2019年高考文理数学选做题练习

合集下载

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。

【高考专题】最新2019年高考数学 函数图象 专题复习(含答案)文理通用版

【高考专题】最新2019年高考数学 函数图象 专题复习(含答案)文理通用版

2019年高考数学函数图象 文理通用一.选择题(共40小题)1.函数4()|41|x x f x =-的图象大致是( ) A . B .C .D .2.已知22(2)(2sin 1)(4)f x x ln x =-,则数()f x 的部分图象大致为( )A .B .C .D . 3.x 为实数,[]x 表示不超过x 的最大整数,()[]f x x x =-,若()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,则实数a 的取值范围为( )A .(0,1)B .1(1,)4--C .1(0,1)(1,)4--D .1(0,1](1,]4--⋃ 4.函数sin31cos x y x=+,(,)x ππ∈-图象大致为( ) A . B . C . D .5.函数()cos sin f x x x x =-,[x π∈-,]π的大致图象为( )A .B .C .D .6.函数1(1)y ln x x =-+的图象大致为( ) A . B . C . D .7.函数(1)cos ()1x x e x f x e -=+的部分图象大致为( ) A . B .C . D .8.函数1()(1)x x e f x x e +=-(其中e 为自然对数的底数)的图象大致为( ) A . B . C . D .9.函数2()(1)f x ln x x =+-的图象大致是( )A .B .C .D .10.函数2()sin cos f x x x =+的部分图象符合的是( )A .B .C .D .11.将函数()f x 的图象沿x 轴向左平移1个单位长度,得到奇函数()g x 的图象,则()f x 可能是下列函数中的哪个函数?( )A .1()1f x x =+B .11()x x f x e e --=-C .2()f x x x=+ D .2()log (1)1f x x =++ 12.函数sin y x x π=-的大致图象是( )A .B .C .D .13.如图,在直角坐标系xOy 中,边长为1的正方形OMNP 的两个顶点在坐标轴上,点A ,B 分别在线段MN ,NP 上运动.设PB MA x ==,函数()f x OA BA =,()g x OA OB =,则()f x 与()g x 的图象为( )A .B .C .D .14.函数2()sin f x x x x =+的图象大致为( )A .B .C .D . 15.函数2(1)21ln x y x x +=-+的部分图象大致是( ) A . B . C . D .16.如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T .若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .17.函数3()cos f x x x x =-的大致图象为( )A .B .C .D .18.已知函数2|1()|23x f x x e x -=--+,则()f x 的大致图象是( )A .B .C .D .19.函数()f x =( ) A .B .C .D . 20.函数1(1)y x ln x =-+的图象大致为( ) A . B . C . D .21.函数2()(41)x f x x x e =-+的大致图象是( )A .BC .D .22.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+23.函数1()sin 1x f x x ln x -=+的大致图象为( ) A . B .C .D .24.函数3()||y x x ln x =-的图象是( )A .B .C .D .25.函数||sin 2()2x x f x =的图象大致为( )A .B .C .D .26.函数2()()x f x x tx e =+(实数t 为常数,且0)t <的图象大致是( )A .B .C .D .27.函数2()(2)||f x x ln x =-的图象为( )A .B .C .D .28.函数()1ln xf x x =+,的图象大致是( ) A . B .C . D .29.函数()cos sin f x x x x =-在[3x π∈-,3]π的大致图象为( )A .B .C .D . 30.函数233()sin ()22f x x x x ππ=-剟的图象大致为( ) A . B .C .D .31.函数2||8x y ln x =-的图象大致为( ) A . B . C . D .32.反映函数2()||f x x x -=-基本性质的图象大致为( )A .B .C .D .33.函数433()x xf x x --=的大致图象为( ) A . B . C . D .34.函数2()22x x f x x -=--的图象大致为( )A .B .C .D .35.函数()|1||1|f x ln x ln x =+--的大致图象为( )A .B .C .D .36.函数11x y lnx -=+的图象大致为( ) A . B . C . D .37.设函数2()1xx xe f x e =+的大致图象是( ) A . B .C .D . 38.函数()||cos f x x x =的部分图象为( )A.B.C.D.39.函数()sin2cosf x x x x=+的大致图象有可能是() A.B.C.D.40.函数1()()cosf x x xx=+在[3-,0)(0⋃,3]的图象大致为()A.B.C.D.参考答案一.选择题(共40小题)【解答】解:4()()()|41|x x f x f x f x --=≠≠--, 故()f x 为非奇非偶函数,故排除A ,B .当x →+∞时,()0f x →,当x →-∞时,()f x →+∞,故排除C ,故选:D .【解答】解:2(2)cos2(2)f x xln x =-,令2x t =,则2()cos f t t lnt =-,(0)t ≠2()cos f x xlnx ∴=-,(0)x ≠.cos y x =为偶函数,2y lnt =为偶函数,2()cos f x xlnx ∴=-,(0)x ≠.为偶函数.排除B ,C .当(0,1)x ∈时,cos 0x -<,20lnx <.所以当(0,1)x ∈时,()0f x >,排除A .故选:D .【解答】解:设()h x 与()g x 关于y 轴对称,则2()()(1)h x g x x a =-=--,(02)x 剟.()f x 的图象上恰好存在一个点与2()(1)(20)g x x a x =+--剟的图象上某点关于y 轴对称,可以等价为()f x 与()h x 在[0,2]上有一个交点,①当0a <时,()f x 与()h x 图象如图:当()h x 与()f x 在[1,2]的部分相切时,联立()h x 与()f x 在[1,2]的部分2(1)1y x a y x ⎧=--⎨=-⎩, 得2320x x a -+-=,由△0=得,14a =-, 当1a -…时,()h x 始终在1y =上方,与()f x 无交点.故此时1(1,)4a ∈--. ②0a =时,有两个交点,不成立.③当0a >时,()f x 与()h x 图象如图:要使()f x 与()h x 在[0,2]上有一个交点,需满足:(0)0(2)(0)1h h h ⎧⎨=⎩……,即(0a ∈,1]. 综上,1(0,1](1,]4--⋃. 故选:D .【解答】解:函数sin31cos x y x =+满足sin3()()1cos x f x f x x--==-+,函数为奇函数,排除A , 由于3sin2()121cos 2f πππ==-+,sin ()031cos 3f πππ==+,2sin 2()0231cos 3f πππ==+ 故排除B ,C故选:D .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除A ,C()cos sin 102222f ππππ=-=-<,排除B , 故选:D .【解答】解:由于函数1(1)y ln x x=-+在(1,0)-,(0,)+∞单调递减,故排除B ,D , 当1x =时,120y ln =->,故排除C ,故选:A .【解答】解:(1)cos()(1)cos ()()11x x x x e x e x f x f x e e ------==-=-++, ∴函数()f x 为奇函数,故排除B ,D ,当x →+∞时,()0f x →,故排除C ,故选:A .【解答】解:当0x >时,1x e >,则()0f x <;当0x <时,1x e <,则()0f x <,所以()f x 的图象恒在x 轴下方,排除B ,C ,D , 故选:A .【解答】解:代0x =,知函数过原点,故排除D .代入1x =,得0y <,排除C .带入0.0000000001x =-,0y <,排除A .故选:B .