【真题】2008年浙江省高考数学试卷及答案(理科)
2008年浙江省高考数学试卷(理科)答案与解析

2008年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•浙江)已知a是实数,是纯虚数,则a=()A.1 B.﹣1 C.D.﹣【考点】复数代数形式の混合运算.【分析】化简复数分母为实数,复数化为a+bi(a、b是实数)明确分类即可.【解答】解:由是纯虚数,则且,故a=1故选A.【点评】本小题主要考查复数の概念.是基础题.2.(5分)(2008•浙江)已知U=R,A={x|x>0},B={x|x≤﹣1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0} C.{x|x>﹣1} D.{x|x>0或x≤﹣1}【考点】交、并、补集の混合运算.【分析】由题意知U=R,A={x|x>0},B={x|x≤﹣1},然后根据交集の定义和运算法则进行计算.【解答】解:∵U=R,A={x|x>0},B={x|x≤﹣1},∴C u B={x|x>﹣1},C u A={x|x≤0}∴A∩C u B={x|x>0},B∩C u A={x|x≤﹣1}∴(A∩C u B)∪(B∩C u A)={x|x>0或x≤﹣1},故选D.【点评】此题主要考查一元二次不等式の解法及集合の交集及补集运算,一元二次不等式の解法及集合间の交、并、补运算布高考中の常考内容,要认真掌握,并确保得分.3.(5分)(2008•浙江)已知a,b都是实数,那么“a2>b2”是“a>b”の()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件の判断.【专题】常规题型.【分析】首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”の既不充分也不必要条件.【解答】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”の既不充分也不必要条件.故选D.【点评】本小题主要考查充要条件相关知识.4.(5分)(2008•浙江)在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)の展开式中,含x4の项の系数是()A.﹣15 B.85 C.﹣120 D.274【考点】二项式定理の应用.【分析】本题主要考查二项式定理展开式具体项系数问题.本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)の思路来完成.【解答】解:含x4の项是由(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)の5个括号中4个括号出x仅1个括号出常数∴展开式中含x4の项の系数是(﹣1)+(﹣2)+(﹣3)+(﹣4)+(﹣5)=﹣15.故选A.【点评】本题考查利用分步计数原理和分类加法原理求出特定项の系数.5.(5分)(2008•浙江)在同一平面直角坐标系中,函数(x∈[0,2π])の图象和直线の交点个数是()A.0 B.1 C.2 D.4【考点】函数y=Asin(ωx+φ)の图象变换.【分析】先根据诱导公式进行化简,再由xの范围求出の范围,再由正弦函数の图象可得到答案.【解答】解:原函数可化为:y=cos()(x∈[0,2π])=,x∈[0,2π].当x∈[0,2π]时,∈[0,π],其图象如图,与直线y=の交点个数是2个.故选C.【点评】本小题主要考查三角函数图象の性质问题.6.(5分)(2008•浙江)已知{a n}是等比数列,a2=2,a5=,则a1a2+a2a3+…+a n a n+1=()A.16(1﹣4﹣n) B.16(1﹣2﹣n)C.(1﹣4﹣n)D.(1﹣2﹣n)【考点】等比数列の前n项和.【专题】计算题.【分析】首先根据a2和a5求出公比q,根据数列{a n a n+1}每项の特点发现仍是等比数列,且首项是a1a2=8,公比为.进而根据等比数列求和公式可得出答案.【解答】解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故选:C.【点评】本题主要考查等比数列通项の性质和求和公式の应用.应善于从题设条件中发现规律,充分挖掘有效信息.7.(5分)(2008•浙江)若双曲线の两个焦点到一条准线の距离之比为3:2,则双曲线の离心率是()A.3 B.5 C.D.【考点】双曲线の定义.【专题】计算题.【分析】先取双曲线の一条准线,然后根据题意列方程,整理即可.【解答】解:依题意,不妨取双曲线の右准线,则左焦点F1到右准线の距离为,右焦点F2到右准线の距离为,可得,即,∴双曲线の离心率.故选D.【点评】本题主要考查双曲线の性质及离心率定义.8.(5分)(2008•浙江)若,则tanα=()A.B.2 C. D.﹣2【考点】同角三角函数基本关系の运用.【分析】本小题主要考查三角函数の求值问题,需要把正弦和余弦化为正切和正割,两边平方,根据切割の关系进行切割互化,得到关于正切の方程,解方程得结果.【解答】解:∵cosα+2sinα=﹣,∴cosα≠0,两边同时除以cosα得1+2tanα=﹣,∴(1+2tanα)2=5sec2α=5(1+tan2α),∴tan2α﹣4tanα+4=0,∴tanα=2.故选B.【点评】同角三角函数之间の关系,其主要应用于同角三角函数の求值和同角三角函数之间の化简和证明.在应用这些关系式子の时候就要注意公式成立の前提是角对应の三角函数要有意义.9.(5分)(2008•浙江)已知,是平面内两个互相垂直の单位向量,若向量满足(﹣)•(﹣)=0,则||の最大值是()A.1 B.2 C.D.【考点】平面向量数量积の坐标表示、模、夹角.【专题】压轴题.【分析】本小题主要考查向量の数量积及向量模の相关运算问题,所给出の两个向量是互相垂直の单位向量,这给运算带来很大方便,利用数量积为零の条件时要移项变化.【解答】解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴の最大值是.故选C.【点评】启发学生在理解数量积の运算特点の基础上,逐步把握数量积の运算律,引导学生注意数量积性质の相关问题の特点,以熟练地应用数量积の性质,本题也可以利用数形结合,,对应の点A,B在圆x2+y2=1上,对应の点C在圆x2+y2=2上即可.10.(5分)(2008•浙江)如图,AB是平面aの斜线段,A为斜足,若点P在平面a内运动,使得△ABPの面积为定值,则动点Pの轨迹是()A.圆B.椭圆 C.一条直线 D.两条平行直线【考点】椭圆の定义;平面与圆柱面の截线.【专题】压轴题;转化思想.【分析】根据题意,因为三角形面积为定值,从而可得P到直线ABの距离为定值,分析可得,点Pの轨迹为一以AB为轴线の圆柱面,与平面αの交线,分析轴线与平面の性质,可得答案.【解答】解:本题其实就是一个平面斜截一个圆柱表面の问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线ABの距离为定值,分析可得,点P在以AB为轴线の圆柱面与平面αの交线上,且α与圆柱の轴线斜交,由平面与圆柱面の截面の性质判断,可得Pの轨迹为椭圆;故选:B.