圆的组合图形练习精选(20210305085816)
北师大版数学6年级-圆与组合图形专项练

北师大版数学6年级-圆与组合图形专项练
1、求阴影部分的周长.(单位:分米)
2、求阴影部分的周长.(单位:厘米)
3、如图;跑道外圈长是多少米?
4、将半径分别为3厘米和2厘米的两个半圆如图放置;求阴影部分的周长.
注意点:
1、圆的周长公式:圆的周长=π×圆的直径.
2、在求阴影部分的周长时;要考虑全部的线段;要做到不遗漏.
5、求阴影部分的面积.(单位:分米)
6、如图;已知半圆的面积是78.5平方厘米;求阴影部分的面积.
7、下图中两个四分之一圆弧的半径分别是16厘米和32厘米.两个阴影部分的面积相差多少平方厘米?
8、右图两个四分之一圆的半径分别是30厘米和20厘米;图中阴影部分的面积是多少平方厘米?
注意点:
在求阴影部分的面积时;当阴影部分是不规则的图形时;可以用整体部分减去空白部分.。
最权威圆的面积大全组合图形

组合图形
:1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD 的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
圆的组合图形面积及答案

圆的组合图形面积姓名:知识与方法要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=n是圆心角的度数2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法;例1.求阴影部分的面积;单位:厘米解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14平方厘米例2.正方形面积是7平方厘米,求阴影部分的面积;单位:厘米解:这也是一种最基本的方法用正方形的面积减去圆的面积;设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积;单位:厘米解:最基本的方法之一;用四个圆组成一个圆,用正方形的面积减去圆的面积, 所以阴影部分的面积:2×2-π=0.86平方厘米;例4.求阴影部分的面积;单位:厘米解:同上,正方形面积减去圆面积,16-π=16-4π=3.44平方厘米例5.求阴影部分的面积;单位:厘米解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍;例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米解:两个空白部分面积之差就是两圆面积之差全加上阴影部分π-π=100.48平方厘米注:这和两个圆是否相交、交的情况如何无关例7.求阴影部分的面积;单位:厘米解:正方形面积可用对角线长×对角线长÷2,求正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形例8.求阴影部分的面积;单位:厘米解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆, 所以阴影部分面积为:π=3.14平方厘米例9.求阴影部分的面积;单位:厘米解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形, 所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积;单位:厘米解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米注: 8、9、10三题是简单割、补或平移11、例13.求阴影部分的面积;单位:厘米解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米12、例14.求阴影部分的面积;单位:厘米解:梯形面积减去圆面积,4+10×4-π=28-4π=15.44平方厘米 .13、例16.求阴影部分的面积;单位:厘米解:π+π-π=π116-36=40π=125.6平方厘米14、例17.图中圆的半径为5厘米,求阴影部分的面积;单位:厘米解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和;所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米15、例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长;解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米16、例19.正方形边长为2厘米,求阴影部分的面积;解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形;所以面积为:1×2=2平方厘米17、例25.如图,四个扇形的半径相等,求阴影部分的面积;单位:厘米分析:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,4×4+7÷2-π=22-4π=9.44平方厘米18、例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积;解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+π÷4-2=π-1+π-1=π-2=1.14平方厘米19、例28.求阴影部分的面积;单位:厘米解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:π÷2-5×5÷2=7.125所以阴影面积为:12.5+7.125=19.625平方厘米20、例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米;求BC的长度;解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21、例33.求阴影部分的面积;单位:厘米解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为π+π-6=×13π-6=4.205平方厘米22、例34.求阴影部分的面积;单位:厘米解:两个弓形面积为:π-3×4÷2=π-6 阴影部分为两个半圆面积减去两个弓形面积,结果为π+π-π-6=π4+-+6=6平方厘米。
圆的组合图形面积及答案