【解答】解:函数()f x 是偶函数,图象关于y 轴对称,(0)sin0cos01f =+=排除C ,22()sin cos sin 02424f ππππ=+=>,排除A ,D , 故选:B .【解答】解:A .将函数()f x 的图象沿x 轴向左平移1个单位长度得到12y x =+,图象关于原点不对称,不是奇函数,不满足条件. B .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到x x y e e -=-,则此时函数为奇函数,满足条件. C .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到211y x x =+++,(0)1230f =+=≠,则函数不是奇函数,D .将函数()f x 的图象沿x 轴向左平移1个单位长度,得到2log (2)1y x =++,定义域关于原点不对称,不是奇函数,故选:B .【解答】解:()sin (sin )()f x x x x x f x ππ-=-+=--=-,则函数()f x 是奇函数,图象关于原点对称,排除B ,C ,当x →+∞,()f x →+∞,排除A ,故选:D .【解答】解:由已知可得(1,)A x ,(,1)B x ,[0x ∈,1],则(1,1)BA x x =--,(1,)OA x =,(,1)OB x =,所以2()1(1)(1)f x OA BA x x x x ==-+-=-,()2g x OA OB x ==,故选:A .【解答】解:函数2()sin f x x x x =+是偶函数,关于y 轴对称,故排除B , 令()sin g x x x =+,()1cos 0g x x ∴'=+…恒成立,()g x ∴在R 上单调递增,(0)0g =,()()0f x xg x ∴=…,故排除D ,当0x >时,()()f x xg x =单调递增,故当0x <时,()()f x xg x =单调递减,故排除C . 故选:A .【解答】解:当2x =时,f (2)330441ln ln ==>-+,故排除C , 当12x =时,3132()401224lnf ln ==>,故排除D , 当x →+∞时,()0f x →,故排除B ,故选:A .【解答】解:函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快, 故对应的图象为B ,【解答】解:函数33()cos()()cos ()f x x x x x x x f x -=----=-+=-,则函数()f x 是奇函数,图象关于原点对称,排除C ,D ,33()cos ()()022222f πππππ=-=-<,排除B , 故选:A .【解答】解:由题意知2|12|1()|2323|x x f x x e x x x e --=--+=-+-,223y x x =-+对称轴为1x =,|1|x y e -=对称轴为1x =,所以知()f x 的对称轴为1x =,排除B ,D . 代特殊值3x =得0y <,排除C ,选A .故选:A .【解答】解:1(0)02ln f ==,排除C ,Df (1)11)0ln e e -=<+,排除B 故选:A .【解答】解:f (1)1012ln =>-,排除C ,D , 由10(1)y x ln x ==-+,则方程无解,即函数没有零点,排除B , 故选:A .【解答】解:当0x <时,2410x x -+>,0x e >,所以()0f x >,故可排除B ,C ; 当2x =时,f (2)230e =-<,故可排除D .故选:A .【解答】解:由图可知()02f π>,故可排除A ,B ; 对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选:D .【解答】解:111()sin sin sin ()111x x x f x x lnx ln x ln f x x x x --+--=-=-==-+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,C ,f (3)1sin302ln =<,排除B ,【解答】解:3()()||()f x x x ln x f x -=--=-,函数是奇函数,图象关于原点对称,排除B , 函数的定义域为{|0}x x ≠,由()0f x =,得3()||0x x ln x -=,即2(1)||0x ln x -=,即1x =±,即函数()f x 有两个零点,排除D , f (2)620ln =>,排除A ,故选:C .【解答】解:||||sin(2)sin 2()()22x x x x f x f x ----===-,函数()f x 是奇函数,图象关于原点对称,排除A ,B , ||44sin(2)14()0422f ππππ⨯==>,排除C , 故选:D .【解答】解:由()0f x =得20x tx +=,得0x =或x t =-,即函数()f x 有两个零点,排除A ,C , 函数的导数22()(2)())[(2)]x x x f x x t e x tx e x t x t e '=+++==+++,当x →-∞时,()0f x '>,即在x 轴最左侧,函数()f x 为增函数,排除D , 故选:B .【解答】解:22()(2)||(2)||()f x x ln x x ln x f x -=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,D ,当x →+∞时,()f x →+∞,排除C ,故选:B .【解答】解:||||()()1||1||ln x ln x f x f x x x --===+-+,则函数()f x 是偶函数,图象关于y 轴对称,排除B ,D f (1)0=,则f (e )1011lne e e ==>++,排除A , 故选:C .【解答】解:()cos sin (cos sin )()f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除B ,D()cos sin 0f πππππ=-=-<,排除C ,故选:A .【解答】解:因为233,()sin ()22x f x x x f x ππ--=-=-剟,所以()f x 为奇函数,图象关于原点对称,排除A ,C , 又因为()333222x f x f πππ⎛⎫- ⎪⎝⎭时剟?,排除B 故选:D .【解答】解:函数的定义域为{|0}x x ≠, 则22()()||||()88x x f x ln x ln x f x --=--=-=,则函数()f x 是偶函数,图象关于y 轴对称,排除B , 当x →+∞时,y →+∞,排除A ,2222()2088e e f e lne =-=-<, ∴函数在0x >时,存在负值,排除C ,故选:D .【解答】解:函数22()||()||()f x x x x x f x ---=---=-=,则()f x 是偶函数,排除C 且在(0,)+∞上是增函数,排除B 、D ,故选:A .【解答】解:443333()()x x x xf x f x x x -----==-=-,则()f x 是奇函数,则图象关于原点对称,排除A , f (1)183033=-=>,排除D , 当x →+∞,3x →+∞,则()f x →+∞,排除C ,故选:B .【解答】解:2()22()x x f x x f x --=--=,则()f x 是偶函数,排除C ,f (3)1798088=--=>,排除A , f (5)112532703232=--=--<,排除D , 故选:B .【解答】解:()|1||1|(|1||1|)()f x ln x ln x ln x ln x f x -=--+=-+--=-,即()f x 是奇函数, 图象关于原点对称,排除A ,C ,f (2)3130ln ln ln =-=>,排除B ,故选:D .【解答】解:当x →+∞时,y →+∞,排除D ,由0y =得101x lnx -=+,得10x -=,即1x =, 即函数只有一个零点,排除A ,B ,故选:C .【解答】解:f (1)201e e =>+,排除D ,122(1)011e ef e e ----==-<++,排除B ,C 故选:A .【解答】解:()||cos()||cos ()f x x x x x f x -=--==,则函数()f x 是偶函数,图象关于y 轴对称,排除A ,B ,1()cos 33362f ππππ==>,故排除D , 故选:C .【解答】解:()sin(2)cos()sin2cos ()f x x x x x x x f x -=--+-=+=,则函数()f x 是偶函数,排除D , 由()2sin cos cos 0f x x x x x =+=,得cos (2sin 1)0x x x +=, 得cos 0x =,此时2x π=或32π, 由2sin 10x x +=得1sin 2x x =-, 作出函数sin y x =和12y x=-,在(0,2)π内的图象,由图象知两个函数此时有两个不同的交点, 综上()f x 在(0,2)π有四个零点,排除B ,C ,故选:A .【解答】解:11()()cos()()cos ()f x x x x x f x x x-=---=-+=-,函数是奇函数,图象关于原点对称,排除B ,D ,f (1)2cos10=>,排除C ,故选:A .。

