平行线性质的综合应用
平行线的判定与性质的综合应用 专题练习

平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。
解:因为DE∥BC,所以∠ADE=∠XXX。
又因为DE∥BC,所以DB∥EF。
由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。
证明:因为∠1=∠2,所以XXX。
又因为∠A=∠3,所以AC∥BD。
由平行线性质可知,AC∥DE。
3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。
证明:因为∠XXX∠ADC,所以∠XXX∠ADC。
又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。
由∠1=∠3可得,∠2=∠ADC。
由平行线性质可知,AB∥DC。
二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。
证明:因为AB∥CD,所以∠A+∠D=180º。
又因为DE⊥AE,所以∠ADE=90º。
由∠A=37º可得,∠ADE=53º。
由三角形内角和定理可得,∠D=80º。
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。
证明:因为AB∥CD,所以∠1+∠α+∠2=180º。
由∠1=100º,∠2=120º可得,∠α= -40º。
由于∠α是角度,所以∠α=320º。
6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。
证明:因为XXX,所以∠BAD=∠ACD。
又因为AE平分∠BAD,所以∠XXX∠DAF。
由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。
又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。
八年级数学(上册)专题突破平行线性质的综合应用折叠问题试题

八年级数学上册专题突破平行线性质的综合应用折叠问题试题平行线性质的综合应用:折叠问题一、平行线的性质方法归纳:平行关系数量关系(由“线”推“角”)由“线”的位置关系(平行),定“角”的数量关系(相等或互补)如(1)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°c.60°D.120°解:∵a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∴∠2=∠3=60°。
故选c。
(2)如图,直线c与a、b均相交,当a∥b时,则()A.∠1>∠2B.∠1<∠2c.∠1=∠2D.∠1+∠2=90°解:∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故选:c。
二、折叠问题(翻折变换)1.折叠问题(翻折变换)实质上就是轴对称变换。
2.折叠是一种对称变换,它属于轴对称。
(1)对称轴是对应点的连线的垂直平分线;(2)折叠前后图形的形状和大小不变,位置变化;(3)对应边和对应角相等。
3.对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系。
例题1如图所示。
已知AB∥cD,∠B=100°,EF平分∠BEc,EG⊥EF。
求∠BEG和∠DEG。
解析:根据平行线的性质及角平分线的性质可求出∠BEc、∠BED的度数,再根据EG⊥EF可得出要求的两角的度数。
答案:解:由题意得:∠BEc=80°,∠BED=100°,∠BEF=∠BEc=40°,∴∠BEG=90°-∠BEF=50°,∠DEG=∠BED-50°=50°。
∴∠BEG和∠DEG都为50°。
点拨:解答此类题目要熟悉平行线的性质,注意掌握两直线平行内错角相等,同旁内角互补。
例题2如图所示,将宽为4厘米的纸条折叠,折痕为AB,如果∠AcB=30°,折叠后重叠部分的面积为多少平方厘米?解析:根据翻折不变性,得到∠α=∠cAB,从而求出∠ABc=∠BAc,再得出△AcB为等腰三角形,求出AD和cB 的长,进而求出△ABc的面积。
平行线的性质和判定及其综合运用

. 22
A
F1 F2 Fn
B E1
E2
Em
几何画板:探究平行线中动点问题.gsp
C
D
当左边有n个角,右边有m个角时: ∠A+∠F1 + ∠ F2 +…+ ∠Fn= ∠E1 +∠E2 +…+ ∠Em+ ∠D
. 16
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
2 F
(平行于同一条直线的两条直线平行).
∴ ∠3= ∠E(两直线平行,同位角相等).
. 20
5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD
的度数.
C
解:∵EF∥AD, (已知)
∴∠2=∠3.(两直线平行,同位角相等) D 1 G
F
又∵∠1=∠2, (已知) ∴∠1=∠3.(等量代换)
解:作∠PCE =∠APC,交AB于E.
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
A
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD. C
P EB
D
. 9
还可以怎样作辅助线?
例2:如图,AB∥CD,猜想∠BAP、∠APC 、∠PCD 的数量关系,并说明理由.
例1:如图,三角形ABC中,D是AB上一点,E是AC上
一点,∠ADE=60°,∠B = 60°,∠AED=40°.
(1)DE和BC平行吗?为什么?
(2)∠C是多少度?为什么?
D
A E
平行线性质和判定的综合应用

