平行线判定和性质的综合应用

合集下载

平行线的判定与性质的综合应用 专题练习

平行线的判定与性质的综合应用 专题练习

平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。

解:因为DE∥BC,所以∠ADE=∠XXX。

又因为DE∥BC,所以DB∥EF。

由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。

证明:因为∠1=∠2,所以XXX。

又因为∠A=∠3,所以AC∥BD。

由平行线性质可知,AC∥DE。

3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。

证明:因为∠XXX∠ADC,所以∠XXX∠ADC。

又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。

由∠1=∠3可得,∠2=∠ADC。

由平行线性质可知,AB∥DC。

二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。

证明:因为AB∥CD,所以∠A+∠D=180º。

又因为DE⊥AE,所以∠ADE=90º。

由∠A=37º可得,∠ADE=53º。

由三角形内角和定理可得,∠D=80º。

5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。

证明:因为AB∥CD,所以∠1+∠α+∠2=180º。

由∠1=100º,∠2=120º可得,∠α= -40º。

由于∠α是角度,所以∠α=320º。

6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。

证明:因为XXX,所以∠BAD=∠ACD。

又因为AE平分∠BAD,所以∠XXX∠DAF。

由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。

又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。

专题03 专项训练卷(一) 平行线的判定与性质的综合应用(解析版)七年级数学下册(人教版)