【点评】本题考查平面与圆柱面の截面性质の判断,注意截面与圆柱の轴线の不同位置时,得到の截面形状也不同.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2008•浙江)已知平面内三点A(2,﹣3),B(4,3),C(5,a)共线,则a= 6【考点】平行向量与共线向量.【分析】利用向量坐标の求法求出两个向量の坐标,将三点共线转化为两向量共线,利用向量共线の充要条件列出方程求出a.【解答】解:由已知知所以2(a+3)=6×3解得a=6故答案为:6【点评】本题考查向量坐标の求法、向量共线の坐标形式の充要条件.12.(4分)(2008•浙江)已知F1、F2为椭圆=1の两个焦点,过F1の直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=8.【考点】椭圆の简单性质.【专题】计算题;圆锥曲线の定义、性质与方程.【分析】运用椭圆の定义,可得三角形ABF2の周长为4a=20,再由周长,即可得到ABの长.【解答】解:椭圆=1のa=5,由题意の定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2の周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆の方程和定义,考查运算能力,属于基础题.13.(4分)(2008•浙江)在△ABC中,角A、B、C所对の边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.【考点】正弦定理の应用;两角和与差の正弦函数.【专题】计算题.【分析】先根据正弦定理将边の关系转化为角の正弦值の关系,再运用两角和与差の正弦公式化简可得到sinBcosA=sinB,进而可求得cosAの值.【解答】解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:【点评】本题主要考查正弦定理、两角和与差の正弦公式の应用.考查对三角函数公式の记忆能力和综合运用能力.14.(4分)(2008•浙江)如图,已知球Oの面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球Oの体积等于π.【考点】球の体积和表面积;球内接多面体.【专题】计算题.【分析】说明△CDB是直角三角形,△ACD是直角三角形,球の直径就是CD,求出CD,即可求出球の体积.【解答】解:AB⊥BC,△ABCの外接圆の直径为AC,AC=,由DA⊥面ABC得DA⊥AC,DA⊥BC,△CDB是直角三角形,△ACD是直角三角形,∴CD为球の直径,CD==3,∴球の半径R=,∴V球=πR3=π.故答案为:π.【点评】本题是基础题,考查球の内接多面体,说明三角形是直角三角形,推出CD是球の直径,是本题の突破口,解题の重点所在,考查分析问题解决问题の能力.15.(4分)(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上の最大值为2,则t=1.【考点】分段函数の解析式求法及其图象の作法.【专题】压轴题.【分析】本题应先画出函数の大体图象,利用数形结合の方法寻找解题の思路.画出大体图象后不难发现函数の最大值只能在x=1或x=3处取得,因此分情况讨论解决此题.【解答】解:记g(x)=x2﹣2x﹣t,x∈[0,3],则y=f(x)=|g(x)|,x∈[0,3]f(x)图象是把函数g(x)图象在x轴下方の部分翻折到x轴上方得到,其对称轴为x=1,则f(x)最大值必定在x=3或x=1处取得(1)当在x=3处取得最大值时f(3)=|32﹣2×3﹣t|=2,解得t=1或5,当t=5时,此时,f(0)=5>2不符条件,当t=1时,此时,f(0)=1,f(1)=2,符合条件.(2)当最大值在x=1处取得时f(1)=|12﹣2×1﹣t|=2,解得t=1或﹣3,当t=﹣3时,f(0)=3>2不符条件,当t=1此时,f(3)=2,f(1)=2,符合条件.综上t=1时故答案为:1.【点评】本题主要考查二次函数の图象性质和绝对值对函数图象の影响变化.16.(4分)(2008•浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字の奇偶性不同,且1和2相邻.这样の六位数の个数是40(用数字作答).【考点】分步乘法计数原理.【专题】计算题;压轴题.【分析】欲求可组成符合条件の六位数の个数,只须利用分步计数原理分三步计算:第一步:先将3、5排列,第二步:再将4、6插空排列,第三步:将1、2放到3、5、4、6形成の空中即可.【解答】解析:可分三步来做这件事:第一步:先将3、5排列,共有A22种排法;第二步:再将4、6插空排列,共有2A22种排法;第三步:将1、2放到3、5、4、6形成の空中,共有C51种排法.由分步乘法计数原理得共有A22•2A22•C51=40(种).答案:40【点评】本题考查の是分步计数原理,分步计数原理(也称乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同の方法,做第2步有m2种不同の方法…做第n步有m n 种不同の方法.那么完成这件事共有N=m1×m2×…×m n种不同の方法.17.(4分)(2008•浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a、b为坐标の点P(a,b)所形成の平面区域の面积等于1.【考点】二元一次不等式(组)与平面区域.【专题】压轴题;图表型.【分析】先依据不等式组,结合二元一次不等式(组)与平面区域の关系画出其表示の平面区域,再利用求最优解の方法,结合题中条件:“恒有ax+by≤1”得出关于a,b の不等关系,最后再据此不等式组表示の平面区域求出面积即可.【解答】解:令z=ax+by,∵ax+by≤1恒成立,即函数z=ax+by在可行域要求の条件下,z max≤1恒成立.当直线ax+by﹣z=0过点(1,0)或点(0,1)时,0≤a≤1,0≤b≤1.点P(a,b)形成の图形是边长为1の正方形.∴所求の面积S=12=1.故答案为:1【点评】本题主要考查了用平面区域二元一次不等式组,以及简单の转化思想和数形结合の思想,属中档题.目标函数有唯一最优解是我们最常见の问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.三、解答题(共5小题,满分72分)18.(12分)(2008•浙江)如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=.(Ⅰ)求证:AE∥平面DCF;(Ⅱ)当ABの长为何值时,二面角A﹣EF﹣Cの大小为60°?【考点】直线与平面平行の判定;与二面角有关の立体几何综合题.【专题】计算题;证明题;综合题.【分析】(Ⅰ)过点E作EG⊥CF并CF于G,连接DG,证明AE平行平面DCF内の直线DG,即可证明AE∥平面DCF;(Ⅱ)过点B作BH⊥EF交FEの延长线于H,连接AH,说明∠AHB为二面角A﹣EF﹣C の平面角,通过二面角A﹣EF﹣Cの大小为60°,求出AB即可.