对比两种算法的求解结果,我们可以发现广度优先搜索算法和A*算法在时间效率和解的质量上存在一定的差异。
广度优先搜索算法适用于状态空间较小的情况,但是在状态空间较大时效率较低;而A*算法则能够在较短的时间内找到最优解,但需要对问题进行合理的建模和启发式函数的选择。
因此,在实际应用中,我们需要根据问题的规模和特点来选择合适的算法。
《人工智能及其应用》实验指导书

《人工智能及其应用》实验指导书浙江工业大学计算机科学与技术学院—人工智能课程组2011年9月前言本实验是为了配合《人工智能及其应用》课程的理论学习而专门设置的。
本实验的目的是巩固和加强人工智能的基本原理和方法,并为今后进一步学习更高级课程和信息智能化技术的研究与系统开发奠定良好的基础。
全书共分为八个实验:1.产生式系统实验;2.模糊推理系统实验;3.A*算法求解8数码问题实验;4.A*算法求解迷宫问题实验;5.遗传算法求解函数最值问题实验;6.遗传算法求解TSP问题实验;7.基于神经网络的模式识别实验;8.基于神经网络的优化计算实验。
每个实验包括有:实验目的、实验内容、实验条件、实验要求、实验步骤和实验报告等六个项目。
本实验指导书包括两个部分。
第一个部分是介绍实验的教学大纲;第二部分是介绍八个实验的内容。
由于编者水平有限,本实验指导书的错误和不足在所难免,欢迎批评指正。
人工智能课程组2011年9月目录实验教学大纲 (1)实验一产生式系统实验 (3)实验二模糊推理系统实验 (5)实验三A*算法实验I (9)实验四A*算法实验II (12)实验五遗传算法实验I (14)实验六遗传算法实验II (18)实验七基于神经网络的模式识别实验 (20)实验八基于神经网络的优化计算实验 (24)实验教学大纲一、学时:16学时,一般安排在第9周至第16周。
二、主要仪器设备及运行环境:PC机、Visual C++ 6.0、Matlab 7.0。
三、实验项目及教学安排序号实验名称实验平台实验内容学时类型教学要求1 产生式系统应用VC++ 设计知识库,实现系统识别或分类等。
2 设计课内2 模糊推理系统应用Matlab 1)设计洗衣机的模糊控制器;2)设计两车追赶的模糊控制器。
2 验证课内3 A*算法应用I VC++ 设计与实现求解N数码问题的A*算法。
2 综合课内4 A*算法应用II VC++ 设计与实现求解迷宫问题的A*算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八个数字问题实验报告
. 《八数码问题》实验报告
首先,实验的目的:
熟悉启发式搜索算法。
二、实验内容:
启发式搜索算法用于解决8位数问题。
编制了程序,实现了解决8位数问题的算法。
采用评估功能,其中:
是搜索树中节点的深度;
在节点数据库中放错位置的件数;
这是每个棋子与其在节点数据库中的目标位置之间距离的总和。
三、实验原理:
1.问题描述:
八位数问题也被称为九宫问题。
在3×3的棋盘上,有八个棋子,每一个棋子都标有一定的1到8的数字,不同棋子上标的数字是不同的。
棋盘上还有一个空格(用数字0表示),与空格相邻的棋子可以移动到空格中。
要解决的问题是: 给定初始状态和目标状态,找出从初始状态到目标状态移动次数最少的移动步骤。
所谓问题的一种状态是棋盘上棋子的排列。
解决八位数问题实际上是找出一系列从初始状态到目标状态的中间过渡状态。
2.原则描述:
启发式搜索(1)原理启发式搜索是评估每个搜索在状态空间中的位置以获得最佳位置,然后从这个位置搜索到目标。
这样,可以省略大量不必要的搜索路径,并且提高了效率。
在启发式搜索中,位置的评估非常重要。
不同的评估会产生不同的效果。
(2)评估函数计算节点的评估函数,可分为两部分:
1.成本已经支付(从开始节点到当前节点);
2.要支付的价格(当前节点到目标节点)。
节点n的评估函数被定义为从初始节点通过n到目标节点的路径的最小成本的估计值,即=。
是从初始节点到达当前节点n的实际成本;
是从节点n到目标节点的最佳路径的估计开销。
比例越大,它越倾向于先搜索宽度或同等成本。
相反,比例越大,启发式性能越强。
(3)算法描述:
(1)将起始节点S放入OPEN表中,计算节点S的值;
(2)如果OPEN为空表,则无法退出且没有解决方案;
(3)从OPEN表中选择具有最小值的节点。
如果多个节点具有相同的值,当其中一个节点是目标节点时,选择目标节点;
否则,任意一个节点被选为节点;
(4)从OPEN表中移除节点,并将其放入CLOSED扩展节点表中;
(5)如果它是目标节点,它成功退出并获得解决方案;
⑥扩展节点以生成其所有后续节点。
对于以下每个后续节点:
计算;
如果它既不在“打开”表中,也不在“时钟”表中,则通过评估功能将其添加到“打开”表中。
在中添加指向其父节点的指针,以便在找到目标节点后记住解决方案路径;
如果它已经在OPEN表或CLOSED表中,则比较表中刚刚计算的和先前计算的节点值。
如果新值较小,(I)用新值替换旧值。
(二)从其父节点指向,而不是指向其父节点。
(三)如果节点在封闭表中,将其移回开放表。
⑦转向②,即GOTO②。
(3)算法流程图:
四、实验结果输入矩阵:
目标矩阵:
283123145804760765
5.通过这个实验,我对启发式搜索有了更深的理解。