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。

(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。

已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。

P为C上一点,且PF⊥x轴。

过点A的直线l与线段PF交于点M,与y轴交于点E。

若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。

2019年高考数学(文)二轮复习对点练:专题九 选做大题 专题对点练26 Word版含答案

2019年高考数学(文)二轮复习对点练:专题九 选做大题 专题对点练26 Word版含答案

专题对点练26坐标系与参数方程(选修4—4)1.(2018全国Ⅰ,文22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.2.(2018全国Ⅱ,文22)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.3.在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1α为常数,0<α<π,且α≠,点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.4.已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求曲线C'的极坐标方程;(2)若过点A(极坐标)且倾斜角为的直线l与曲线C'交于M,N两点,弦MN的中点为P,求的值.专题对点练26答案1.解(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=,经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.2.解(1)曲线C的直角坐标方程为=1.当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α,当cos α=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.3.解(1)曲线C1的参数方程为(其中φ为参数),普通方程为+y2=1;曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1,直角坐标方程为x tan α-y-1=0.(2)C2的参数方程为(t为参数),代入+y2=1,得t2-2t sin α=0,∴t1+t2=,t1t2=0,∴|AB|=.∵0<α<π,且α≠,∴sin α∈(0,1),∴|AB|max=,此时B的坐标为.4.解(1)C:=1,将代入C的普通方程可得x'2+y'2=1.因为ρ2=x2+y2,所以曲线C'的极坐标方程为C':ρ=1.(2)点A的直角坐标是A,将l的参数方程代入x2+y2=1,可得4t2-6t+5=0,∴t1+t2=,t1·t2=,∴.。