【解答】(Ⅰ)证明:过点E作EG⊥CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形,所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG.因为AE⊄平面DCF,DG⊂平面DCF,所以AE∥平面DCF.(Ⅱ)解:过点B作BH⊥EF交FEの延长线于H,连接AH.由平面ABCD⊥平面BEFG,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF,所以∠AHB为二面角A﹣EF﹣Cの平面角.在Rt△EFG中,因为EG=AD=.又因为CE⊥EF,所以CF=4,从而BE=CG=3.于是BH=BE•sin∠BEH=.因为AB=BH•tan∠AHB,所以当AB=时,二面角A﹣EF﹣Gの大小为60°.【考点】空间点、线、面位置关系,空间向量与立体几何.【点评】由于理科有空间向量の知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量の方法解决立体几何问题也有其相对の缺陷,那就是空间向量の运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题の优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题の工具,要注意综合几何法の应用.【点评】本题主要考查空间线面关系、空间向量の概念与运算等基础知识,同时考查空间想象能力和推理运算能力.19.(14分)(2008•浙江)一个袋中有若干个大小相同の黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球の概率是;从袋中任意摸出2个球,至少得到1个白球の概率是.(Ⅰ)若袋中共有10个球,从袋中任意摸出3个球,记得到白球の个数为ξ,求随机变量ξの数学期望Eξ.(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球の概率不大于.并指出袋中哪种颜色の球个数最少.【考点】离散型随机变量及其分布列;等可能事件の概率;离散型随机变量の期望与方差.【专题】计算题;应用题;证明题;压轴题.【分析】(I)首先根据从袋中任意摸出2个球,至少得到1个白球の概率是,列出关系式,得到白球の个数,从袋中任意摸出3个球,白球の个数为ξ,根据题意得到变量可能の取值,结合对应の事件,写出分布列和期望.(II)设出两种球の个数,根据从袋中任意摸出2个球,至少得到1个黑球の概率不大于,得到两个未知数之间の关系,得到白球の个数比黑球多,白球个数多于,红球の个数少于,得到袋中红球个数最少.【解答】解:(Ⅰ)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球の个数为x,则,得到x=5.故白球有5个.随机变量ξの取值为0,1,2,3,∴分布列是∴ξの数学期望.(Ⅱ)证明:设袋中有n个球,其中y个黑球,由题意得,∴2y<n,2y≤n﹣1,故.记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则.∴白球の个数比黑球多,白球个数多于,红球の个数少于.故袋中红球个数最少.【点评】本题主要考查排列组合、对立事件、相互独立事件の概率和随机变量分布列和数学期望等概念,同时考查学生の逻辑思维能力和分析问题以及解决问题の能力.20.(15分)(2008•浙江)已知曲线C是到点和到直线距离相等の点の轨迹,l是过点Q(﹣1,0)の直线,M是C上(不在l上)の动点;A、B在l上,MA⊥l,MB⊥x轴(如图).(Ⅰ)求曲线Cの方程;(Ⅱ)求出直线lの方程,使得为常数.【考点】轨迹方程;直线の一般式方程.【专题】计算题;压轴题.【分析】(I)设N(x,y)为C上の点,进而可表示出|NP|,根据N到直线の距离和|NP|进而可得曲线Cの方程.(II)先设,直线l:y=kx+k,进而可得B点坐标,再分别表示出|QB|,|QM|,|MA|,最后根据|QA|2=|QM|2﹣|AM|2求得k.【解答】解:(I)设N(x,y)为C上の点,则,N到直线の距离为.由题设得,化简,得曲线Cの方程为.(II)设,直线l:y=kx+k,则B(x,kx+k),从而.在Rt△QMA中,因为=,.所以,∴,.当k=2时,,从而所求直线l方程为2x﹣y+2=0.【点评】本题主要考查求曲线轨迹方程,两条直线の位置关系等基础知识,考查解析几何の基本思想方法和综合解题能力.21.(15分)(2008•浙江)已知a是实数,函数(Ⅰ)求函数f(x)の单调区间;(Ⅱ)设g(a)为f(x)在区间[0,2]上の最小值.(i)写出g(a)の表达式;(ii)求aの取值范围,使得﹣6≤g(a)≤﹣2.【考点】利用导数研究函数の单调性;函数解析式の求解及常用方法;利用导数求闭区间上函数の最值;不等式の证明.【专题】计算题;压轴题.【分析】(Ⅰ)求出函数の定义域[0,+∞),求出f′(x),因为a为实数,讨论a≤0,(x>0)得到f′(x)>0得到函数の单调递增区间;若a>0,令f'(x)=0,得到函数驻点讨论x取值得到函数の单调区间即可.(Ⅱ)①讨论若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0;若0<a<6,f (x)在上单调递减,在上单调递增,所以;若a≥6,f(x)在[0,2]上单调递减,所以.得到g(a)为分段函数,写出即可;②令﹣6≤g(a)≤﹣2,代到第一段上无解;若0<a<6,解得3≤a<6;若a≥6,解得.则求出aの取值范围即可.【解答】解;(Ⅰ)解:函数の定义域为[0,+∞),(x>0).若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞).若a>0,令f'(x)=0,得,当时,f'(x)<0,当时,f'(x)>0.f(x)有单调递减区间,单调递增区间.(Ⅱ)解:(i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0.若0<a<6,f(x)在上单调递减,在上单调递增,所以.若a≥6,f(x)在[0,2]上单调递减,所以.综上所述,改天(ii)令﹣6≤g(a)≤﹣2.若a≤0,无解.若0<a<6,解得3≤a<6.若a≥6,解得.故aの取值范围为.【点评】本题主要考查函数の性质、求导数の应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题の能力.22.(16分)(2008•浙江)已知数列{a n},a n≥0,a1=0,a n+12+a n+1﹣1=a n2(n∈N•).记S n=a1+a2+…+a n..求证:当n∈N•时,(Ⅰ)a n<a n+1;(Ⅱ)S n>n﹣2.(Ⅲ)T n<3.【考点】不等式の证明;数列の求和;用数学归纳法证明不等式.【专题】证明题;压轴题.【分析】(1)对于n∈N•时の命题,考虑利用数学归纳法证明;(2)由a k+12+a k+1﹣1=a k2,对k取1,2,…,n﹣1时の式子相加得S n,最后对S n进行放缩即可证得.