专题03  专项训练卷(一) 平行线的判定与性质的综合应用(解析版)七年级数学下册(人教版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练专项训练卷(一) 平行线的判定与性质的综合应用1.(2020江苏镇江期末,18,★★☆)如图,在△ABC中点D、E分别在AB、BC上,且DE∥AC,∠1=∠2(1)求证:AF∥BC;(2)若AC平分∠BAF,∠B=50°,求∠1的度数.2.(2019广东湛江二中月考,18,★★☆)如图所示,已∠1+∠2=180°,∠DEF=∠A(1)试判断DE与AC的位置关系,并说明理由;(2)若∠A=60°,∠ACD=35°,求∠1的度数.3.(2020山西临汾三中期末,20,★★☆)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数4.(2019江苏苏州模拟,19,★★☆)如图所示,AB∥CD直线EF分别与AB、CD相交于M、N,∠AME=60°(1)求∠DNF的度数;(2)若∠P=90°,∠2=∠6=60°,求证:MP平分∠BMN5.(2019山东济南四中期末,20,★★☆)如图所示B、C、E三点在同一条直线上,A、F、E三点在同一条直线上,AB∥CD,∠1=∠2,∠3=∠4(1)试判断AD与BE是否平行,说说你的理由;(2)若∠1=46°,∠4=75°,求∠ABC的度数6.(2019浙江温州实验学校期末,20,★★☆)如图所示,已知∠1=∠BDC,∠2+∠3=180°(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥FA,∠1=70°,试求∠FAB的度数.7.(2020四川成都九中期中,21,★★☆)如图①,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE∥AB连接AE,∠B=∠E(1)求证:AE∥BC;(2)将线段AE沿着直线AC平移得到线段PQ,图②,连接DQ.若∠E=75°,DE⊥DQ,求∠Q的度数8.(2020湖南师大附中期末,19,★★☆)如图,D,E,G分别是AB,AC,BC边上的点,∠1+∠2=180°,∠3=∠B(1)请说明DE∥BC的理由;(2)若DE平分∠ADC,∠2=2∠B,判断CD与EG的位置关系,并说明理由9.(2020独家原创试题)如图①,已知∠ACB=80°,点A在直线EF上,点B在直线GH上,且∠CAE+∠CBG=80°(1)试判断直线EF与GH的位置关系,并说明理由;(2)如图②,若点B在直线GH上运动,作∠CP=2∠CAE,作∠CBP=2∠CBG,试判断∠PB的大小是否会随着点B的运动而发生变化,若不变,求出∠APB的大小;若变化,请说明理由.10.(2020重庆南开中学期末,20,★★☆)如图,CD⊥AB于D,FE⊥AB于E,∠ACD+∠F=180°(1)求证:AC∥FG;(2)若∠A=45°,∠BCD:∠ACD=2:3,求∠BCD的度数.11.(2019四川乐山模拟,22,★★★)【问题情境】我们知道“两条平行线被第三条直线所截,位角相等,内错角相等,同旁内角互补”所以在某些探究性问题中通过“构造平行线”可以起到转化的作用已知三角板ABC中,∠BAC=60°,∠B=30°,∠BCA=90°,长方形DEFG中,DE∥GF【问题初探】(1)如图①所示,若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数分析:过点C作CH∥GF,则CH∥DE∥GF,从而得∠CAF=∠HCA,∠EMC=∠BCH,然后可以求得∠EMC的度数根据分析,请你直接写出:∠CAF的度数为________,∠EMC的度数为________;【类比再探】(2)若将三角板ABC按如图②所示的方式摆放(AB与DE不垂直),请你猜想∠CAF与∠EMC的数量关系,并说明理由12.(2019广西柳州期末,23,★★★)为了安全起见,在某段铁路两旁安置了两座可旋转探照灯.如图①所示,灯A的光线从AM开始顺时针旋转至AN便立即回转,灯B的光线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.已知灯A转动的速度是每秒2度,灯B转动的速度是每秒1度,假定主道路是平行的,即PQ∥MN,且∠BA M:∠BAN=2:1.