在实验中,通过两次启发式搜索扩展的节点数,似乎比启发式搜索更有效,并且在复杂情况下可以获得更好的解,避免不必要的节点扩展。
因此,如何更好地定义一个评价函数还需要进一步讨论。
源代码: #include'stdio.h'#define num 3 //宏定义编号的行数和列数为3/*以显示当前要调整的数字矩阵*/void show (intbed-
首先,实验的目的:
熟悉启发式搜索算法。
二、实验内容:
启发式搜索算法用于解决8位数问题。
编制了程序,实现了解决8位数问题的算法。
采用评估功能,其中:
是搜索树中节点的深度;
在节点数据库中放错位置的件数;
这是每个棋子与其在节点数据库中的目标位置之间距离的总和。
三、实验原理:
1.问题描述:
八位数问题也被称为九宫问题。
在3×3的棋盘上,有八个棋子,每一个棋子都标有一定的1到8的数字,不同棋子上标的数字是不同的。
棋盘上还有一个空格(用数字0表示),与空格相邻的棋子可以移动到空格中。
要解决的问题是: 给定初始状态和目标状态,找出从初始状态到目标状态移动次数最少的移动步骤。
所谓问题的一种状态是棋盘上棋子的排列。
解决八位数问题实际上是找出一系列从初始状态到目标状态的中间过渡状态。
2.原则描述:
启发式搜索(1)原理启发式搜索是评估每个搜索在状态空间中的位置以获得最佳位置,然后从这个位置搜索到目标。
这样,可以省略大量不必要的搜索路径,并且提高了效率。
在启发式搜索中,位置的评估非常重要。
不同的评估会产生不同的效果。
(2)评估函数计算节点的评估函数,可分为两部分:
1.成本已经支付(从开始节点到当前节点);
2.要支付的价格(当前节点到目标节点)。
节点n的评估函数被定义为从初始节点通过n到目标节点的路径的最小成本的估计值,即=。
是从初始节点到达当前节点n的实际成本;
是从节点n到目标节点的最佳路径的估计开销。
比例越大,它越倾向于先搜索宽度或同等成本。
相反,比例越大,启发式性能越强。
(3)算法描述:
(1)将起始节点S放入OPEN表中,计算节点S的值;
(2)如果OPEN为空表,则无法退出且没有解决方案;
(3)从OPEN表中选择具有最小值的节点。
如果多个节点具有相同的值,当其中一个节点是目标节点时,选择目标节点;
否则,任意一个节点被选为节点;
(4)从OPEN表中移除节点,并将其放入CLOSED扩展节点表中;
(5)如果它是目标节点,它成功退出并获得解决方案;
⑥扩展节点以生成其所有后续节点。
对于以下每个后续节点:
计算;
如果它既不在“打开”表中,也不在“时钟”表中,则通过评估功能将其添加到“打开”表中。
在中添加指向其父节点的指针,以便在找到目标节点后记住解决方案路径;
如果它已经在OPEN表或CLOSED表中,则比较表中刚刚计算的和先前计算的节点值。
如果新值较小,(I)用新值替换旧值。
(二)从其父节点指向,而不是指向其父节点。
(三)如果节点在封闭表中,将其移回开放表。
⑦转向②,即GOTO②。
(3)算法流程图:
四、实验结果输入矩阵:
目标矩阵:
283123145804760765
5.通过这个实验,我对启发式搜索有了更深的理解。
在实验中,通过两次启发式搜索扩展的节点数,似乎比启发式搜索更有效,并且在复杂情况下可以获得更好的解,避免不必要的节点扩展。
因此,如何更好地定义一个评价函数还需要进一步讨论。
源代码:
# include ' stdio . h ' # define num 3//宏定义编号的行数和列数为3/*以显示要调整的当前数字矩阵*/void show (intbed:',i1,J1);scanf(“% d”,temp);对于(int q=0;q=i节点==1;Q) //当输入值重复时,提示重新输入(int w=0;w . j .w)如果(temp==begin[q][w]) {printf('重复输入,请重新输入\ n ');节点=0;j-;休息;}如果(temp num*num-1) //当输入的值不在数字范围内时,提示重新输入{printf('请输入一个从%d到%d \n '的数字,零,num*num-1 );节点=0;j-;}如果(node==1) //如果输入满足条件{如果(temp==0) //如果输入值为零,行号由空白[0记录],列号由空白[1记录]{空白[0]=I;空白[1]=j;开始[I][j]=temp;//存储满足条件的值}}} intmain () {intjishu=0,Ji _ Shu[50][3][3];//姬叔存储已遍历的八个数字图形的数量,姬叔[][][] []存储已遍历的八个数字图形的形状int行;//存储数字零的列中的行数;//存储数字零整数[数][数],空白[2],计数=1的列数;整数结束[数][数]={1,2,3,8,0,4,7,6,5 };//在最终状态下将PRINTF(-% d)分配给数字矩阵。
数字游戏开始了!- \n ',num);shuru(开始,空白);//输入具有调整状态的数字矩阵的值行=空白[0];栏=空白[1];如果(idong(开始,结束,判断(开始,结束),姬叔,ji _ shu,4,行,列)==0)printf(' \ n 8
位数问题可能无法解决!);否则显示(开始);getchar();getchar();返回0;}文字模型。