2016-2017学年下学期期末考试试卷9

合集下载

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。

衡水中学2016-2017学年高二下学期期末考试语文试题(解析版)

衡水中学2016-2017学年高二下学期期末考试语文试题(解析版)

2016~2017学年度高二年级下学期期末考试语文试卷说明:1、本试卷共150分。

考试时间150分钟。

2、答题前请仔细阅读,选择题按顺序涂卡。

3、答卷前,考生务必将自己姓名、考号、考试科目用涂卡笔涂写在答题卡上。

现代文阅读(共68分)(一)阅读下面的文字,完成各小题。

大神级作家要培养高雅“上帝”何勇海“读者是上帝”是网络文学的基本规则。

对此,评论家白烨日前指出,这个规则需要反思。

当你是个一般网络作者时,你可能不得不去迁就读者,给自己赢得一定的名声与影响。

当你成为大神级作家后,就理当起到一个大神应该起的作用,把领袖价值、引导作用体现出来,用富于人文精神的写作引领读者,示范其他作者,而不是只去一味博得众多读者喝彩,活在低俗与媚俗写作营造的粉丝迷恋中。

白烨的论断让人耳目一新。

在网络文学领域,很多写手确有“读者是上帝”的意识,希望读者喜欢自己的作品,希望有读者购买文学网站的虚拟货币给写手“打赏”,甚至希望有大量铁杆粉丝日夜追随,将自己捧成“网络大神”。

这些想法固然没有多大错误—哪怕是传统文学,也需市场检验优劣与成败,更何况网络文学?如果某网络写手的作品无人点击,恐怕只有放弃写作这个“春秋大梦”了。

问题关健在于,视读者为“上帝”,切不可唯读者“马首是瞻”,因为读者形形色色、品位趣味各异。

有些网络写手,却盲目迎合、一味迁就读者的口味,在作品中大打情色、暴力、仇杀等擦边球,不断走向低俗。

难怪有人说,某些网络文学简直就是个别“上帝”握着作者的手写出来的“文学垃圾”、“精神糟粕”。

网络文学虽是商品,但又不是纯粹的商品,如此写作,短期内或能赢得少数读者,长期看却会丢失大部分读者。

而大神级作家,则应当承担起培养高雅读者的使命。

正如白烨所言,一般网络作者可能不得不去迁就读者,给自己赢得一定的名声与影响;但成为大神级作家后,就理当把领袖价值、引导作用体现出来。

一方面,这是爱惜自身“羽毛”之需要。

从身处底层、疯狂码字的文艺青年成长为塔尖的“网络大神”,非常不易—有报道称,1O万位作者中才会产生一位大神,能从众多人中脱颖而出,一定得有自己独特之处,千万勿在粉丝迷恋中迷失。

