(完整版)平行线的性质与判定经典题型
(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的性质与判定典型例题

1.如图,CD 平分/ ECF,/ B=Z ACB,求证:AB // CE.证明:••• CD平分/ ECF,•••/ ECD = Z DCF,•••/ ACB =Z DCF,•••/ ECD = Z ACB,又•••/ B=Z ACB,•••/ B=Z ECD,• AB // CE.2.如图,已知AC丄AE , BD丄BF, Z 1 = 15°, / 2= 15°, AE与BF平行吗?为什么?E F解:AE // BF.理由如下:因为AC丄AE , BD丄BF (已知),所以Z EAC=Z FBD= 90° (垂直的定义).因为Z 1=Z 2 (已知),所以Z EAC+ Z 1=Z FBD+ Z 2 (等式的性质),即Z EAB = Z FBG,所以AE / BF (同位角相等,两直线平行).3.如图,已知Z ABC=Z ACB, BD平分Z ABC, CE平分Z ACB, F是BC延长线上一点,且Z DBC=Z F,求证:EC / DF .证明:•••/ ABC=Z ACB, BD 平分/ ABC, CE 平分/ ACB,•••/DBC =丄/ABC,/ ECB=-l/ ACB,2 2•••/ DBC = / ECB.•// DBC = / F,•/ ECB=/ F,•EC// DF.4.如图,/ ABC=/ ADC , BF, DE 分别是/ ABC, / ADC 的角平分线,/ 1 = / 2,求证:DC / AB.证明:••• DE、BF分别是/ ABC, / ADC的角平分线, .•./ 3 =丄/ ADC,/ 2 =二/ABC,2 2•••/ ABC =/ ADC,•••/ 1 = / 2,••/ 1 = / 3,•DC // AB.5.如图所示,/ B= 25°,/ D = 42°,/ BCD= 67°,试判断AB和ED的位置关系,理由:如图,过C作CF/ AB ,E•••/ B=25°,•••/BCF=Z B= 25°,•••/ DCF =Z BCD-/ BCF= 42°,又•••/ D= 42°,•••/ DCF =/ D ,•CF// ED,•AB // ED .6.如图,DE平分/ ADC, CE平分/ BCD,且/ 1+ / 2= 90° .试判断AD与BC的位置关系,并说明理由.解:BC / AD .理由如下:•/ DE 平分/ ADC, CE 平分/ BCD,•••/ ADC = 2/ 1,/ BCD = 2/ 2,•// 1+ / 2= 90°,•••/ ADC+ / BCD= 2 (/ 1+ / 2)= 180AC丄BC, EF丄AB , / 1 = / 2.求证: EF //CD.• AD // BC.证明:••• DG 丄BC, AC 丄BC,• / DGB = / ACB= 90° (垂直定义),••• DG // AC (同位角相等,两直线平行),•••/ 2=Z ACD (两直线平行,内错角相等),•••/ 1 = 7 2,•-Z 1 = 7 DCA,• EF // CD (同位角相等,两直线平行).&将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:7 A= 60°,7 D = 30°,7 E=7 B= 45°.(1)①若7 DCB = 45°,则7 ACB的度数为135°.②若7 ACB= 140°,则7 DCE的度数为40°.(2)由(1)猜想7 ACB与7 DCE的数量关系,并说明理由.(3)当7 ACE v 90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出7 ACE角度所有可能的值(不必说明理由).解:(1 [①:/ DCE= 45°,7 ACD = 90°•7 ACE = 45°•/7 BCE= 90°•7 ACB = 90°+45 ° = 135°故答案为:135°;②T7 ACB= 140°,7 ECB= 90°•7 ACE = 140°- 90°= 50°•7 DCE = 90°-7 ACE = 90°- 50°= 40°故答案为:40°;(2)猜想:7 ACB+ 7 DCE = 180°理由如下:ACE= 90°-7 DCE又v7 ACB=7 ACE+90°•7 ACB = 90°-7 DCE+90 ° = 180°-7 DCE 即7 ACB+ 7 DCE= 180°;(3) 30°、45理由:当CB// AD 时,/ ACE= 30°;BO 丄AO,E, B0丄AO, / CFB=Z EDO,证明:CF// DO .当EB/ AC 时,/ ACE = 45°.•••/ AED =/ AOB = 90°,•••DE // BO (同位角相等,两条直线平行),• / EDO =/ BOD (两直线平行,内错角相等),•// EDO =/ CFB,•••/ BOD = / CFB,••• CF/ DO (同位角相等,两条直线平行).10.如图,已知/ A=/ C,/ E=/ F,试说明:AD // BC.证明:•••/ E=/ F,•AE // CF,•/A =/ ADF,/ BEF + / DFE = 180°.•••/ A =Z C, •••/ ADF =Z C, ••• AD // BC.•••/ AEF = Z DFE ••• AB // CD ,•••/ BEF + / DFE = 180°.12.