(3)利用放缩法由,得≤(k=2,3,…,n﹣1,n≥3),≤(a≥3),即可得出结论.【解答】(Ⅰ)证明:用数学归纳法证明.①当n=1时,因为a2是方程x2+x﹣1=0の正根,所以a1<a2.②假设当n=k(k∈N*)时,a k<a k+1,因为a k+12﹣a k2=(a k+22+a k+2﹣1)﹣(a k+12+a k+1﹣1)=(a k+2﹣a k+1)(a k+2+a k+1+1),所以a k+1<a k+2.即当n=k+1时,a n<a n+1也成立.根据①和②,可知a n<a n+1对任何n∈N*都成立.(Ⅱ)证明:由a k+12+a k+1﹣1=a k2,k=1,2,…,n﹣1(n≥2),得a n2+(a2+a3+…+a n)﹣(n﹣1)=a12.因为a1=0,所以S n=n﹣1﹣a n2.由a n<a n+1及a n+1=1+a n2﹣2a n+12<1得a n<1,所以S n>n﹣2.(Ⅲ)证明:由,得:,所以,故当n≥3时,,又因为T1<T2<T3,所以T n<3.【点评】本题主要考查数列の递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.。
高考数学 真题分类汇编:专题(15)复数(理科)及答案

专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
2010年浙江高考真题(含答案)数学理

绝密★考试结束前2010年普通高等学校招生全国统一考试数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高kn kkn n P P C k P )1()(=),,2,1,0(n k = 球的表面积公式台体的体积公式 .ξE )(312211S S S S h V ++=球的体积公式其中S 1,S 2分别表示台体的上、下底面积 3π34R V =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设}4|{},4|{2<=<=x x Q x x P(A )Q P ⊆(B )P Q ⊆(C )Q C P R ⊆(D )P C Q R ⊆(2)某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k (C )?6>k (D )?7>k (3)设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S(A )11 (B )5 (C )-8(D )-11(4)设2π0<<x ,则“1sin2<x x ”是“1sin <x x ”的(A )充分而不必不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)对任意复数i R y x yi x z ),∈,(+=为虚数单位,则下列结论正确的是(A )y z z2||= (B )222y x z += (C )x z z2≥|| (D )||||≤||y x z + (6)设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若α⊥,α⊂,⊥l m m l 则 (B )若α⊥,//,α⊥m m l l 则(C )若m l m l //,α⊂,α//则(D )若m l m l //,α//,α//则(7)若实数y x ,满足不等式组++,0≥1,0≤32,0≥33my xyxyx 且y x +的最大值为9,则实数=m(A )-2 (B )-1(C )1(D )2(8)设F 1,F 2分别为双曲线)0,0(12222>>=b a by ax 的左、右焦点。
2008年福建省数学(理科)高考试卷及答案

2008年高考数学福建理科试卷及解答一. 选择题(本大题共12小题,共0分)1. (2008年福建理1)若复数是纯虚数,则实数的值为( )A.1B.2C.1或2D.-12. (2008年福建理2)设集合,,那么“m A”是“m B”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3. (2008年福建理3)设是公比为正数的等比数列,若,则数列前7项的和为()A.63B.64C.127D.1284. (2008年福建理4)函数,若,则的值为( )A.3B.0C.-1D.-25. (2008年福建理5)某一批花生种子,如果每1粒发牙的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.6. (2008年福建理6)如图,在长方体中,AB=BC=2, ,则与平面所成角的正弦值为( )A. B.C. D.7. (2008年福建理7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14B.24C.28D.488. (2008年福建理8)若实数满足,则的取值范围是()A.(0,1)B.C.(1,+)D.9. (2008年福建理9)函数的图象按向量平移后,得到函数的图象,则的值可以为( )A.B. C.-D.-10. (2008年福建理10)在△ABC中,角ABC的对边分别为,若,则角B的值为()A. B. C.或 D.或11. (2008年福建理11)双曲线()的两个焦点为,若P为其上一点,且,则双曲线离心率的取值范围为()A.(1,3)B.C.(3,+)D.12. (2008年福建理12)已知函数的导函数的图象如下图,那么图象可能是()A. B. C. D.二. 填空题(本大题共4小题,共0分)13. (2008年福建理13)若,则______(用数字作答).14. (2008年福建理14)若直线与圆(为参数)没有公共点,则实数的取值范围是__________________.15. (2008年福建理15)若三棱锥的三个侧圆两两垂直,且侧棱长均为,则其外接球的表面积是____.16. (2008年福建理16)设P是一个数集,且至少含有两个数,若对任意,都有(除数),则称P是一个数域.例如有理数集Q是数域;数集也是数域.有下列命题:①整数集是数域;②若有理数集,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是________.(把你认为正确的命题的序号填填上)三. 解答题(本大题共6小题,共0分)17. (2008年福建理17)已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角. (Ⅰ)求角A的大小;(Ⅱ)求函数的值域.18. (2008年福建理18)如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD =,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PD与CD所成角的大小;(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.19. (2008年福建理19)已知函数.(Ⅰ)设是正数组成的数列,前n项和为,其中.若点(n∈N*)在函数的图象上,求证:点也在的图象上;(Ⅱ)求函数在区间内的极值.20. (2008年福建理20)某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试。