(1)填空:∠BAN=________;(2)若灯B先转动30秒,灯A才开始转动,在灯B的光线到达BQ之前,灯A转动多少秒时,两灯的光线互相平行?(3)如图②所示,若两灯同时转动,在灯A的光线到达AN之前.若两灯的光线交于点C,过C作∠ACE交PQ于点E,且∠ACE=120°,请探究在两灯转动的过程中∠BAC与∠BCE的数量关系是否发生变化若不变,请求出其数量关系;若改变,请说明理由13.(2019黑龙江齐齐哈尔一模,22,★★★)(1)问题情境:如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°求∠APC的度数小明想到一种方法,但是没有解答完:如图②所示,过P作PE∥AB,∴∠APE+∠PAB=180°∴∠APE=180°-∠PAB=180°-130°=50°AB∥CD,∴PE∥CD请你帮助小明完成剩余的解答;(2)问题迁移:请你依据小明的思路,解答下面的问题如图③所示,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β(i)当点P在A、B两点之间时,∠CPD、∠α、∠β之间有何数量关系?请说明理由;(ii)当点P在A、B两点的外侧时(点P与点不重合),请直接写出∠CPD、∠α、∠β之间的数量关系【参考答案及解析】1.解析:(1)证明:∵DE∥AC,∴∠1=∠C, ∵∠1=∠2,∴∠C=∠2 ∴AF∥BC(2)∵AF∥BC,∴∠B+∠BAF=180°,∵∠B=50°,∴∠BAF=180°-50°=130°, ∵AC 平分∠BAF, ∴∠2=12 ∠BAF=65°∵∠1=∠2,∴∠1=65° 2.解析:(1)DE∥AC 理由如下:∵∠1+∠2=180°,∠BDC+∠2=180°,∴∠1=∠BDC,∴BD∥EF,∴∠DEF=∠BDE,∵∠DEF=∠A,∴∠BDE=∠A,∴DE∥AC.(2)∵∠A=60°,∠ACD=35°,∴∠2=180°-∠A -∠ACD=85°, ∵∠1+∠2=180°,∴∠1=180°-∠2=95° 3.解析:(1)证明:如图,∵FG∥AE,∴∠2=∠3, ∵∠1=∠2,∴∠1=∠3,∴AB∥CD(2)∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=112°,∴∠ABD=180°-∠D=68°, ∵BC 平分∠ABD,∴∠4=12∠ABD=34°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°-34°=56° 4.解析:(1)∵AB∥CD,∠AME=60°,∴∠CN E=∠AME=60°, ∴∠DNF=∠CNE=60°.(2)证明:∠AME+∠1+∠2=180°,∠DNF+∠5+∠6=180°,∠2=∠6=60°,∠AME=60°,∠DNF=60° ∴∠1=∠5=60°,∴MQ∥NP,∴∠PMQ=∠P=90° ∴∠3=∠PMQ -∠2=30°∵∠1+∠2+∠3+∠4=∠EMN=180° ∴∠4=180°-∠1-∠2-∠3=30° ∴∠3=∠4,即MP 平分∠BMN5.解析:(1)AD∥BE理由AB∥CD,∴∠BAE=∠4,∵∠2=∠1,∴∠1+∠C AE=∠2+∠CAE, ∴∠BAE=∠CAD,∠CAD=∠4 ∵∠3=∠4,∴∠3=∠CAD,AD∥BE (2)∵∠3=∠4,∠4=75°∴∠3=75∴∠ABC=180°-(∠1+∠3)=180°-(46°+75°)=59° 6.解析:(1)AD∥EC理由∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC, 又∵∠2+∠3=180°,∠ADC+∠3=180° ∴AD∥EC(2)∵∠1=∠BDC,∠1=70°,∴∠BDC=70° ∵DA 平分∠BDC,∴∠ADC=12 ∠BDC=35°∴∠2=∠ADC=35°,∵CE⊥AE,AD∥EC ∴∠FAD=∠AEC=90°∴∠FAB=∠FAD -∠2=90°-35°=55° 7.解析:(1)证明:∵DE∥AB,∴∠BAE+∠E=180°, ∵∠B=∠E ∴∠BAE+∠B=180°,∴AE∥BC (2)如图,过D 作DF∥AE 交AB 于F, ∵PQ∥AE,∴DF∥PQ∥AE, ∴∠E+∠EDF=180°∵∠E=75°,∴∠EDF=180-75°=105°, ∵DE⊥DQ ∴∠EDQ=90°,∴∠FDQ=360°-105°-90°=165°,∵DF∥PQ,∴∠FDQ+∠Q=180°,∴∠Q=180°-165°=15°8.