平行线性质和判定的综合应用
平行线性质的认知一直是数学和几何学中极其重要的部分。
它可以被用来定义
和分析几何空间中的形状和性质,也可以被用来判断某个几何形式是否是平行线性空间。
有时,甚至可以用它来表示某些非几何情况,如一起事件、一类经济趋势等。
平行线性质的应用是十分多样的,涉及到的领域几乎涵盖了各个学科。
在线性代数领域,平行线性质是其中一种最重要的数学方法,它可以帮助我们更好地理解线性系统;在几何学中,它可以帮助我们更加准确地判断几何形状是否是平行线性空间;而在物理学中,平行线性质也可以用于力学中质量等等。
在工程和实际应用中,平行线性质和判断也发挥了重要作用。
比如在建筑领域,需要准确判断复杂几何形状的平面、立面是否是平行的;在军事领域,军事装备的精确放置也需要正确的平行判断;在精密制造业中,平行线性判断也是基本技巧之一。
总之,平行线性质和判定十分重要,它不仅是数学和几何学领域中非常普遍的
技术,更是诸多工程和实际应用中不可或缺的方法,其在各个领域的应用可谓是多种多样。
平行线的性质与判定综合应用

平行线的判定与性质综合应用
类型一:证角相等
1.如图,已知 AB// CD,AD // BC.求证:∠A=∠C.
2.(中考·武汉)如图,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1, CE //DF,试说明:∠E=∠F.
3.如图,AB// CD,AE 平分∠BAD,CD与AE 相交点 F,∠CFE=∠ E.
求证:∠ADC=∠DCE.
类型二:证角平分线
4.如图,AD⊥B C于点D,EG⊥BC于点G,∠E=∠1,求证:AD 平分∠BAC.
5.如图,BE 平分∠ ABC,DE // BC,∠ FDE=∠DEB.求证:DF平分∠ ADE.
类型三:证两直线平行
6.如图 A,B,C三点在同一直线上∠1=∠2,∠3=∠D,试判断 BD与CF的位置关系系,并说明理由.
7.如图,∠D=∠A,∠ B=∠FCB,求证:ED// CF.
8.如图,∠ABC=∠ ACB, BD平分∠ABC, CE平分∠ACB,且∠1=∠F,试猜想 CE与DF的位置关系,并说明理由.
类型四:证两直线垂直
9.如图,AB//CD,EF交AB, CD于点E,F, ∠BEF和∠CFE的平分线相交于点H.求证:EH⊥FH.
10.如图,CD⊥AB于点D,DE // BC,∠1=∠2.
求证:GF⊥AB.
类型五:拐角模型
11.(1)如图, AB// CD, 若∠B=130°,∠C=30°,求∠BEC的度数
(2)如图, AB//CD,探究∠B,∠C,∠BEC三者之间有怎样的数量关系?试说明理由.。
河北省平山县回舍中学七年级数学下册《平行线的性质和判定综合应用》教案

一、教学内容
《平行线的性质和判定综合应用》选自河北省平山县回舍中学七年级数学下册教材第四章第四节。本节课主要包括以下内容:1.复习平行线的性质,如同位角、内错角、同旁内角相等;2.回顾平行线的判定方法,如同位角相等、内错角相等、同旁内角互补;3.综合应用平行线的性质和判定解决实际问题,包括在图形中识别和构造平行线,以及运用平行线性质解决角度和线段相关问题。通过本节课的学习,使学生能够熟练掌握平行线的性质和判定方法,并能将其应用于解决实际问题,提高学生的几何解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质和判定综合应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(例如,铁轨、桌面边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
(2)角度关系的识别:在实际图形中,准确地识别同位角、内错角、同旁内角等角度关系。
难点解析:学生可能在复杂的图形中难以找到对应的角度,需要通过练习和指导来提高识别能力。
(3)综合应用能力:将平行线的性质和判定方法灵活运用于解决实际问题,尤其是涉及多个平行线或复杂图形的问题。
难点解析:学生可能在面对多个平行线或复杂图形时,难以找到解题思路,需要通过案例分析、解题示范等方式提高综合应用能力。
在接下来的教学中,我认为我们需要在以下几个方面进行改进:
1.加强对学生的个别辅导,尤其是对于那些他们克服困难。
2.丰富教学手段,通过多媒体、实物模型等方式,让学生更加直观地理解平行线的性质和判定方法。
平行线性质定理和判定定理的综合应用

6、如图,木工师傅用角尺画出
长方形工件边缘的两条垂线,这两
条垂线是否平行( 是 )。口述理
由。(3分)
理由:
同一平面内,垂
图12
直于同一条直线的
两条直线互相平行。
(二)选择题(每题1分)
7、如图7:当AC//BD时,可以
判断∠A等于哪个角。( c )
A.∠D
B.∠C
C.∠B
D.∠AOC
图7
(二)选择题(每题1分)
C
同位角有
_____∠__1_和__∠__5___
4
A
1
____________,
3
2
B
内错角有
_____∠__3_和__∠__5___
F
D
5
____________ ,
图2
同旁内角有
______∠_2__和_∠__5_
_____________ 。
二、抢答题,分组竞赛(答对加分,答错不扣分)。
2、如图4,如果∠1=∠2,那么 ___A_D__//___B_C__,根据 内__错_角__相__等_,__两_直__线__平_行_______。
求证:AB//DF。
1
C
2
证明:
A E3
B
∵AEB为一直线(已知)
D
F
∴∠1+∠2=180°(邻补角定义)
∵∠1+∠D=180°(已知)
∴∠2=∠D(同角的补角相等)
∴AB//DF(同位角相等,两直线平行)
三、综合应用题
16.已知:如右图,BE平分∠ABC, ∠1=∠2,求证:①∠2=∠3;
②∠4=∠C
8、如图8,已知∠1=∠2 ,且
平行线的性质