如图,AB // CD ,/ B = 70°,/ BCE = 20°,/ CEF = 130°,请判断 AB 与 EF 的 位置关系,并说明理由.A BCD解:AB // EF ,理由如下: •/ AB // CD ,• /B =/ BCD ,(两直线平行,内错角相等)•••/ B = 70°,•••/ BCD = 70°,(等量代换) •••/ BCE = 20°,• / ECD = 50°,•/ CEF = 130°,• / E + / DCE = 180°,• EF // CD ,(同旁内角互补,两直线平行) • AB // EF .(平行于同一直线的两条直线互相平行)C D/ ACF= 20°,/ EFC= 140°.求证: EF II AD.证明:••• AD II BC,•••/ DAC+ / ACB= 180°,•// DAC = 120°,•••/ ACB = 60°,又•••/ ACF= 20°,•••/ BCF=/ ACB -/ ACF= 40又•••/ EFC= 140°,•••/ BCF+ / EFC= 180°,••• EF II BC,•/ AD II BC,14•完成下列推理过程:已知:如图,/ 1+ / 2= 180°,/ 3 =/ B求证:/ EDG+ / DGC = 180°证明:•••/ 1 + / 2 = 180°(已知)/ 1+ / DFE = 180 °(邻补角定义)•/ 2= / DFE (同角的补角相等)•EF II AB (内错角相等,两直线平行)3= / ADE (两直线平行,内错角相等)又•••/ 3=Z B (已知)•••/ B=Z ADE (等量代换)DE II BC (同位角相等,两直线平行)•-Z EDG + / DGC= 180°(两直线平行,同旁内角互补)15.已知:如图,BE// GF,/ 1 = Z 3,Z DBC= 70°,求/ EDB 的大小.阅读下面的解答过程,并填空(理由或数学式)解:••• BE// GF (已知)•-Z 2=Z 3 (两直线平行同位角相等)•••/ 1 = 7 3 (已知)•Z1=(72 )(等量代换)•DE //(BC )(内错角相等两直线平行)•7 EDB+ 7 DBC= 180°(两直线平行同旁内角互补)•7 EDB = 180°-7 DBC (等式性质)•••7 DBC =(70°)(已知)•7 EDB = 180°- 70°= 110°16•如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H , AB // CD, 7 A =7 D,试说明:(1)AF// ED;(2)7 BED = 7 A;(3)7 1 = 7 2(1)证明:••• AB// CD,•••/ A =Z AFC,•••/A =Z D,•••/ AFC =Z D ,•AF // ED;(2)证明:T AF / ED ,•••/ BED = Z A;(3)证明:T AF / ED ,1 = Z CGD ,又T/ 2=Z CGD ,•••/ 1 = / 2.17•阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,/ 1 = / 2,/ 3 =/ 4.求证/ A=/ F证明:T/ 1 = / 2 (已知)/ 2=/ DGF (对顶角相等)•/ 1 = / DGF (等量代换)•- BD / CE (同位角相等,两直线平行)••/ 3+ / C = 180。
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的性质与判定经典题型

平行线的性质与判定经典题型1.在三角形ABC中,角B等于角ACB,CD平分角ACB 并交AB于点D,AE与DC平行并交BC延长线于点E。
已知角E等于36度,求角B的度数。
2.在图中,如果AB平行于CD,则角α、β、γ之间的关系是什么?3.在图中,AB平行于CD且CD平行于PN,角ABC等于50度,角CPN等于150度。
求角BCP的度数。
4.在图中,直线AB和CD被直线EF所截。
如果角BMN 等于角DNF且角1等于角2,那么MQ平行于NP。
为什么?5.在图中,将一个长方形纸片沿EF折叠后,点D和C分别落在D'和C'的位置。
如果角EFB等于65度,则角AED'等于多少度?6.在图中,如果角1等于角2且角C等于角D,则角A等于角F。
为什么?7.在图中,已知角1加角2等于180度,角3等于角B。
试判断角AED和角ACB的大小关系,并说明理由。
8.已知AB平行于CD,分别探讨下列四个图形中角APC和角PAB、角PCD的关系。
从所得四个关系中任选一个并说明理由。
9.在图中,已知角1等于角2,角3等于角4,角5等于角6.证明AD平行于BC。
10.在图中,已知CD垂直于AB于点D,EF垂直于AB于点F,角DGC等于105度,角BCG等于75度。
求角1加角2的度数。
11.在图中,AD垂直于BC于点D,EF垂直于BC于点F,EF交AB于点G,交CA的延长线于点E,且角1等于角2.AD是否平分角BAC?说明理由。
12.在图中,如果AB平行于CD且角1等于角2,则角E等于角F。
为什么?13.在图中,DB平行于FG平行于EC,角ABD等于60度,角ACE等于36度,AP平分角BAC。
求角PAG的度数。
14.在图中,AB平行于CD,角1等于115度,角2等于140度。
求角3的度数。
15.已知:AC平行于DE,DC平行于EF,CD平分角BCD。
证明:EF平分角BED。
16.已知:AB平行于CD,角1等于角B,角2等于角D。
平行线的性质与判定(典型例题)

E
B
C
例4.如图,∠A+∠C=1800,∠D=∠E,则AB与EF平行 吗?为什么?