解析:(1)∵∠1+∠2=180°,∠1=∠DFG,∴∠2+∠DFG=180°,∴AB∥EG,∴∠B=∠EGC 又∵∠B=∠3,∴∠3=∠EGC,∴DE∥BC (2)CD⊥EG∵DE∥BC,∴∠B=∠ADE=∠EDC,∵∠2=2∠B,∠2+∠ADE+∠EDC=180°,∴2∠B+∠B+∠B=180°,∴∠B=45°∴∠2=2∠B=90°,∴CD⊥AB,又∵AB∥EG,∴CD⊥EG9.解析:(1)EF∥GH理由如下:如图,过点C作CD∥EF,∴∠CAE=∠ACD,∵∠ACB=∠ACD+∠BCD=80°,∠CAE+∠CBG=80°∴∠BCD=∠CBG∴CD∥GH,∴EF∥GH(2)∠APB的大小不会随着点B的运动而发生变化∵∠CAP=2∠CAE,∠CBP=2∠CBG∴∠CAP+∠CBP=2∠CAE+2∠CBG=2(∠CAE+∠CBG)=2×80°=160°∴∠APB=360°-∠ACB-(∠CAP+∠CBP)=360°-80-160°=120°故∠APB的大小为120°10.解析:(1)证明:CD⊥AB,FE⊥AB,∴∠AEH=∠ADC=90°∴EF∥DC,∴∠AHE=∠ACD,∵∠ACD+∠F=180°,∴∠AHE+∠F=180°∠AHE+∠EHC=180°,∴∠EHC=∠F,∴AC∥FG(2)∵∠BCD:∠ACD=2:3,∴设∠BCD=2x,∠ACD=3x,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∴45°+3x=90°∴x=15°,∴∠BCD=2x=30°11.解析:(1)答案为30°;60过点C作CH∥GF,则CH∥DE∥GF∴∠CAF=∠HGA,∠EMC=∠MCH,∵∠BAF=90°,∴∠CAF=90°-60°=30°∴∠HCA=30°,∴∠MCH=90°-∠HCA=60°,∠EMC=60°(2)∠CAF+∠EMC=90°理由如下:过点C作CH∥GF,则∠CAF=∠ACH∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°12.解析:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1, ∴∠BAN=180°×13=60°,故答案为60°(2)设灯A 转动t 秒时,两灯的光线(AC 和BD)互相平行 ①当0<t≤90时,如图1, ∵PQ∥MN,∴∠PBD=∠BDA, ∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴2t=1·(30+t),解得t=30.②当90<<150时,如图2, ∵PQ∥MN,∴∠PBD+∠BDA=180°, ∵AC∥BD,∴∠CAN=∠BDA, ∴∠PBD+∠CAN=180°,∴1·(30+t)+(2t -180)=180,解得t=110综上所述,当t=30或110时,两灯的光线互相平行 (3)∠BAC 和∠BCE 的数量关系不会变化 设灯A 转动的时间为m 秒,则∠CAN=(180-2m)°,∴∠BAC=60°-(180-2m)°=(2m -120)°, ∵MN∥PQ,∠BAN=60°,∴∠ABP=180°-60°=120° ∴∠ABC=(120-m)°,∴∠BCA=180°-∠ABC -∠BAC=(180-m)°,∵∠ACE=120°,∴∠BCE=120°-∠BCA=120°-(180-m)=(m-60)°, ∴∠BAC:∠BCE=2:1,即∠BAC=2∠BCE 13.解析:(1)剩余过程:∴∠CPE+∠PCD=180°∴∠CPE=180°-120°=60°,∴∠APC=50°+60°=110°如图1,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC∴∠α=∠DPE,∠β=∠CPE∴∠CPD=∠DPE+∠CPE=∠α+∠β(ii)∠CPD=∠β-∠α或∠CPD=∠α-∠β详解:当P在BA的延长线上时,∠CPD=∠β-∠α理由如下:如图2,过P作PE∥AD交ON于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α当P在B、O之间时,∠CPD=∠α-∠β理由:如图3,过P作PE∥AD交ON于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β综上,∠CPD=∠β-∠α或∠CPD=∠α-∠β。