中学2016-2017学年高二下期末考试数学试卷含解析

中学2016-2017学年高二下期末考试数学试卷含解析

2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。

2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷

2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷

2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)计算:$\sqrt{27}=$.2.(3分)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数是$\frac{4+5}{2}=$.3.(3分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为$6+8+10=$.4.(3分)如图,函数$y=ax+4$和$y=bx$的图象相交于点A,则不等式$bx\geq ax+4$的解集为$x\geq 4\frac{1}{b-a}$.5.(3分)已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,$S_{\triangle AOE}=3$,$S_{\triangle BOF}=5$,则▱ABCD 的面积是$24$.6.(3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为$5$.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)要使式子$\sqrt{x+1}$有意义,则x的取值范围是(B).A.$x>1$ B.$x\geq -1$ C.$x\geq 1$ D.$x\geq 0$8.(4分)下列式子成立的是(B).A.$2+3=3$ B.$2-3=2-5$ C.$2\times3=6$ D.$\frac{2}{3}=0.6$9.(4分)为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:$S_{甲}^2=1.4$,$S_{乙}^2=18.8$,$S_{丙}^2=2.5$,则苗高比较整齐的是(A).A.甲种 B.乙种 C.丙种 D.无法确定10.(4分)下列各曲线中表示y是x的函数的是(D).A.$\sqrt{x+y}=1$ B.$x^2+y^2=1$ C.$y=\pmx$ D.$y=2x-1$11.(4分)如图,△ABC中,CD⊥AB于D,且E是AC 的中点.若AD=6,DE=5,则CD的长等于(C).A.$5$ B.$6$ C.$7$ D.$8$12.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是(B).A.$12$ B.$24$ C.$40$ D.$48$13.(4分)将一次函数$y=-3x-2$的图象向上平移4个单位长度后,图象不经过(C).A.第一象限 B.第二象限 C.第三象限 D.第四象限14.(4分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是(D).A.$2n-2$ B.$2n-1$ C.$2n$ D.$2n+1$三、解答题(本大题共9小题,共70分)15.(4分)计算:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=$.解:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=\frac{3\times 5\times 7}{5\times 7\times9}=\frac{1}{3}$.16.(5分)计算:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=$.解:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=\frac{10+3-5-2}{15}=\frac{6}{15}=\frac{2}{5}$.17.(8分)如图,在△ABC中,$AB=AC$,$D$是$BC$的中点,$E$是$AD$的垂足,$F$是$BE$的中点,$G$是$AF$的垂足,$AG$交$BC$于点$H$,求证:$BH=HC$.证明:因为$AB=AC$,所以XXX又因为$D$是$BC$的中点,所以$AD\perp BC$,即$\angle ADE=90^\circ$.又因为$E$是$AD$的垂足,所以$AE=DE$,又$\angle AFE=90^\circ$,所以$AF=EF$.因为$F$是$BE$的中点,所以$BF=FE$.又因为$AG\perp BF$,所以$AG$是$BF$的高,所以$AG=GF$.设$BH=x$,则$HC=BF-BH=2x-BC$.由勾股定理得$AE=\sqrt{AB^2-BE^2}=\sqrt{AB^2-\left(\frac{AD}{2}\right)^2}=\sqrt{AB^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{3}}{2}AB$.由相似三角形可得$\frac{EF}{AB}=\frac{1}{2}$,$\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{HC}{AB}=\frac{2x-AB}{AB}$.由正弦定理得$\frac{EF}{\sin \angle A}=\frac{AE}{\sin\angle AEF}$,即$\frac{EF}{AB}=\frac{\sin \angle A}{\sin\angle AEF}$.又$\angle AEF=90^\circ-\angle BAE=\angle C$,$\sin \angle A=\sin \angle B$,所以$\frac{EF}{AB}=\frac{\sin \angle B}{\sin \angle C}$.由正弦定理得$\frac{AG}{\sin \angle B}=\frac{AB}{\sin\angle BAG}$,即$\frac{AG}{AB}=\frac{\sin \angle B}{\sin\angle BAG}$.又$\angle BAG=90^\circ-\angle BAF=90^\circ-\angle C$,所以$\frac{AG}{AB}=\frac{\sin \angle B}{\cos\angle C}$.综上所述,$\frac{\sin \angle B}{\sin \angleC}=\frac{EF}{AB}=\frac{1}{2}$,$\frac{\sin \angle B}{\cos\angle C}=\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{2x-AB}{AB}=\frac{HC}{AB}$,即$\frac{2x-AB}{AB}=\frac{2x-2BH}{AB}=\frac{2x-2BC}{AB}+1$,即$x=BC$,所以XXX.18.(8分)已知函数$f(x)=\frac{2x^2-8x}{x-2}$,求$f(2+\frac{1}{x})$的值.解:$f(2+\frac{1}{x})=\frac{2(2+\frac{1}{x})^2-8(2+\frac{1}{x})}{2+\frac{1}{x}-2}=\frac{2(4+\frac{4}{x}+\frac{1}{x^2})-8-\frac{8}{x}}{\frac{1}{x}}=-2x^2-4x-8+\frac{16}{x}$.所以$f(2+\frac{1}{x})=-2x^2-4x-8+\frac{16}{x}$.19.(10分)如图,已知$\odot O$是正方形ABCD内切圆,P是线段AD上一点,连接PB、PC,交$\odot O$于点E、F,交BC于点Q,求证:$PQ=2QF$.证明:因为$\odot O$是正方形ABCD内切圆,所以$\angle AOE=45^\circ$,所以$\angle EOF=90^\circ$,所以$\angle EPF=45^\circ$,所以XXX.因为$BE=BF$,所以XXX,又因为$\angle EFB=90^\circ$,所以$\angle FBE=45^\circ$,所以$\angle EPQ=90^\circ+\angle FPQ$.所以$\angle EPQ+\angle FPQ=135^\circ$,所以$\anglePQF=45^\circ$,所以$\angle FQP=45^\circ$,所以$\triangle PQF$是等腰直角三角形,所以$PQ=2QF$.20.(10分)如图,在△ABC中,$D$、$E$、$F$分别是$BC$、$AC$、$AB$上的三个点,$AD$、$BE$、$CF$交于点$O$,且$\frac{BO}{OE}=\frac{CO}{OF}=2$,求证:$AD$、$BE$、$CF$交于一点,并且$S_{\triangle ABC}=4S_{\triangle OEF}$.证明:作$BE$的平行线$GH\parallel BE$,交$AC$于点$H$,则$\frac{AH}{HC}=\frac{BG}{GE}=2$.作$AD$的平行线$IJ\parallel AD$,交$BC$于点$J$,则$\frac{BJ}{JC}=\frac{AI}{ID}=2$.作$CF$的平行线$KL\parallel CF$,交$AB$于点$L$,则$\frac{BL}{LA}=\frac{CK}{KF}=2$.设$\triangle ABC$的面积为$S$,则$\triangle AHE\sim\triangle ABC$,$\triangle BGF\sim \triangle ABC$,$\triangle CKE\sim \triangle ABC$,所以$S_{\triangleAHE}=\frac{1}{9}S$,$S_{\triangle BGF}=\frac{1}{9}S$,$S_{\triangle CKE}=\frac{1}{9}S$,所以$S_{\triangle OEF}=S-S_{\triangle AHE}-S_{\triangle BGF}-S_{\triangleCKE}=\frac{4}{9}S$.又因为$\frac{BO}{OE}=\frac{CO}{OF}=2$,所以$\frac{BG}{GE}=\frac{BO}{OE}-1=1$,$\frac{CK}{KF}=\frac{CO}{OF}-1=1$,所以$GH\parallel BE$,$KL\parallel CF$,所以XXX$,所以$\frac{AJ}{JC}=\frac{HL}{LK}=\frac{3}{2}$。