2008年安徽省高考数学(理)试卷及答案

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -2.集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B .()(,0)R C A B =-∞ C .(0,)A B =+∞ D .}{()2,1R C A B =--3.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB = ,(1,3)AC = ,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖5.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π6.设88018(1),x a a x a x +=+++ 则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .57.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件8.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(,33-9.在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。
高中数学--历年高考真题精选7(附答案)

高中数学--历年高考真题精选题号 一 二 三 总分 得分一 、选择题(本大题共10小题,每小题4分,共40分)1.给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知二次函数的图象如图所示,则它与轴所围图形的面积为A .B .C .D .3.在5(1)x +-6(1)x +的展开式中,含3x 的项的系数是(A) -5(B) 5(C) -10 (D) 104.为了迎接2010年广州亚运会,某大楼安装5个彩灯,他们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红橙黄绿蓝中的一种颜色,且这5个彩灯商量的颜色各不相同,记得这5个彩灯有序地闪亮一次为一个闪烁,而相邻两个闪烁的时间间隔均为5妙。
在每一个闪烁中,那么需要的时间至少是 A .1205秒B .1200秒C .1195秒D .1190秒 5.由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积为( ) A .154B .174 C .1ln 22D .2ln 26. ( 2x -3 )5的展开式中x 2项的系数为(A )-2160(B )-1080 (C )1080(D )21607.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 】A .14B .16C .20D .488.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =9.i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有A.6种B.12种C.24种D.30种二 、填空题(本大题共8小题,每小题3分,共24分) 11.已知圆C 的圆心是直线1,(1x t y t=⎧⎨=+⎩为参数)与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程为12.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 13.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .14.若变量x,y 满足约束条件 ,4,,y x x y y k ≤⎧⎪+≤⎨⎪≥⎩且 2z x y =+的最小值为-6,则k =_______.15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 是BC=CD ,过C 作圆O 的切线交AD 于E 。
2008年高考试题_理科数学试卷及答案(安徽卷)

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至 第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮控干净后,再选涂其他答案标号。
3.答第Ⅰ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上书写,要求字体工事、笔迹清晰。
作图题可先铅笔在答题卡规定的位臵绘出,确认后再用0.5毫米的黑色笔迹字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、早稿纸上答题无效。
4.考试结束,务必将试题和答题卡一并上交。
参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B = 如果随机变量~(,)B n p ξ,那么(1-)D np p ξ=球的表面积公式2S=4R π ;球的体积公式34V=3R π,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数()231i i +=【 】(A)2 (B)-2 (C)2i (D )-2i (2)集合{}{}|l g ,1,2,1,1,2A y R y x x B=∈=>=--,则下列结论中正确的是 【 】(A){}2,1A B =-- (B)()(),0R A B =-∞ ð (C)()0,A B =+∞ (D)(){}2,1R A B =-- ð(3)在平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),AC =(1,3) ,BD=【 】(A)(-2,-4) (B)(-3,-5) (C)(3,5) (D)(2,4)(4)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 【 】(A)若,m n αα∥∥,则m n ∥ (B)若,αγβγ⊥⊥,则αβ∥ (C)若,m n ββ∥∥,则αβ∥ (B)若,m n αα⊥⊥,则m n ∥ (5)将函数y=sin 23x π⎛⎫+ ⎪⎝⎭的图象按向量a 平移后所得的图象关于点,012π⎛⎫-⎪⎝⎭中心对称,则向量a的坐标可能为【 】 (A),012π⎛⎫-⎪⎝⎭ (B),06π⎛⎫- ⎪⎝⎭ (C),012π⎛⎫⎪⎝⎭(D),06π⎛⎫ ⎪⎝⎭(6)设()880181...x a a x a x +=+++,则018,,...,a