圆的拉拢图形里积之阳早格格创做姓名:【知识取要领】要办理取圆有闭的题目,需要注意以下几面:1、流利掌握有闭圆的观念战里试公式:圆的里积= 圆的周少=扇形的里积= 扇形的弧少=(n是圆心角的度数)2、掌握解题本领妥协题要领:加减法、分隔沉组法、转动仄移法、对于合法、对消法、等积变形法、等量代换法、加辅帮线法.例1.供阳影部分的里积.(单位:厘米)解:那是最基原的要领:圆里积减去等腰曲角三角形的里积,×-2×1=1.14(仄圆厘米)例2.正圆形里积是7仄圆厘米,供阳影部分的里积.(单位:厘米)解:那也是一种最基原的要领用正圆形的里积减去圆的里积.设圆的半径为r,果为正圆形的里积为7仄圆厘米,所以=7,所以阳影部分的里积为:7-=7-×7=1.505仄圆厘米例3.供图中阳影部分的里积.(单位:厘米)解:最基原的要领之一.用四个圆组成一个圆,用正圆形的里积减去圆的里积,所以阳影部分的里积:2×2-π=0.86仄圆厘米.例4.供阳影部分的里积.(单位:厘米)解:共上,正圆形里积减去圆里积,16-π()=16-4π=3.44仄圆厘米例5.供阳影部分的里积.(单位:厘米)解:那是一个用最时常使用的要领解最罕睹的题,为便当起睹,咱们把阳影部分的每一个小部分称为“叶形”,是用二个圆减去一个正圆形,π()×2-16=8π-16=9.12仄圆厘米其余:此题还不妨瞅成是1题中阳影部分的8倍.例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空黑部分甲比乙的里积多几厘米?解:二个空黑部分里积之好便是二圆里积之好(齐加上阳影部分)π-π()=100.48仄圆厘米(注:那战二个圆是可相接、接的情况怎么样无闭)例7.供阳影部分的里积.(单位:厘米)解:正圆形里积可用(对于角线少×对于角线少÷2,供) 正圆形里积为:5×5÷2=12.5所以阳影里积为:π÷4-12.5=7.125仄圆厘米(注:以上几个题皆不妨间接用图形的好去供,无需割、补、删、减变形) 例8.供阳影部分的里积.(单位:厘米)解:左里正圆形上部阳影部分的里积,等于左里正圆形下部空黑部分里积,割补以去为圆,所以阳影部分里积为:π()=3.14仄圆厘米例9.供阳影部分的里积.(单位:厘米)解:把左里的正圆形仄移至左边的正圆形部分,则阳影部分合成一个少圆形,所以阳影部分里积为:2×3=6仄圆厘米例10.供阳影部分的里积.(单位:厘米)解:共上,仄移安排二部分至中间部分,则合成一个少圆形,所以阳影部分里积为2×1=2仄圆厘米(注: 8、9、10三题是简朴割、补或者仄移)11、例13.供阳影部分的里积.(单位:厘米)解: 连对于角线后将"叶形"剪启移到左上头的空黑部分,凑成正圆形的一半.所以阳影部分里积为:8×8÷2=32仄圆厘米12、例14.供阳影部分的里积.(单位:厘米)解:梯形里积减去圆里积,(4+10)×4-π=28-4π=15.44仄圆厘米 . 13、例16.供阳影部分的里积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6仄圆厘米14、例17.图中圆的半径为5厘米,供阳影部分的里积.(单位:厘米)解:上头的阳影部分以AB为轴翻转后,所有阳影部分成为梯形减去曲角三角形,或者二个小曲角三角形AED、BCD里积战.所以阳影部分里积为:5×5÷2+5×10÷2=37.5仄圆厘米16、例19.正圆形边少为2厘米,供阳影部分的里积.解:左半部分上头部分顺时针,底下部分顺时针转动到左半部分,组成一个矩形.所以里积为:1×2=2仄圆厘米17、例25.如图,四个扇形的半径相等,供阳影部分的里积.(单位:厘米)分解:四个空黑部分不妨拼成一个以2为半径的圆.所以阳影部分的里积为梯形里积减去圆的里积,4×(4+7)÷2-π=22-4π=9.44仄圆厘米18、例27.如图,正圆形ABCD的对于角线AC=2厘米,扇形ACB是以AC为曲径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,供阳影部分的里积.解: 果为2==4,所以=2以AC为曲径的圆里积减去三角形ABC里积加上弓形AC里积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14仄圆厘米19、例28.供阳影部分的里积.(单位:厘米)解法一:设AC中面为B,阳影里积为三角形ABD里积加弓形BD的里积,三角形ABD的里积为:5×5÷2=12.5弓形里积为:[π÷2-5×5]÷2=7.125所以阳影里积为:12.5+7.125=19.625仄圆厘米20、例30.如图,三角形ABC是曲角三角形,阳影部分甲比阳影部分乙里积大28仄圆厘米,AB=40厘米.供BC的少度. 解:二部分共补上空黑部分后为曲角三角形ABC,一个为半圆,设BC少为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21、例33.供阳影部分的里积.(单位:厘米)解:用大圆的里积减去少圆形里积再加上一个以2为半径的圆ABE里积,为(π+π)-6=×13π-6=4.205仄圆厘米22、例34.供阳影部分的里积.(单位:厘米)解:二个弓形里积为:π-3×4÷2=π-6 阳影部分为二个半圆里积减去二个弓形里积,截止为π+π-(π-6)=π(4+-)+6=6仄圆厘米。
圆的组合图形