2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

 2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学一、选择题1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N等于()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}答案 C解析∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1答案 C解析∵z在复平面内对应的点为(x,y),∴z=x+y i(x,y∈R).∵|z-i|=1,∴|x+(y-1)i|=1,∴x2+(y-1)2=1.故选C.3.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a答案 B解析∵a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),∴a<c<b.故选B.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cm B.175 cm C.185 cm D.190 cm答案 B 解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.函数f(x)=在[-π,π]上的图象大致为()A. B.C. D.答案 D解析∵f(-x)==-=-f(x),∴f(x)为奇函数,排除A;∵f(π)==>0,∴排除C;∵f(1)=,且sin 1>cos 1,∴f(1)>1,∴排除B,故选D.6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A.7.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.答案 B解析设a与b的夹角为α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈[0,π],∴α=,故选B.8.如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+答案 A解析A=,k=1,1≤2成立,执行循环体;A=,k=2,2≤2成立,执行循环体;A=,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=.故选A.9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5 B.a n=3n-10C.S n=2n2-8n D.S n=n2-2n答案 A解析设等差数列{a n}的公差为d,∵∴解得∴a n=a1+(n-1)d=-3+2(n-1)=2n-5,S n=na1+d=n2-4n.故选A.10.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.11.关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④ B.②④ C.①④ D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.12.已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8π B.4π C.2π D.π答案 D解析因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=,所以球O的体积V=πR3=π3=π,故选D.二、填空题13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案y=3x解析因为y′=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x.14.记S n为等比数列{a n}的前n项和.若a1=,=a6,则S5=________.答案解析设等比数列{a n}的公比为q,因为=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.16.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.答案 2解析因为F1B·F2B=0,所以F1B⊥F2B,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.三、解答题17.△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE 为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)解由已知可得DE⊥DA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,,2),N(1,0,2),=(0,0,-4),=(-1,,-2),=(-1,0,-2),=(0,-,0).设m=(x,y,z)为平面A1MA的一个法向量,则所以可得m=(,1,0).设n=(p,q,r)为平面A1MN的一个法向量,则所以可取n=(2,0,-1).于是cos〈m,n〉===,所以二面角A-MA1-N的正弦值为.19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=. 20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明:(1)f′(x)的区间上存在唯一极大值点;(2)f(x)有且仅有2个零点.证明(1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+.当x∈时,g′(x)单调递减,而g′(0)>0,g′<0,可得g′(x)在有唯一零点,设为α.则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点;②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在上单调递减.又f(0)=0,f=1-ln>0,所以当x∈时,f(x)>0.从而,f(x)在上没有零点;③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f>0,f(π)<0,所以f(x)在上有唯一零点;④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-1<≤1,且x2+2=2+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为 (α为参数,-π<α<π).C上的点到l的距离为=. 当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.23.[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.祝福语祝你考试成功!。

(完整)2019年高考文理数学选做题练习

(完整)2019年高考文理数学选做题练习

绝密★启用前2019年高考选做题练习数学(文)试卷考试时间:120分钟 满分150分学校:___________姓名:___________班级:___________考号:___________1.在直角坐标系xOy 中,过点P (1,2)的直线l 的参数方程为112322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于M ,N 两点,求11PM PN+的值. 答案及解析:1.(1)由已知得112322x t y t ⎧-=⎪⎪⎨⎪-=⎪⎩,消去t 得23(1)y x -=-,即3230x y -+-=,所以直线l 的普通方程为3230x y -+-=;┄┄┄2分曲线C :4sin ρθ=得24sin ρρθ=,因为222x y ρ=+,sin y ρθ=,所以224x y y +=, 整理得22(2)4x y +-=,所以曲线C 的直角坐标方程为22(2)4x y +-=;┄┄┄5分(2)解:把直线l 的参数方程112322x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入曲线C 的直角坐标方程中得:2213(1)()42t t ++=,即230t t +-=, 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,┄┄┄8分所以11PM PN +1212PM PN t t PM PN t t ++==⋅⋅21212121212()4t t t t t t t t t t -+-⋅==⋅⋅133=。

┄┄┄10分 2.已知函数()222f x x x =--+. (1)求不等式()6f x ≥的解集;(2)当x R ∈时,()f x x a ≥-+恒成立,求实数a 的取值范围.答案及解析:2.解:(1)当2x ≤-时,()4f x x =-+,∴()646f x x ≥⇒-+≥2x ⇒≤-,故2x ≤-;当21x -<<时,()3f x x =-,∴()636f x x ≥⇒-≥2x ⇒≤-,故x ∈∅; 当1x ≥时,()4f x x =-,∴()646f x x ≥⇒-≥10x ⇒≥,故10x ≥; 综上可知:()6f x ≥的解集为(,2][10,)-∞+∞U ;┄┄┄5分(2)由(1)知:4,2()3,214,1x x f x x x x x -+≤-⎧⎪=--<<⎨⎪-≥⎩,【解法一】如图所示:作出函数()f x 的图象,由图象知,当1x =时,13a -+≤-,解得:2a ≤-, ∴实数a 的取值范围为(,2]-∞-。