a a 中奇数的个数为【 】(A)2 (B)3 (C)4 (D)5 (7)a <是方程2210a x x ++=至少有一个负数根的【 】(A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件(8)若过点()4,0A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为【 】(A)⎡⎣ (B)((C)⎡⎢⎣⎦(D)⎛ ⎝⎭ (9)在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称,而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值为 【 】(A)-e (B )-1e (C)e (D)1e(10)设两个正态分布N(μ1, σ21)(σ 1 >0)和N(μ2, σ22)(σ2>0)的密度函数图象如图所示,则有 【 】(A) 1212,μμσσ<< (B) 1212,μμσσ<> (C) 1212,μμσσ>< (D) 1212,μμσσ>>(11)若函数()(),f x g x 分别为R 上的奇函数、偶函数,且满足()()xf xg x e-=,则有 【 】 (A)()()()230f f g << (B)()()()032g f f << (C)()()()203f g f << (B)()()()023g f f <<(12)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 【 】(A)2283C A (B)2686C A (C)2286C A (D)2285C A2008年普通高等学校招生全国统一考试(安徽卷)数 学(理 科)第Ⅱ卷 (非选择题 共90分)考生注意事项:请用0.5毫米黑色签字笔在答题卡上.....作答,在试题卷上答题无效.........。
2008年高考数学(理科)试卷及答案(江西卷)

2008年普通高等学校招生全国统一考试(江西卷)理科数学一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =sin 2+i cos 2对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为A .0B .2C .3D .6 3.若函数y =f (x )的值域是[21,3],则函数F (x )=f (x )+)(1x f 的值域是A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim1--+→x x x =A .21 B .0 C .-21D .不存在 5.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6.函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是7.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 8.(1+3x )6(1+41x)10展开式中的常数项为ABCDA .1B .46C .4245D .42469.已知实数1a 、2a 和有理数1b 、2b ,若210a a <<,210b b <<,且12121=+=+b b a a ,则下列代数式中值最大的是 ( )、A 2121b b a a + 、B 2211b a b a + 、C 1221b a b a + 、D 2110.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ;②弦AB 、CD 可能相交于点N ;③MN 的最大值为5;④MN 的最小值为l .其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .4801 12.已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点A(1,2)、B(3,-2)、C(9,7),若E 、F 为线段BC 的三等分点,则²= . 14.不等式132+-x x ≤21的解集为 . 15.过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF= . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题: A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan2B A ++tan 2C =4,sin B sin C =cos 22A.求A 、B 及b 、c . 18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi (i =1,2)表示方案i 实施两年后柑桔产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?19.(本小题满分12分)数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.(1)求,n n a b ;(2)求证1211134n S S S +++< . 20.(本小题满分12分)正三棱锥O -ABC 的三条侧棱OA 、OB 、OC 两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA 、OB 、OC 或其延长线分别相交于A 1、B 1、C 1,已知OA 1=23. (1)证明:B 1C 1⊥平面OAH ;(2)求二面角O -A 1B 1-C 1的大小.21.(本小题满分12分)设点P (x 0,y 0) 在直线x =m ( y ≠±m ,0<m <1)上,过点P 作双曲线搿x 2-y 2=1的两条切线PA 、PB ,切点为A 、B ,定点M(m1,0). (1)过点A 作直线x -y =0的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A 、M 、B 三点共线.1C 1A22.(本小题满分14分) 已知函数f (x )=x+11+a+11+8+ax ax,x ∈(0,+∞).(1)当a =8时,求f (x )的单调区间; (2)对任意正数a ,证明:l <f (x )<2.2008年普通高等学校招生全国统一考试(江西卷)理科数学参考答案1.D .因sin 20,cos 20><所以sin 2cos2z i =+对应的点在第四象限, 2.D .因*{0,2,4}A B =3.B .令()t f x =,则1[,3]2t ∈,110()[2,]3F x t t =+∈ 4.A.11x x →→=1 =1=2x →5. A . 211ln(1)1a a =++,321ln(1)2a a =++,…,11ln(1)1n n a a n -=++- 1234ln()()()()2ln 1231n na a n n ⇒=+=+-6.D. 函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时7.C .由题知,垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒<又(0,1)e ∈,所以1(0,)2e ∈8.D . 常数项为346861061014246C C C C ++=9. A. 22121212121()()222a ab b a a b b +++≤+=112212************()()()()()0a b a b a b a b a a b a a b a a b b +-+=-+-=--≥ 11221221()a b a b a b a b +≥+12121122112112221()()2()a a b b a b a b a b a b a b a b =++=+++≤+112212a b a b +≥10.C . 解:①③④正确,②错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