平行线性质和判定的综合应用

平行线性质和判定的综合应用

平行线性质和判定的综合应用
平行线性质的认知一直是数学和几何学中极其重要的部分。

它可以被用来定义
和分析几何空间中的形状和性质,也可以被用来判断某个几何形式是否是平行线性空间。

有时,甚至可以用它来表示某些非几何情况,如一起事件、一类经济趋势等。

平行线性质的应用是十分多样的,涉及到的领域几乎涵盖了各个学科。

在线性代数领域,平行线性质是其中一种最重要的数学方法,它可以帮助我们更好地理解线性系统;在几何学中,它可以帮助我们更加准确地判断几何形状是否是平行线性空间;而在物理学中,平行线性质也可以用于力学中质量等等。

在工程和实际应用中,平行线性质和判断也发挥了重要作用。

比如在建筑领域,需要准确判断复杂几何形状的平面、立面是否是平行的;在军事领域,军事装备的精确放置也需要正确的平行判断;在精密制造业中,平行线性判断也是基本技巧之一。

总之,平行线性质和判定十分重要,它不仅是数学和几何学领域中非常普遍的
技术,更是诸多工程和实际应用中不可或缺的方法,其在各个领域的应用可谓是多种多样。

平行线性质定理和判定定理的综合应用

平行线性质定理和判定定理的综合应用

6、如图,木工师傅用角尺画出
长方形工件边缘的两条垂线,这两
条垂线是否平行( 是 )。口述理
由。(3分)
理由:
同一平面内,垂
图12
直于同一条直线的
两条直线互相平行。
(二)选择题(每题1分)
7、如图7:当AC//BD时,可以
判断∠A等于哪个角。( c )
A.∠D
B.∠C
C.∠B
D.∠AOC
图7
(二)选择题(每题1分)
C
同位角有
_____∠__1_和__∠__5___
4
A
1
____________,
3
2
B
内错角有
_____∠__3_和__∠__5___
F
D
5
____________ ,
图2
同旁内角有
______∠_2__和_∠__5_
_____________ 。
二、抢答题,分组竞赛(答对加分,答错不扣分)。
2、如图4,如果∠1=∠2,那么 ___A_D__//___B_C__,根据 内__错_角__相__等_,__两_直__线__平_行_______。
求证:AB//DF。
1
C
2
证明:
A E3
B
∵AEB为一直线(已知)
D
F
∴∠1+∠2=180°(邻补角定义)
∵∠1+∠D=180°(已知)
∴∠2=∠D(同角的补角相等)
∴AB//DF(同位角相等,两直线平行)
三、综合应用题
16.已知:如右图,BE平分∠ABC, ∠1=∠2,求证:①∠2=∠3;
②∠4=∠C
8、如图8,已知∠1=∠2 ,且

平行线的性质与判定(典型例题)

平行线的性质与判定(典型例题)

E
B
C
例4.如图,∠A+∠C=1800,∠D=∠E,则AB与EF平行 吗?为什么?
A
B
C
E
D F
解:∵∠A+∠C=1800( 已知 ) ∴AB//CD(同旁内角互补, 两直线平行) 又∵∠D=∠E( 已知 ) ∴EF//CD( 内错角相等,两直线平行) ∴AB//EF( 两直线都与第三条直线平行, 那么这两条直线也平行)
C D F B 2 E 3 A G
1
D 4.如图,若m∥n,∠1 = 105°,则∠2 =( A.55° B.60° C.65° D.75°

1 2
m n
5.如图,直线AB、CD相交于点O,OE⊥AB,O为 垂足,如果∠EOD = 38°,则∠AOC = 52°,∠COB = 128 。 °
A O C
E D B
6.如图所示,下列推理正确的是(C ) A.∵∠1=∠4,∴BC∥AD B.∵∠2=∠3,∴AB∥CD C.∵AD∥BC,∴∠BCD+∠ADC=180° D.∵∠1+∠2+∠C=180°,∴BC∥AD B A 1 2 4 3 D
1 B C
例7.如图,若AB⊥BC,BC⊥CD,∠1=∠2 求证:BE//CF A
1 证明: ∵AB⊥BC,BC⊥CD( 已知) ∴∠ABC=∠BCD =900(垂直的定义 ) 2 ∵∠1=∠2( 已知 ) E C ∴∠ABC-∠1=∠BCD-∠2(等式的性质) 即∠EBC=∠BCF ∴ BE// CF (内错角相等,两直线平行) B F
例2、如图有一块梯形的玻璃,已知量得 ∠A=115°,∠D=100°,请你想一想, 梯形的另外两个角各是多少度。
解:∵AD∥BC (已知) ∴ A + B=180°

(2021年整理)平行线的判定和性质的综合应用基础能力与提高

(2021年整理)平行线的判定和性质的综合应用基础能力与提高

平行线的判定和性质的综合应用基础能力与提高编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平行线的判定和性质的综合应用基础能力与提高)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平行线的判定和性质的综合应用基础能力与提高的全部内容。

平行线的判定和性质的综合应用∴∠1=21∠ ∵CF 平分∠BCD( )∠2=21∠ ( ) ∵BE//CF (已知)∴∠1=∠2( )∴21∠ABC=21∠BCD ( )即∠ABC=∠BCD∴AB//CD ( )2、如图,已知:∠BCF=∠B+∠F 。

求证:AB//EF证明:经过点C 作CD//AB ∴∠BCD=∠B.( ) ∵∠BCF=∠B+∠F ,(已知)∴∠ ( )=∠F.( ) ∴CD//EF.( ) ∴AB//EF ( )3、已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。