2019年普通高等学校招生全国统一考试理科数学(含答案)

2019年普通高等学校招生全国统一考试理科数学(含答案)

2019年普通高等学校招生全国统一考试理科数学(含答案)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C3D511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

2019年高考理数真题试卷(北京卷)(word版+答案+解析)

2019年高考理数真题试卷(北京卷)(word版+答案+解析)

2019年高考理数真题试卷(北京卷)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知复数z=2+i ,则 z ·z −=( )A. √3B. √5C. 3D. 5 2.执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 43.已知直线l 的参数方程为 {x =1+3ty =2+4t (t 为参数),则点(1,0)到直线l 的距离是( )A. 15 B. 25 C. 45 D. 65 4.已知椭圆x 2a 2+y 2b 2=1 (a>b>0)的离心率为 12 ,则( ) A. a 2=2b 2 B. 3a 2=4b 2 C. a=2b D. 3a=4b 5.若x ,y 满足|x|≤1-y ,且y≥-1.则3x+y 的最大值为( ) A. -7 B. 1 C. 5 D. 76.在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足m 1-m 2= 52lg E 1E 2,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.17.设点A ,B ,C 不共线,则“ AB⃗⃗⃗⃗⃗ 与 AC ⃗⃗⃗⃗⃗ 的夹角为锐角”是“| AB ⃗⃗⃗⃗⃗ + AC ⃗⃗⃗⃗⃗ |>| BC ⃗⃗⃗⃗⃗ |”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件8.数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任一点到原点的距离都不超过 √2 ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A. ①B. ②C. ①②D. ①②③二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2019年高考选做题练习数学(文)试卷考试时间:120分钟 满分150分学校:___________姓名:___________班级:___________考号:___________1.在直角坐标系xOy 中,过点P (1,2)的直线l的参数方程为1122x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于M ,N 两点,求11PM PN+的值. 答案及解析:1.(1)由已知得1122x t y ⎧-=⎪⎪⎨⎪-=⎪⎩,消去t得21)y x -=-,即20y -+=,所以直线l20y -+-=;┄┄┄2分曲线C :4sin ρθ=得24sin ρρθ=,因为222x y ρ=+,sin y ρθ=,所以224x y y +=, 整理得22(2)4x y +-=,所以曲线C 的直角坐标方程为22(2)4x y +-=;┄┄┄5分(2)解:把直线l的参数方程11222x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入曲线C 的直角坐标方程中得:221(1))422t ++=,即230t t +-=, 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,┄┄┄8分所以11PM PN +1212PM PN t t PM PN t t ++==⋅⋅1212t t t t -==⋅=。

┄┄┄10分 2.已知函数()222f x x x =--+. (1)求不等式()6f x ≥的解集;(2)当x R ∈时,()f x x a ≥-+恒成立,求实数a 的取值范围.答案及解析:2.解:(1)当2x ≤-时,()4f x x =-+,∴()646f x x ≥⇒-+≥2x ⇒≤-,故2x ≤-;当21x -<<时,()3f x x =-,∴()636f x x ≥⇒-≥2x ⇒≤-,故x ∈∅; 当1x ≥时,()4f x x =-,∴()646f x x ≥⇒-≥10x ⇒≥,故10x ≥; 综上可知:()6f x ≥的解集为(,2][10,)-∞+∞;┄┄┄5分(2)由(1)知:4,2()3,214,1x x f x x x x x -+≤-⎧⎪=--<<⎨⎪-≥⎩,【解法一】如图所示:作出函数()f x 的图象,由图象知,当1x =时,13a -+≤-,解得:2a ≤-, ∴实数a 的取值范围为(,2]-∞-。

┄┄┄10分【解法二】当2x ≤-时,4x x a -+≥-+恒成立,∴4a ≤, 当21x -<<时,3x x a -≥-+恒成立,∴2a ≤-, 当1x ≥时,4x x a -≥-+恒成立,∴2a ≤-, 综上,实数a 的取值范围为(,2]-∞-。