A
B
C
E
D F
解:∵∠A+∠C=1800( 已知 ) ∴AB//CD(同旁内角互补, 两直线平行) 又∵∠D=∠E( 已知 ) ∴EF//CD( 内错角相等,两直线平行) ∴AB//EF( 两直线都与第三条直线平行, 那么这两条直线也平行)
C D F B 2 E 3 A G
1
D 4.如图,若m∥n,∠1 = 105°,则∠2 =( A.55° B.60° C.65° D.75°
)
1 2
m n
5.如图,直线AB、CD相交于点O,OE⊥AB,O为 垂足,如果∠EOD = 38°,则∠AOC = 52°,∠COB = 128 。 °
A O C
E D B
6.如图所示,下列推理正确的是(C ) A.∵∠1=∠4,∴BC∥AD B.∵∠2=∠3,∴AB∥CD C.∵AD∥BC,∴∠BCD+∠ADC=180° D.∵∠1+∠2+∠C=180°,∴BC∥AD B A 1 2 4 3 D
1 B C
例7.如图,若AB⊥BC,BC⊥CD,∠1=∠2 求证:BE//CF A
1 证明: ∵AB⊥BC,BC⊥CD( 已知) ∴∠ABC=∠BCD =900(垂直的定义 ) 2 ∵∠1=∠2( 已知 ) E C ∴∠ABC-∠1=∠BCD-∠2(等式的性质) 即∠EBC=∠BCF ∴ BE// CF (内错角相等,两直线平行) B F
例2、如图有一块梯形的玻璃,已知量得 ∠A=115°,∠D=100°,请你想一想, 梯形的另外两个角各是多少度。
解:∵AD∥BC (已知) ∴ A + B=180°
初三平行线知识点以及经典例题

初三平行线知识点以及经典例题平行线是初中数学中的重要概念之一。
本文将介绍初三学生需要掌握的平行线的知识点,并提供几个经典例题供大家练。
知识点1. 平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。
平行线可以用符号"// "表示。
平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。
平行线可以用符号"// "表示。
2. 平行线的判定方法:以下是几种判定平行线的方法:平行线的判定方法:以下是几种判定平行线的方法:- (a) 两条直线的斜率相等,且不重合。
- (b) 两条直线之间的对应角相等。
- (c) 一条直线与另一平行线的任意直线交角为180°。
3. 平行线的性质:平行线具有以下性质:平行线的性质:平行线具有以下性质:- (a) 平行线之间的距离在每个交点处相等。
- (b) 平行线之间的夹角为0°,即平行线之间没有夹角。
- (c) 平行线与同一直线相交的角被称为"同位角",同位角的对应角相等。
经典例题例题1已知AB//CD,AB=6cm,BC=4cm,EF=5cm,求EF的长度。
例题2已知直线l与平行线m及n相交,交角1为120°,求交角2的度数。
例题3已知直线k与平行线p及q相交,交角a为40°,求交角b的度数。
例题4已知平行四边形ABCD中,AB=10cm,BC=6cm,求AD的长度。
以上是初三平行线知识点以及经典例题的介绍。
希望能对初三学生理解和掌握平行线有所帮助。
(完整)七年级上册平行线经典题型及答案解析(经典)

1、如图,∠1=∠2,∠3=110°,求∠4.2、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=37°,求∠D 的度数.3、如图,AB ,CD 是两根钉在木板上的平行木条,将一根橡皮筋固定在A ,C 两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A ,∠AEC ,∠C 之间具有怎样的关系并说明理由。
(提示:先画出示意图,再说明理由)提示:这是一道结论开放的探究性问题,由于E 点位置的不确定性,可引起对E 点不同位置的分类讨论。
本题可分为AB ,CD 之间或之外。
结论:①∠AEC =∠A +∠C ②∠AEC +∠A +∠C =360°③∠AEC =∠C -∠A④∠AEC =∠A -∠C ⑤∠AEC =∠A -∠C ⑥∠AEC =∠C -∠A .4、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A 、80B 、50C 、30D 、205、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A 、43°B 、47°C 、30°D 、60°6、如图,点A 、B 分别在直线CM 、DN 上,CM ∥DN .(1)如图1,连结AB ,则∠CAB +∠ABD = ;(2)如图2,点错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
.求证:错误!未找到引用源。
=360°;(3)如图3,点错误!未找到引用源。
、错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
.试求错误!未找到引用源。
的度数;(4)若按以上规律,猜想并直接写出错误!未找到引用源。
…错误!未找到引用源。
-平行线性质与判定(word版有答案)