A C DF B E12BAEFC D AD F12求证:AD ∥BE.证明:∵AB ∥CD (已知)∴∠4=∠ ( ) ∵∠3=∠4(已知)∴∠3=∠ ( ) ∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF ( ) 即∠ =∠∴∠3=∠ ( ) ∴AD ∥BE ( ) 四、解答题(5×8)1、若一个角的补角是它的余角的3倍,求这个角的度数2、已知:如图,AB//CD ,BC//DE ,∠B=70°,求∠D 的度数。

3、已知:BC//EF,∠B=∠E ,求证:AB//DE 。

五、拓展提高。

1。

如图,AD ⊥BC 于点D ,EF ⊥BC 于点F ,EF 交AB 于点G ,交CA 的延长线于点E ,且∠1=∠2.AD 平分∠BAC 吗?说说你的理由.A B EDCABEP DCF12 AB CD F G E2。

《平行线的性质和判定的综合应用》教案

《平行线的性质和判定的综合应用》教案

《平行线的性质和判定的综合应用》教案清华附中大兴学校初一数学组教学目标:(1)平行线的性质与判定的综合应用.(2)经历例题的分析过程,从中体会转化的思想和分析问题的方法,在教学活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法.并在证明的过程中体会转化等数学思想; 进一步培养推理能力,体会数学在实际生活中的应用.教学重点:1.综合应用平行线的性质与判定解决问题.2.渗透数学模型的思想,体会转化的思想和分析问题的方法.教学难点:典型例题分析和综合运用.【教学过程】一、知识回顾对顶角的性质:__________________________.平行线的性质:性质1 :两直线平行,________________________.性质2 :两直线平行,________________________.性质3 :两直线平行,_______________________.平行线的判定:判定1: _________________,两直线平行.判定2: _________________,两直线平行.判定3: _________________,两直线平行.判定4:如果两条直线都与第三条直线平行,那么这条直线也互相________.学生活动——根据定理填空,画出相应的几何图形,写出几何语言.设计意图:以填空形式复习所有新学习的知识点,可以结合各定理的几何图形和几何语言进行复习,目的是加深对定理的认识和熟练掌握.二、例题讲解【例1】(1)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解:∵∠1=72°,∠2=72°(已知)∴_______________∴_______________(______________________)∴_______________(______________________)又∵∠3=60°(已知)∴∠4=_______________.(2)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠5的度数.(3)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠6的度数.学生活动——认真分析条件,用彩色笔在图中标注,独立完成第1小题填空,和第2小题规范过程的书写.用多种方法解决第三题并说出做每步推理的依据. 教师活动——以填空形式给出第一题,注重理由填写,引导学生用多种方法解决第三题.设计意图:第一套题组非常简单,是平行线性质与判定最简单的综合运用,第三小题加入了对顶角和邻补角知识点,强化综合分析的方法,强化推导和书写的规范性.提炼平行线的性质与判定定理间的关系,形成解题策略.三、深入探究【例2】(1)已知:如图,DG ∥BC ,∠1=∠2求证:EF ∥CD证明:∵DG ∥BC (已知)∴∠1=_______(________________________) 又∵∠1=∠2(已知)∴____________ ∴EF ∥CD.(________________________)(2)已知:如图,∠ADG=∠B ,∠1=∠2求证:∠BEF=∠BDC.21EG D AB C21EGD ABC(3)已知:如图,CD ⊥AB ,EF ⊥AB,∠1=∠2求证:∠AGD=∠ACB.学生活动——独立完成对第1小题填空的填写,和老师一起思考、分析、讨论第二题,完成逻辑推理和书写过程.结合前两道题的思考尝试独立解决第三题. 教师活动——教师主要以讲第二题为主,画推导图,从已知条件出发,层层推理,直到得出结论.设计意图:如果直接给出第三题,对于初学平行线性质和判定的学生来说太难了,通过前两题的分析,逐步递进,化简难度.四、拓展提高【问题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?解读:已知条件:如图,AB ∥CD ,∠1=∠2,∠3=∠4.猜想:(1)∠2和∠3有什么关系,并说明理由;(2)试说明:PM ∥NQ .解:(1)答:∠2____∠3.理由如下: ∵ AB ∥CD ,∴ ∠2____∠3(两直线平行,_______________) 学生活动——将实际问题转化为几何问题,用所学几何知识来解决.教师活动——引导学生如何把实际问题转化为几何问题,并运用所学知识来解决.设计意图:提升学生利用所学几何知识解决实际问题的意识,培养学生将实际问题转化为数学知识及几何语言的能力,拓展学生应用能力.21EGDB C五、自我评价(1)平行线的性质与判定的区别是什么?(2)在解决具体问题过程中,你能区别什么时候需要使用平行线的性质,什么时候需要使用平行线的判定吗?。