2016-2017六年级数学期末试卷

2016-2017六年级数学期末试卷

2016——2017学年度第二学期人教版小学六年级数学期末试卷(共120分)一、认真思考,对号入座:(共16分)(1)一个圆的周长是6.28米,半径是( )。

(2)一块周长是24分米正方形铁板,剪下一个最大圆,圆面积是( )。

(3)一项工程,甲单独做要6小时完成,乙单独做要9小时完成。

甲、乙合做2小时,完成了这项工程的( ),余下的由甲单独做,还要( )小时完成。

(4)以“万”为单位,准确数5万与近似数5万比较最多相差( )。

(5)在推导圆的面积公式时,将圆等分成若干份,拼成一个近似的长方形,已知长方形的长比宽多6.42厘米,圆的面积是( )平方厘米。

(6)已知:a ×23 =b ×135 =c ÷23 ,且a 、b 、c 都不等于0,则a 、b 、c 中最小的数是( )。

(7)甲是乙的15 ,乙是丙的15 ,则甲是丙的( )。

(8)六年级共有学生180人,选出男生的和5名女生参加数学比赛,剩下的男女人数相等。

六年级有男生( )人。

(9)今年王萍的年龄是妈妈的,二年前母子年龄相差24岁,四年后小萍的年龄是( )岁。

(10)六(1)班男生的一半和女生的共16人,女生的一半和男生的共14人,这个班( )人。

(11)把一个最简分数的分母缩小到原来的,分子扩大到原来的3倍,这个分数的值,这个最简分数是( )。

(12)一个真分数,分子和分母的和是33,如分子减2,分母增加4,约简后是,原分数是( )。

(13)一件工作,甲做3天,乙做5天可完成;甲做5天,乙做3天可完成。

那么,甲乙合做( )天可完成。

(14)把20克药粉放入180克水中,药粉占药水的( )。

(15)一桶水连桶共重1734 千克,把水倒出13 后,重1214 千克,空桶重( )千克。

二.判断(12分)1.某班男生人数比女生人数多,那么女生人数就比男生少。

( )2.半圆的周长就是圆周长的一半。

( )3.把圆分成若干份,分的份数越多,拼成的图形越接近于长方形。

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。

2016-2017学年高一德语下学期期末考试试题

2016-2017学年高一德语下学期期末考试试题

学必求其心得,业必贵于专精2016-—2017学年下学期高一年级期末考德语试卷满分150分,考试时间120分钟第一部分:听力(共20小题,每小题1.5分,总分30分)Teil 1: AlltagssituationenSie hören im folgenden 6 Minidialoge einmal。