第2讲平行线的判断与性质 一、基础知识1.平行公理2.平行线的判断方法①平行线的判断方法 1: ②平行线的判断方法 2: ③平行线的判断方法 3: ④平行公理推论 : 3.平行线的性质 【性质定理】①平行线的性质1: ②平行线的性质2: ③平行线的性质3: 二、基础练习1.如图,由AB ∥CD ,可以得到A .∠1=∠3.B .∠2=∠3.C .∠2=∠4.D .∠A =∠C .2.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.3.已知:a⊥b ,b∥c,求证:a⊥c∵a⊥b (已知)∴∠1=90°( ) 又b∥c(已知)∴∠1=∠2 ( ) ∴∠2=90°( ) ∴a⊥c( )2413A DBC第2题图A BCD 123 4 第1题图4.如图8,推理填空:(1)∵∠A =∠ (已知),∴AC∥ED( ); (2)∵∠2 =∠ (已知),∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( );5.如图,直线a 、b 直线c 被截(1)已知∠1=∠3,求证:a ∥b(2)已知∠2+∠3=180°,求证:a ∥b 证明:(1) ∵∠1=∠3 (已知)又 ∠1=∠4 ( ) ∴∠3 = ∠4 ( ) ∴a ∥b ( )(2) ∵ ∠2+∠3=180° (已知)又 ∠2+∠4=180° ( )∴∠3 = ∠4 ( )∴a ∥b ( )三、典型例题例1.如图11,直线AB.CD 被EF 所截,∠1 =∠2,∠CNF +∠AME=180°,求证:AB∥CD,MP∥NQ.F2AB CDQ E1PMN 图111 2 3AFC D BE 图8例2.如图1,在五边形ABCDE 中,AE ∥BC ,∠A =∠C (1) 猜想AB 与CD 之间的位置关系,并说明理由(2) 延长DE 至F ,连接BE ,如图2,若∠1=∠3,∠AEF =2∠2,求证:∠AED =∠C(1)猜想:AB ∥CD , 理由:∵AE ∥BC ,∴∠A+∠B=180°,∵∠A=∠C ,∴∠C+∠B=180°, ∴AB ∥CD ;-------------- 4′ (2)∵AE ∥BC ,∴∠2=∠3,∠A+∠ABC=180°, ∵∠1=∠3,∴∠1=∠2=∠3,∠ABC=2∠2, ∵∠AEF=2∠2,∴∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°, ∵∠AEF+∠AED=180°, ∴∠A=∠AED ,∵∠A=∠C ,∴∠AED=∠C .--------- 8′例3、如图,MG 是∠BME 的平分线,NH 是∠CNE 的平分线,且∠BME=∠CNF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D点,AE∥DC,交BC的延长线于点E,已知∠E=36°,
则∠B=度.
2.如图,如果AB∥CD,则角α、β、γ之间的关系
为。
3.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.
4.如图所示,已知直线AB,CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,
9.如图, 已知:∠1=∠2,∠3=∠4,∠5=∠6.
求证: AD∥BC.
10.如图,已知CD⊥AB于D,EF⊥AB于F,
∠DGC=105°,∠BCG=75°,求∠1+∠2的度数.
11.如图,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA的延长线于点E,且∠1=∠2.AD平分∠BAC吗?说说你的理由.
那么MQ∥NP.为什么?
5.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,
若∠EFB=65°,则∠AED′等于
6.如图,∠1=∠2,∠C=∠D,那么∠A=∠F,为什么?
7.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.
8.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系.(只要求直接写出),并请你从所得四个关系中任意选出一个说明理由
16.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.
17.如图,AB//CD,∠E=∠C,AD平分∠BAE,DA平分∠CDF,求证:AE∥DF。
12.如图,若AB∥CD,∠1=∠2,则∠E=∠F,为什么?பைடு நூலகம்
13.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.
求∠PAG的度数.
14.如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.
15.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.
求证:EF平分∠BED.