糖果工作室原创欢迎下载!第1页共10页绝密★考试结束前2008年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B ∙=∙如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n k n n P k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a 是实数,1a ii-+是纯虚数,则a =()(A )1(B )-1(C )2(D )-22.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A = ()(A )∅(B ){}|0x x ≤(C ){}|1x x >-(D ){}|01x x x >≤-或3.已知a ,b 都是实数,那么“22b a >”是“a >b ”的()(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件4.在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是()(A )-15(B )85(C )-120(D )2745.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是()(A )0(B )1(C )2(D )46.已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++ =()(A )16(n--41)(B )16(n--21)(C )332(n--41)(D )332(n--21)7.若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线离心率()(A )3(B )5(C )3(D )58.若cos 2sin αα+=则tan α=()(A )21(B )2(C )21-(D )2-9.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-= ,则c的最大值是()(A )1(B )2(C )2(D )2210.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是()(A )圆(B )椭圆(C )一条直线(D )两条平行直线非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共7小题,每小题4分,共28分。
11.已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =。
12.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =________。
13.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _____。
14.如图,已知球O 点面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 点体积等于___________。
15.已知t 为常数,函数22y x x t =--在区间[0,3]上的最大值为2,则t=___。
16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是___。
(用数字作答)。
17.若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点P (a ,b )所形成的平面区域的面积等于_______。
三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90,AD=3,EF=2。
(Ⅰ)求证:AE//平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为︒60?19.(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。
已知从袋中任意摸出1个球,得到黑球的概率是52;从袋中任意摸出2个球,至少得到1个白球的概率是97。
(Ⅰ)若袋中共有10个球,(i )求白球的个数;(ii )从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望ξE 。
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于107。
并指出袋中哪种颜色的球个数最少。
20.(本题15分)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
是过点Q (-1,0)的直线,M 是C 上(不在 上)的动点;A 、B 在 上,x MB MA ⊥⊥, 轴(如图)。
(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线 的方程,使得QAQB2为常数。
21.(本题15分)已知a 是实数,函数)()(a x x x -=⎰。
(Ⅰ)求函数)(x ⎰的单调区间;(Ⅱ)设)(a g 为)(x ⎰在区间[]2,0上的最小值。
(i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。
22.(本题14分)已知数列{}n a ,0≥n a ,01=a ,)(12121∙++∈=-+N n a a a n n n .记n n a a a S +++= 21)1()1)(1(1)1)(1(11121211n n a a a a a a T +++++++++=.求证:当∙∈N n 时,(Ⅰ)1+<n n a a ;(Ⅱ)2->n S n ;(Ⅲ)3<n T 。