3.在直角坐标系xOy 中,曲线M 的参数方程为1cos 1sin x r y r αα=+⎧⎨=+⎩(α为参数,0r >),以直角坐标系的原点为极点,以x 轴的正半轴为极轴建立坐标系,圆C 的极坐标方程为8sin ρθ=. (1)求圆C 的直角坐标方程(化为标准方程)及曲线M 的普通方程;(2)若圆C 与曲线M 的公共弦长为8,求r 的值.答案及解析:3.(1)由8sin ρθ=,得28sin ρρθ=,所以2280x y y +-=, 即()22416x y +-=,故曲线C 的直角坐标方程为()22416x y +-=.曲线M 的普通方程为()()22211x y r -+-=(2)联立()()()2222241611x y x y r ⎧+-=⎪⎨-+-=⎪⎩,得2262x y r -=-因为圆C 的直径为8,且圆C 与曲线M 的公共弦长为8, 所以直线2262x y r -=-经过圆C 的圆心()0,4,则2220642,6r r ⨯-⨯=-=, 又0r >所以r =4.(本小题满分10分) 设函数(),f x x a a =-∈R . (1)当5a =时,解不等式()3f x ≤;(2)当1a =时,若x ∃∈R ,使得不等式()()1212f x f x m -+≤-成立,求实数m 的取值范围.答案及解析:4.解(I )当5a =时,原不等式等价于53x -≤,即35328x x -≤-≤⇒≤≤,所以解集为{}28x x ≤≤.…………………………4分(II )当1a =时,()1f x x =-.令()()()12g x f x f x =-+133,,212211,2,233,2,x x x x x x x x ⎧-+≤⎪⎪⎪=-+-=+<<⎨⎪-≥⎪⎪⎩由图象,易知12x =时,()g x 取得最小值32.由题意,知311224m m ≤-⇒≤-, 所以实数m 的取值范围为1(,]4-∞-…………………………………10分5.(本大题10分)在平面直角坐标系xOy 中,直线l的参数方程为1,212x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在以原点O 为极轴,x 轴正半轴为极轴的极坐标系中,圆C 的方程为4cos ρθ=. (1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(1,1),圆C 与直线l 交于A ,B 两点,求PA PB +的值.答案及解析:5.解:(1)消去参数t 可得直线l 的普通方程为: 20x y +-=,极坐标方程即: 24cos ρρθ=,则直角坐标方程为: 224x y x +=, 据此可得圆C 的直角坐标方程为:()2224x y -+=…………(4分)(2)将1,2 1.2x y ⎧⎪⎪=⎨-+⎪⎪⎩=代入()2224x y -+=得:220t +-=得12120,20t t t t +=-<⋅=-<, 则124PA PB t t +=-== …………(10分)6.选修4-5:不等式选讲 已知函数()||2f x x a =--.(1)若1a =,求不等式()|23|0f x x +->;(2)关于x 的不等式()|3|f x x >-有解,求实数a 的取值范围.答案及解析:6.(1)解:当a=1时,原不等式等价于:2321>-+-x x . 当2,24323>>-≥x x x 解得时,当无解时,,22231>-<<x x当32,2341<>-<x x x 解得时,∴原不等式的解集为:⎭⎬⎫⎩⎨⎧<>322或x x(2)解:()332f x x x a x >-⇔---> 令3)(---=x a x x f ,依题意:max ()2f x > ∵()3()(3)3f x x a x x a x a =---≤---=- ∴3)(max -=a x f∴32a ->,解得5a >或1a <7.[选修4-4:坐标系与参数方程](本题满分10分)在同一直角坐标系中,经过伸缩变换12x x y y⎧'=⎪⎨⎪'=⎩后,曲线C 变为曲线221x y ''+=.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 3πρθ⎛⎫-= ⎪⎝⎭(1)求C 和l 的直角坐标方程;(2)过点P (1,0)作l 的垂线交C 于A ,B 两点,点A 在x 轴上方,求11||||PA PB -. 答案及解析:7.(1)将代入得,曲线的方程为由得,因为,代入上式得直线的直角坐标方程为(2)因为直线的倾斜角为,所以其垂线的倾斜角为, 过点的垂线的参数方程为,即(为参数)代入曲线的方程整理得,设两点对应的参数为(由题意知)则,且,所以.8.[选修4-5:不等式选讲](本题满分10分)函数()|2|f x ax =+,不等式()f x a ≤的解集为{|20}x x -≤≤. (1)求a 的值;(2)求证:对任意x R ∈,存在1m >,使得不等式1(2)(2)1f x f x m m -+≥+-成立. 答案及解析:8.(1)由题意知不满足题意, 当时,由得,则,则a=2(2)设,对于任意实数,存在,使得,只需,因为,当时,由,仅当取等号所以原命题成立.9.[选修4-4:坐标系与参数方程] (10分)已知曲线C 的参数方程为22x ty t =⎧⎨=⎩,(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,过极点的两射线l 1、l 2相互垂直,与曲线C 分别相交于A 、B 两点(不同于点O ),且l 1的倾斜角为锐角α.(1)求曲线C 和射线l 2的极坐标方程;(2)求△OAB 的面积的最小值,并求此时α的值.答案及解析:9.解:(1)由曲线C 的参数方程,得普通方程为24y x =, 由cos x ρθ=,sin y ρθ=,得224sin cos ρθρθ=,所以曲线C 的极坐标方程为2cos 4sin ρθθ=,[或24sin cos θρθ=] --------------------------3分2l 的极坐标方程为2πθα=+;----------------------------------------------------------------------5分(2)依题意设(,),(,)2A B A B πραρα+,则由(1)可得24sin cos A αρα=, 同理得24sin()2cos ()2B παρπα+=+,即24cos sin B αρα=,--------------------------------------------------7分 ∴11||||||22OABA B S OA OB ρρ∆=⋅=⋅228|sin cos |cos sin αααα⋅=⋅ ∵02πα<<∴0απ<<,∴8cos sin OABS αα∆=⋅16sin 2α=16≥, ----------------9分 △OAB 的面积的最小值为16,此时sin 21α=, 得22πα=,∴4πα=. -------------------------------------------------------------------------10分10.