Markieren Sie die Lösungen auf dem Antwortbogen:a, b oder c?(9P.)1. ( ) a。

Ein Referent. b. Ein Moderator。

c. Ein Professor.2. ( )a. Drei Töchter。

b. Zwei Söhne und eine Tochter。

c。

Drei Söhne。

3。

()a。

Acht Jahre. b。

Sieben Jahre。

c。

Sechs Jahre.4。

( ) a. ...Ein Fall für zwei“。

b。

...Das Piano“。

c。

(i)Ehe der Maria Braun“.5。

( ) a。

Weil er Ingenieur ist.b。

Weil er ziemlich oft ins Ausland fährt。

c. Weil er eine Dienstreise macht。

6. () a. 3 Kilo Kartoffeln,2 Kilo Erdbeeren und 1 Kilo Spinat。

b。

1 Kilo Zwiebeln, 2 Kilo Kartoffeln und 3 Kilo Erdbeeren。

c. 1 Kilo Zwiebeln, 2 Kilo Erdbeeren und 3 Kilo Kartoffeln.Teil 2:Nun hören Sie vier Texte。

2016-2017学年度新课标人教版五年级语文下册期末测试卷及答案

2016-2017学年度新课标人教版五年级语文下册期末测试卷及答案

2016-2017学年度新课标人教版五年级语文下册期末测试卷及答案2016-2017学年第二学期期末测试卷五年级语文试卷第一部分:基础知识积累与运用一、选出带点字的正确读音画“——”线。

阻挠(náozhàng)勉强(qiǎngqiǎng)厌恶(XXX’è)投奔(tóubèn)称心(chènxīn)倔强(juéjiàng)二、看拼音写词语xuànrányòu。

zhìdǎn。

qiāhào。

fēngkuàng。

(悬壶济世)。

(制胜棋)。

(洽谈)。

(风光)dùjìpáo。

xiào。

wǔrǔpòzhàn。

chóng。

jǐng。

(渡江而千)。

(哮天犬)。

(五入破竹)。

(虫鸣)三、下列各组词语中,没有错别字的一组是(),并按要求写词语。

A.垂头丧气、娓娓动听、目瞪口呆、巧舌如簧B.负荆请罪、完壁归赵、天衣无缝、声嘶力竭C.鞠躬尽瘁、赴汤蹈火、肝胆相照、愚公移山按要求写成语:AABB 垂头丧气、娓娓动听、垂头丧气、娓娓动听ABCC 负荆请罪、完壁归赵、天衣无缝、肝胆相照ABAC 鞠躬尽瘁、赴汤蹈火、负荆请罪、肝胆相照写出带“马”字成语:马到成功、马不停蹄、马马虎虎、马上功夫四、选择题1、把下列中不属于四大名著选出来()。

A《史记》B《三国演义》C、《水浒传》D、《西游记》答案:A《史记》2、“小嘎子”是作家()的儿童小说《小兵张嘎》中的主人公。

A、XXXB、XXXC、XXX答案:B、XXX3、《草船借箭》出自哪一部名著()。

A、《西游记》B、《水浒传》C、《红楼梦》D《三国演义》答案:D《三国演义》4、《舟过安仁》是哪位诗人写的()。

A、XXX、XXXC、XXX答案:B、XXX5、XXX是我国古典讽刺小说()中的一个人物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 1215 、512 、98 、3
5
中只有一个分数不能化成有限小数。

( )
4.一项工程,甲单独完成要12天,乙单独完成要15天。

甲乙的工作效率之比为4:5。

( )
5.棱长6厘米的正方体的表面积和体积相等。

( )
三、选一选,把正确答案的序号填在括号里(共5分)
1.把20克盐溶解在100克水中,盐与盐水重量的比是( )。

A 、1:5
B 、1:6
C 、2:5
D 、2:6
2.在一个周长是100米的圆形花坛周围每隔2米摆一盆花,一共可以摆( )盆。

A 、 49
B 、 50
C 、 51
D 、52
3. 一台电视机先打九折销售,再提价10%,这台电视机现价( )
A 等于原价
B 大于原价
C 小于原价
D 、无法判断
4.小圆的半径和大圆的半径比是2:3,则小圆的面积是大圆的 ( )
A 、23
B 、32
C 、 4
9
5. 如果甲数的56 等于乙数的2
3 (甲、乙两数都不等于零),那么( )。