平行线的性质及应用

平行线的性质及应用

平行线的性质及应用平行线是几何学中的重要概念,它在许多数学问题和实际应用中起到了重要的作用。

本文将探讨平行线的性质以及其在几何学和实际生活中的应用。

一、平行线的定义与性质平行线是指在同一个平面内,永不相交的两条直线。

根据平行线的定义,我们可以得出以下性质:1. 平行线的对应角是相等的:当两条平行线被一条横截线所交叉时,同位角(对应角)是相等的。

这个性质被称为同位角性质。

2. 平行线的内错角是互补的:当两条平行线被一条横截线所交叉时,内错角(相邻内角)之和等于180度。

这个性质被称为内错角性质。

3. 平行线的外错角是相等的:当两条平行线被一条横截线所交叉时,外错角(相邻外角)是相等的。

这个性质被称为外错角性质。

这些基本性质使得平行线成为几何学中一个重要的对象。

通过这些性质,我们可以解决许多几何问题。

二、平行线的应用1. 三角形的判定平行线的性质可以用来判定三角形之间的关系。

例如,当一条直线与两条平行线相交时,我们可以通过内错角性质得到两个内角是互补的,从而判定这个三角形是直角三角形。

2. 平行四边形的性质平行线的性质在研究平行四边形时也起到了重要的作用。

平行四边形是指具有两对平行边的四边形。

通过平行线的性质,我们可以证明平行四边形的对边相等、对角线等分等一系列性质。

3. 实际应用平行线不仅在几何学中有重要应用,在实际生活中也扮演着重要角色。

以下是几个实际应用的例子:a) 建筑设计:在建筑设计中,平行线的概念用来确定墙壁和地板的平行关系,确保建筑结构的稳定和美观。

b) 路网规划:在城市规划中,平行线可以用来规划并确定道路的位置和方向,使交通更加便利和高效。

c) 测量和绘图:在测量和绘图中,平行线用于确保准确和精确的测量和绘制。

例如,在制作地图时,通过描绘平行线网格,可以更好地表示地理信息。

总结:平行线在几何学和实际应用中都具有重要地位。

通过了解平行线的定义与性质,我们可以解决许多几何问题,并应用于实际生活中的建筑设计、道路规划以及测量绘图等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:平行线的判定和性质
的综合应用(1)
授课人:王维
学科:数学
授课班级:初一(3)班
学校:运河中学
时间: 2010年 5月 7日
教材分析:
1.单元所对应的课标要求
了解余角、补角、对顶角等概念。

知道同角(或等角)的余角、补角相等,对顶角相等.
条直线平行同位角相等,进一步探索平行线的性质.
直线外一点有且只有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线.
2.单元教学目标
(1)使学生初步学会通过观察认识事物之间的关系;
(2)使学生初步学会通过实验认识事物之间的关系;
(3)使学生初步学会通过归纳认识事物之间的关系;
(4)使学生初步学会通过类比认识事物之间的关系;
(5)使学生初步学会通过猜想认识事物之间的关系;
(6)使学生初步学会运用说理处理生活中、数学中的逻辑关系;
(7)使学生了解定义、命题、公理、定理的概念,并初步学会运用推理的方法证明图形中的等量关系,了解同角(或等角)的余角相等、补角相等及对顶角相等的性质;
(8)使学生了解同位角、内错角、同旁内角的概念,并初步理解平行线的判定公理及定理,平行线的性质公理及定理;
(9)通过本章的学习,培养学生的逻辑思维能力,养成言必有据的良好习惯.
3.单元学习内容的前后联系
4.
5.单元教材分析(先总体分析本单元主要内容、地位作用、教育价值、蕴含的核心数学思想方法,然后分节分析)
第八章的内容是在第四章的基础上对平面几何内容的进一步研究,这一章在初中的教学的地位是承前启后,为后面研究图形问题打下良好的基础性。