平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【思路点拨】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【答案与解析】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【总结升华】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.【答案】32°类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).【答案与解析】作法:如图所示.(1)作∠COD=∠α;(2)以射线OD为一边,在∠COD 的外部作∠DOA,使∠DOA=∠α;(3)以射线OC为一边,在∠COA的内部作∠COE,使∠COE=∠β;(4)以射线OE为一边,在∠EOA内部作∠EOB,使∠EOB=∠β,则∠AOB就是所求作的角.【总结升华】本题考查作一个差角的倍数角,本题的做法有两种:一种可以先做倍数角再做差角,如本题提供的答案;另一种也可以先做差角再做倍数角.4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.【思路点拨】过P点作AB的平行线,问题便会迅速得到求解.【答案与解析】解: (1)∠A+∠C=∠P;(2)∠A+∠P+∠C=360°;(3)∠A=∠P+∠C;(4)∠C=∠P+∠A.现以(3)的结论加以证明如下:如上图,过点P作PH∥AB ,因为AB∥CD,所以PH∥AB∥CD.所以∠HPA+∠A=180°,即∠HPA=180°-∠A;∠HPA+∠P+∠C=180°,即180°-∠A+∠P+∠C=180°,也即∠A=∠P+∠C.【总结升华】随着折点的不同,结论也会不同,但解法却如出一辙.都是过折点作平行线求解.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【答案】如图,分别过点G、F、E作GP∥AB,FQ∥AB,ER∥CD,又因为AB∥CD,所以AB∥GP∥FQ∥CD∥FQ.∴∠1=42°,∠2=∠3,∠4=∠5,∠5+26°=68°,∴∠5=68°-26°=42°,且∠4=∠5=42°.∴∠1+∠2=42°+∠2;∠4+∠3=42°+∠3.∴∠1+∠2=42°+∠3,即∠BGF=∠GFE.∴BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D平行线的性质及尺规作图(提高)巩固练习【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是_.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的. 2. 【答案】D;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D.3. 【答案】C;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.4. 【答案】B;【解析】反向延长射线ST交PR于点M,则在△MSR中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC.6. 【答案】C;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC =∠DCE =35°(两直线平行,内错角相等),所以∠BEC =∠FEB +∠FEC =60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l 1∥l 2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC 中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC =80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,11∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线相交线
教学目标
1.经历基础知识梳理的过程,进一步体会数学知识中数量关系和位置关系的一个有效数学模型
2.能够利用基础知识解答一些简单问题,帮助学生认识到运用基础知识解答一些简单问题的关键是理解定义、定理蕴含的关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
3.经历运用“平行线的判定方法”和“平行线的性质”解决有关几何问题过程,在活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法。
并在证明的过程中体会转化等数学思想;
教材分析
本节课是相交线与平行线的复习课,是对《平行线与相交线》的整个单元的知识进行梳理和复习,故以梳理、巩固基础知识为起点,对邻补角、对顶角以及两直线平行知识进行梳理,提升学生的基本应用技能。
故教学呈现仍注重以实践归纳为主,从简单的问题入手,通过学生的自主体验,结合说理推证的途径,逐步提炼来实现对本章相关知识的掌握,解决在学生中存在的易错点与混淆点,逐步加深对建模思想的理解.
学生分析
学生已经完整的学习了《平行线与相交线》的整个单元的知识,但对基本概念和基本技能的掌握方面不够系统,故教学要引导学生通过操作、观察、归纳来获取知识,体会用动态的观点来看待静态的图形,感知几何变换的思想. 采用的是“操作、探究、启发、交流、引导”的教学方法。
根据学生的认知规律,创设符合学生实际的情境,引导学生自主探索,积极参与课堂活动,培养学生的探究能力. 对推理能力的培养要有一个循序渐进的过程,要鼓励学生用自己的语言说明理由,在书写格式上不作统一要求,可以用自然语言,可以结合图形进行说明,可以用箭头等形式表明自己的思路,也可以用数学符号语言表示说理、简单推理的过程。
总之,要注意逐步提高、不要急于要求学生用数学符号语言书写.
重点难点
教学重点:
1.相交线平行线知识的综合应用;
2. 渗透数学模型的思想,引导学生构建知识结构图. 教学难点:典型例题和综合运用.
教学过程
2.如图,AB∥DE
1)度量并计算∠A+∠
的度数;
2)你发现了什么?能说明其合理性吗?
3. 如图,若AB//CD
定∠B、∠D与∠BED的大小关系吗?说说你的看法.
应用拓展:。