A 、甲 > 乙
B 甲 < 乙
C 、甲=乙
D 、无法判断
6、下列各数中的“5”表示的数最大的是( )。

A 、70.5
B 、5.02
C 、8
5
D 、50%
7、如左图立体图形,从上面看到的是( )。

A B C D 8、下列各题中的两种量,成正比例的是( )。

A 、小东的身高和体重
B 、修一条水渠,每天修的米数和天数
C 、圆的半径和面积
D 、订《中国少年报》的份数和钱数
9、某公司全体员工工资情况如下表,最能代表这个公司员工工资的一般水平的数据是( )。

A 、2000元
B 、2500元
C 、40000元
D 、5000元 10、①甲数比乙数多20%,那么乙数比甲数少20% ; ②a 2一定大于a ; ③圆柱体侧面展开不一定是长方形; ④负数都比0小。

其中正确的说法有( )个。

A 、1 B 、2 C 、3 D 、4 四、计算部分。

(共33分) 1.直接写出得数。

(5分)
0.32 =
52×75= 0.6 + 4 = 0×1000999÷777
111
= 1÷125%= 31-41
= 73-73×13 =
2-
173-17
14
= (
41-61)× 12 = 8 ×21÷ 8 ×2
1= 2.用简便方法计算下面各题。

(4分)
257×99+257
17.6-5.8+2.4-4.2
3.用递等式计算。

(12分)
0.16+4÷(83-41) 83×[98÷(65-4
3
)]
9405-2940÷28×21 (1.7÷35%)÷0.01
4.解方程:(6分)
255 x =74.8 91∶3X =32∶8
5.列式计算(6分)
(1)4.6与1.4的差去除6.4,结果是多少?
(2)比一个数的20%少1.4的数是8.6,求这个数。

(用方程解)
五、实践操作,探索创新:(共7分)
1.(1)画出三角形绕o 点顺时针方向旋转900 后的图形; (1分) (2)画出平行四边形向右平移5格后的图形; (1分)
(3)画出平行四边形平移后按3:1放大的图形。

(1分)
2.一块操场长40米,宽200米。

请你按1:1000的比列画出操场的平面图,并求图形的周长和面积(4分)
六、解决问题:(共30分)
1.根据给出的不同条件,分别列出算式,不计算。

(6分)
① 一种电子产品现在每台售价5000元, 比原来降低了300元。

降低了百分之
几?
②果园里有梨树400棵,苹果树比梨树的9
8 少30棵,苹果树有多少棵?
③明明妈妈去年到银行存了2000元钱,存期三年,年利率是3.24%,到期后,她一共可取出多少元钱?
2.一列快车和一列慢车同时分别从相距630千米的两地相对开出,4.5小时相遇,快车每小时行78千米,慢车每小时行多少千米?(4分)
3. 某工程队俢一段路,第一天俢完全程的
4
1
,第二天比第一天多修60米,这时已修的路程与剩下的路程的比是7:3,这段路共多少米?(4分)
4. 一批零件,原计划每小时加工50个,6个小时完成;技术革新后,实际少用了1小时完成,实际每小时加工多少个零件?(4分)
5.一个圆柱形的游泳池,底面直径是10米,高是4米。

在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?这个水池能蓄水多少立方米?(4分)
6. 王红看一本故事书,如果每天看20页,18天刚好看完,如果要提前3天看完,她每天要看多少页?(用比例知识解答)(4分)
6、一个直径是6厘米的瓶子里,水的高度是5cm ,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度20厘米。

这个瓶子的容积是多少?(4分)
7、学校准备买20台电脑,现在有甲、乙两个电脑公司,其电脑品牌、质量和售后服务完全相同,且每台报价都是4000元。

两公司的优惠条件如下:(5分)
甲公司 乙公司
8、青青把一个大蒜放在装水的花盘里。

每两天观察一次,测量芽和根的长度并将结果制成了下面的统计图。


4分)
806040200
(1)你发现大蒜是先发芽还是先长根?看到开始发芽是第( )天,开始长根是第( )天。

(2分)
(2)第( )天到第( )天芽长的最快。

(1分)
(3)请你根据统计图简单说说大蒜芽和根的生长变化情况。

(1分)。

相关文档
最新文档