数学(理科)试题参考答案一.选择题.题号12345678910答案ADDACCDBCB二.填空题.11.21+12.813.3314.29π15.116.4017.1三.解答题.18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形,所以AD EG∥,从而四边形ADGE 为平行四边形,故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF ,所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH .由平面ABCD ⊥平面BEFC ,AB BC ⊥,得AB ⊥平面BEFC ,从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在Rt EFG △中,因为EG AD ==2EF =,所以60CFE ∠= ,1FG =.又因为CE EF ⊥,所以4CF =,从而3BE CG ==.于是33sin 2BH BE BEH =∠= .因为tan AB BH AHB =∠ ,所以当AB 为92时,二面角A EF C --的大小为60 .方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,DAB EFCHGDA BEFCyz x则(000)C ,,,0)A a ,,00)B ,,0)E b ,,(00)F c ,,.(Ⅰ)证明:(0)AE b a =- ,,,00)CB = ,,(00)BE b = ,,,所以0CB CE = ,0CB BE =,从而CB AE ⊥,CB BE ⊥,所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF .故AE ∥平面DCF .(Ⅱ)解:因为(0)EF c b =- ,,0)CE b =,,所以0EF CE =,||2EF =,从而3()02b c b -+-=⎧=,,解得34b c ==,.所以0)E ,,(040)F ,,.设(1)n y z =,,与平面AEF 垂直,则0n AE = ,0n EF =,解得33)n a=,.又因为BA ⊥平面BEFC ,(00)BA a = ,,,所以||1|cos |2||||BA n n BA BA n <>==,,得到92a =.所以当AB 为92时,二面角A EF C --的大小为60.19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分.(Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19xC P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ0123P112512512112ξ的数学期望:155130123121212122E ξ=⨯+⨯+⨯+⨯=.(Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =,所以2y n <,21y n -≤,故112y n -≤.记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551y P B n =+⨯-231755210+⨯=≤.所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n.故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C上的点,则||NP =,N 到直线58y =-的距离为58y +58y =+.化简,得曲线C 的方程为21()2y x x =+.(Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而||1|QB x =+.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k ⎛⎫+- ⎪⎝⎭=+.所以222222(1)||||||2)4(1)x QA QM MA kx k +=-=++.||QA =22||2(112||||QB k x QA k x k++=+.当2k =时,2||||QB QA =,从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而||1|QB x =+.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+.AB OQyxlMAB OQyxlMHl 1因为||||QA MH =,所以||QA =,22||2(1)112||||QB k x QA k x k++=+.当2k =时,2||||QB QA =,从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分.(Ⅰ)解:函数的定义域为[0)+∞,,()f x '==(0x >).若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3a x =,当03ax <<时,()0f x '<,当3a x >时,()0f x '>.()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭.(Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增,所以()(0)0g a f ==.若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增,所以()3a g a f ⎛⎫==⎪⎝⎭6a ≥,()f x 在[02],上单调递减,所以()(2))g a f a ==-.综上所述,00()06)6a g a a a a ⎧⎪⎪=<<⎨-,≤,,,≥.(ii )令6()2g a --≤≤.若0a ≤,无解.若06a <<,解得36a <≤.若6a ≥,解得62a +≤≤.故a的取值范围为32a +≤≤22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.满分14分.(Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+-2121()(1)k k k k a a a a ++++=-++,所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =- ,,,(2n ≥),得22231()(1)n n a a a a n a ++++--= .因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得111(2313)12k k ka k n n a a ++=-+ ≤,,,,≥所以23421(3)(1)(1)(1)2n n n a a a a a a -+++ ≤≥,于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++ ≤≥,故当3n ≥时,21111322n n T -<++++< ,又因为123T T T <<,所以3n T <。