如果本章节的知识学生理解掌握的不透彻,将直接影响后面的几何的学习。

平行线的判定和性质是平面几何中的基础知识,是后面研究图形性质的重要途径。

学生要理解判定和性质的联系和区别,并体会平行线的定义作为判定和性质的双重性。

在研究平行相关的问题时要能够准确的选择相应的公理和定理。

由浅入深的训练学生体会和掌握用分析法和综合法证明几何题。

在教学中渗透逻辑推理思想,培养严谨的思维方式,训练学生规范的书写格式。

6.课时安排建议
7.教学建议
分节分析:
本节课所要研究的问题是简单几何图形及其推理中有关平行线的判定和性质的综合运用。

在学生已经掌握了等量公理,平行线的判定和性质的基础上进行知识的综合运用。

通过这节课的学习要让学生学会简单的应用,并能通过模仿练习熟悉几何证明题的书写方式和规范,训练学生逻辑推理的能力,使学生理解证明的必要性和推理过程。

让学生在做题的过程中消除对几何证明题的畏难情绪。

本节教学目标:见教案
重难点:见教案
本节包括哪些教学活动:见教案
每个活动的设计意图:见教案
这些活动设计得是否合理/恰当、学生是否易于接受?如果否,你如何设计?
1.学生的识图能力较差,对“三线八角”的认识不够深刻,对于同位角、内错角和同旁内角的特点记忆不清,研究问题时忽略两条直线被第三条直线所截的分析。

不习惯结合图形思考,对图形给出的信息不能很好的解读。

教学建议:让学生读题并分析哪两条直线被哪一条直线所截。

2.分析问题时从结论出发是难点,学生习惯于从已知来考虑,在解不等式和方程时由于指向性更明确,学生更容易去做。

而在几何问题中,因为已知条件比较多,而且要结合图形思考,学生容易产生混乱的感觉。

教学建议:引导学生分析
3.说理的能力不强,做题时往往会有跳跃性的步骤出现,常忽略已知条件的书写,或者将所有的条件一并罗列再给出结论的情况出现。

也有学生从已知推出很多无目的性的结论,做题的过程过于繁琐的。

教学建议:先模仿
4.画图能力弱,对于没有给出图示的题目在分析时不能主动的作图研究,或者不能将文字语言转换成图形语言。

教学建议:引导学生进行图形的分析
5.对定理的记忆不清,不能结合图形理解的去记忆,对与过于抽象的叙述不能很好的理解。

在运用中易混淆,分不清条件和结论。

教学建议:督促背记,在运用中多问为什么。

6.学生更习惯有既定模式的题目的解答,容易将解题过程公式化,在教学中我们也常常会让学生格式化一些题目的过程,但是在几何学习中学生也会寻求格式化的步骤,导致学生出现代数学的好而几何很差的情况。

教学建议:要让学生理解证明的过程。

学生分析:本班学生学习兴趣较高,课堂气氛活跃,学生竞争意识较强。

班级分化明显,能力差别较大。

大部分学生基础较好,但是计算能力较弱,一些学生不善于分析问题,或者分析不全面。

代数方面的测验中,有近三分之一的学生公式、法则不熟练。

多数学生不喜欢背记概念和公式。

一半的学生有一定的说理能力,语言表述较好。

班里有10个左右能较好的书写证明步骤,一半以上可以叙述推理的过程。

6、7个学生对这一部分知识感到非常的困难。

整体来说,这一部分知识对学生来说,口述比较容易,但落实较困难。

能说不会写的现象比较普遍。

相关文档
最新文档