[选修4-5:不等式选讲] (10分) 已知函数()|2||2|f x x a x =--+.(1)当2a =时,求不等式()2f x <的解集;(2)当[2,2]x ∈-时,不等式()f x x ≥恒成立,求a 的取值范围.答案及解析:10.解:(1)①当2x <-时,()22(2)62f x x x x =-+++=+<,解得4x <-,-------------------------------------------------------------------------------------------1分 ②当22x -≤<时,()22(2)322f x x x x =-+-+=--<,解得423x -<<,--------------------------------------------------------------------------------------2分 ③当2x ≥时,()22(2)62f x x x x =--+=--<解得2x ≥,---------------------------------------------------------------------------------------------3分上知,不等式()2f x <的解集为4(,4)(,)3-∞--+∞;-----------------------------------5分 (2)解法1:当[2,2]x ∈-时,()2(2)(1)2(1)f x x a x a x a =--+=-++-,--------6分 设()()g x f x x =-,则[2,2]x ∀∈-,()(2)2(1)0g x a x a =-++-≥恒成立, 只需(2)0(2)0g g -≥⎧⎨≥⎩,-------------------------------------------------------------------------------------8分即60420a ≥⎧⎨--≥⎩,解得12a ≤---------------------------------------------------------------------10分【解法2:当[2,2]x ∈-时,()2(2)f x x a x =--+,-------------------------------------6分()f x x ≥,即2(2)x a x x --+≥,即(2)2(1)x a x +≤----------------------------------7分①当2x =-时,上式恒成立,a R ∈;------------------------------------------8分 ②当(2,2]x ∈-时,得2(1)2x a x -≤+622x =-++恒成立, 只需min 61(2)22a x ≤-+=-+, 综上知,12a ≤-.----------------------------------------------------------------10分】11.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=+=ααsin 2cos 1t y t x (t 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C 的方程为θρsin 6=. (1)求圆C 的直角坐标方程;(2)若点)2,1(P ,设圆C 与直线l 交于点A ,B ,求||||PB PA +的最小值.答案及解析:11.解:(1)由θρsin 6=得θρρsin 62=,化为直角坐标方程为9)3(22=-+y x (2)将l 的参数方程代入圆C 的直角坐标方程,得07)sin (cos 22=--+t t αα (*) 由028)cos (sin 42>+-=∆αα,故可设21,t t 是方程(*)的两根,∴⎩⎨⎧-=⋅-=+7)cos (sin 22121t t t t αα又直线过点)2,1(P ,故结合t 的几何意义得:2122121214)(||||||||||t t t t t t t t PB PA -+=-=+=+722sin 432≥-=α∴||||PB PA +的最小值为72.12.已知函数()212f x x x =++-. (I)求f (x )的最小值m ;(II)若a ,b ,c 均为正实数,且满足a b c m ++=,求证:2223b c aa b c++≥. 答案及解析:12.I)当1x <-时,()()()()21233,f x x x x =-+--=-∈+∞当12x -≤<时,()()()[)21243,6f x x x x =+--=+∈, 当2x ≥时,()()()[)212=36,f x x x x =++-∈+∞ 综上,()f x 的最小值3m =(II) 证明: a b c 、、均为正实数,且满足a b c m ++=,∵222222()b c a b c a a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22()a b c ≥=++ ( 当且仅当1a b c ===时,取“=”)∴222b c a a b c a b c ++≥++,即2223b c aa b c++≥ 13.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的方程为cos sin x y αα=⎧⎨=⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为=2cos ρθ. (Ⅰ)求C 1、C 2交点的直角坐标;(Ⅱ)设点A 的极坐标为3π⎛⎫⎪⎝⎭4,,点B 是曲线C 2上的点,求△AOB 面积的最大值.答案及解析:13.(Ⅰ)221:1C x y +=,2:=2cos C ρθ,∴2=2cos ρρθ,∴222x y x +=.联立方程组得222212x y x y x ⎧+=⎪⎨+=⎪⎩,解得111 2x y ⎧=⎪⎪⎨⎪=⎪⎩,221 2x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴所求交点的坐标为12⎛ ⎝⎭,1 2⎛ ⎝⎭,.………………………5分 (Ⅱ)设()B ρθ,,则=2cos ρθ,∴AOB ∆的面积11sin 4sin 4cos sin 2233S OA OB AOB ππρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=+ ⎪⎝⎭∴当2312πθ=时,max 2S =. ………………………10分14.已知函数()|2||1|f x x a x =-+-,a R ∈.(1)若不等式()2|1|f x x ≤--有解,求实数a 的取值范围; (2)当2a <时,函数f (x )的最小值为3,求实数a 的值.答案及解析:14.(1)由题()2|1|f x x ≤--,即为|||1|12ax x -+-≤.而由绝对值的几何意义知|||1||1|22a a x x -+-≥-,当且仅当()(1)02ax x --<时取“=” …………………2分由不等式()2|1|f x x ≤--有解,∴min ()|1|12a f x =-≤,即1112a -≤-≤,得022a≤≤. 所以实数a 的取值范围[0,4]. …………………5分 (2)函数()|2||1|f x x a x =-+-的零点为2a 和1,由12a<知2a <,所以有 31,2()1,1231,1a x a x a f x x a x x a x ⎧-++≤⎪⎪⎪=-+<≤⎨⎪-->⎪⎪⎩………………7分画出图形如右图,由图可知()f x 在(,)2a -∞单调递减,在(,)2a +∞单调递增(从解析式得到单调性也可),故min()()1322a af x f ==-+=,即42a =-<,符合题意,即4a =-.……………………………………………………………………………………………… 10分15.选修4-4:坐标系与参数方程在直角坐标系中,曲线C 1:221x y +=经过伸缩变换'2'x xy y=⎧⎨=⎩后得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2sin ρθ=-. (Ⅰ)求出曲线C 2、C 3的参数方程;(Ⅱ)若P 、Q 分别是曲线C 2、C 3上的动点,求PQ 的最大值.答案及解析:15.(Ⅰ)曲线1C :221x y +=经过伸缩变换'2'x x y y=⎧⎨=⎩,可得曲线2C 的方程为2214x y +=, ∴其参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数);曲线3C 的极坐标方程为2sin ρθ=-,即22sin ρρθ=-,∴曲线3C 的直角坐标方程为222x y y +=-,即()2211x y ++=,∴其参数方程为cos 1sin x y ββ=⎧⎨=-+⎩(β为参数).(Ⅱ)设()2cos ,sin P αα,则P 到曲线3C 的圆心()0,1-的距离d ===∵[]sin 1,1α∈-,∴当1sin 3α=时,max 3d =.∴max max PQ d r=+3133=+=.16.已知|12||1|2)(-++=x x x f . (I)解不等式()>(1)f x f ; (II)若不等式n m x f 11)(+≥(m >0,n >0)对任意的R x ∈都成立,证明:34≥+n m . 答案及解析:16.(Ⅰ)()(1)f x f >就是21215x x ++->.(1)当12x >时,5)12()1(2>-++x x ,得1x >. (2)当112x -≤≤时,()()21215x x +-->,得35>,不成立. ………2分 (3)当1x <-时,()()21215x x -+-->,得32x <-. 综上可知,不等式()(1)f x f >的解集是()312⎛⎫-∞-+∞ ⎪⎝⎭,,.………5分 (Ⅱ)因为()()2121222122213x x x x x x ++-=++-≥+--=,所以113m n+≤. ………7分 因为0m >,0n >时,11m n +≥3≤23≥. 所以43m n +≥. ………10分 17.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C 的参数方程为3cos x y αα=⎧⎪⎨=⎪⎩(α是参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos()13πρθ+=.(1)求l 的直角坐标方程和C 的普通方程;(2)l 与C 相交于A ,B 两点,设点P 为C 上异于A ,B 的一点,当△P AB 面积最大时,求点P 到l 的距离.答案及解析:17.解:(1)因为直线l 的极坐标方程为cos()13πρθ+=,所以1(cos )122ρθθ-=, 所以直线l的直角坐标方程为20x -=.曲线C的参数方程为3cos x y αα=⎧⎪⎨=⎪⎩,(α是参数),所以曲线C 的普通方程为22193x y+=. (2)直线:20l x -=与曲线22:193x yC +=相交于A B 、两点,所以||AB 为定值. 要使PAB ∆的面积最大,只需点P 到直线l 的距离d 最大.设点(3cos )P αα为曲线C 上任意一点.则点P 到直线l 的距离|3cos 3sin 2|2d αα--=|)2|42πα+-=, 当cos()14πα+=-时,d取最大值为2||122-=+. 所以当PAB ∆面积最大时,点P 到l的距离为1+18.已知函数()2f x x a x =-++. (Ⅰ)当1a =时,解不等式()4f x ≥;(Ⅱ)若不等式()3f x x ≤+的解集包含[0,1],求实数a 的取值范围.答案及解析:18.解:(Ⅰ)1a =时,()4f x ≥2214x x <-⎧⇔⎨--≥⎩或2134x -≤≤⎧⎨≥⎩或1214x x >⎧⎨+≥⎩,52x ≤-或x φ∈或32x ≥,解集为53(,][,)22-∞-+∞.(Ⅱ)由已知()3f x x ≤+在[0,1]上恒成立, ∵20x +>,30x +>, ∴1x a -≤在[0,1]上恒成立,∵y x a =-的图象在(,)a -∞上递减,在(,)a +∞上递增,∴01110211a a a a ⎧-≤-≤≤⎧⎪⇒⎨⎨≤≤-≤⎩⎪⎩, ∴a的取值范围是[0,1]. 19.已知曲线C 1的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin 4cos ρθθ=. (1)求C 1的普通方程和C 2的直角坐标方程;(2)若过点(1,0)F 的直线l 与C 1交于A ,B 两点,与C 2交于M ,N 两点,求||||||||FA FB FM FN 的取值范围.答案及解析:19.(1)曲线1C 的普通方程为2212x y +=,曲线2C 的直角坐标方程为 24y x =;(5分)(2)设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)又直线l 与曲线2C :24y x =存在两个交点,因此sin 0α≠.联立直线l 与曲线1C :2212x y +=可得22(1sin )2cos 10t t αα++-= 则1221||||||1sin FA FB t t α⋅==+ 联立直线l 与曲线2C :24y x =可得22sin 4cos 40t t αα--=则3424||||||sin FM FN t t α⋅==即222221||||1sin 1111sin (0,]41||||41sin 481sin sin FA FB FM FN ααααα⋅+==⋅=⋅∈⋅++. (10分) 20.已知函数()2,.f x x a x a R =-++∈ (1)当1a =时,解不等式() 4.f x ≥;(2)若[]0,1x ∈时,不等式()3f x x ≤+成立,求实数a 的取值范围。

相关文档
最新文档