.
6厘米
2.下图是一个直角等腰三角形,直角边 长2厘米,图中阴影部分面积是 平方 厘米.
( )4.如图所示,以B、C为圆心的两 个半圆的直径都是2厘米,则阴影部分 的周长是 厘米.(保留两位小数)
E5.三角形ABC是直角三角形, 阴影部分①的面积比阴影部分②的 面积小28平方厘米. AB长40厘米BC 长 厘米.
C
②
①
B
A
6.如图,阴影部分的面积为2平方厘米, 等腰直角三角形的面积是多少?
7.扇形的面积是31.4平方厘米,它所 在圆的面积是157平方厘米,这个扇 形的圆心角是多少度?
9.在右图中(单位:厘米),两个阴影部 分面积的和是 平方厘米.
16
12
20
10. ABC是等腰直角三角形. D是半 圆周的中点, BC是半圆的直径,已知: AB=BC=10,那么阴影部分的面积是 多少?(圆周率) 10 B A
D
C
11.如图,已知圆心是O,半径r=9厘米, 1 2 15 ,那么阴影部分的面积是多 少平方厘米? ( 3.14 )
A
1 2
0
B C
12.右图中4个圆的圆心是正方形的4个 顶点,它们的公共点是该正方形的中心. 如果每个圆的半径都是1厘米,那么阴影 部分的总面积是多少平方厘米?
六年级奥数题-圆及组合图形

圆和组合图形(后面有答案分析)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是平方厘米.3.一个扇形圆心角120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是厘米.(保留两位小数)5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28长厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是平方厘米,圆S 2的面积是平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方⌒ ⌒厘米,故半圆面积比三角形ABC 的面积小28平方厘米.半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米. 将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫ ⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米).7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为=(平方厘米).9. .由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即 75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷ (平方厘米). 11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 的面积再加上圆面积的41.三角形AED 的面积是21)210()21010(⨯÷⨯÷+;正方形面积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为: 22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+ 125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米.又因圆S 2的面积为平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为厘米,直径为5厘米.阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA ,同理150=∠AOC ,于是602150360=⨯-=∠BOC .扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为 221221=⨯⨯⨯(平方厘米). 正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即 2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).。
圆和组合图形练习题B(六年级奥数)
六年级奥数:圆和组合图形(2)一、填空题2.大圆的半径比小圆的半径长 6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面 积大 ________ 平方厘米•3.在一个半径是 4.5厘米的圆中挖去两个直径都是平方厘米.( 取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5. 如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好1.如图,阴影部分的面积是 .2厘米的圆.剩下的图形的面积是积是 .7. 有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形 (如图).图中黑点是这些圆的圆心.如果圆周率 3.1416,那么花瓣图形 的面积是—平方厘米.8. 已知:ABCD 是正方形,ED=DA=AF=2厘米,阴影部分的面积是 .S C相等.图中阴影部分的周长是 ________ 厘米.(3.14)6. 如图,1 15的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面C19. 图中,扇形BAC的面积是半圆ADB的面积的1-倍,那么,3CAB是度.10. 右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是平方厘米.(取3.14)二、解答题11. 如图:阴影部分的面积是多少?四分之一大圆的半径为r.22(计算时圆周率取22)12. 已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13. 有三个面积都是S的圆放在桌上,桌面被圆覆盖的面积是2S+2,并且重合的两块是等面积的,直线a过两个圆心A、B,如果直线a下方被圆覆盖的面积是9,求圆面积S的值.14. 如图所示,一块半径为2厘米的圆板,从平面上1的位置沿线段AB、BC、CD滚到2的位置,如果AB、BC、CD的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?A 120答案一1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位. 2.188.4 小圆的半径为6 (4 1) 2(厘米),大圆的半径为2 4 8(厘米).大圆的面积比小圆的面积大(82 22) 3.14 188.4(平方厘米).3. 57.4.52 3.14 (2 2)2 3.14 2 57.305(平方厘米)-57(平方厘米). 4.10.26. 从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即1 3.14 (6 2)2— 62 10.26(平方厘米).25. 20.5.设圆的半径为r,则圆面积即长方形面积为 r 2,故长方形的长为DC r. 阴影部分周长 DC BC BA AD r r ( r r ) 1 2 r - 2 r445 16.420.5(厘米).46.48 5 (平方厘米). 6如图,连结OA 、AC,过A 点作CD 的垂线交CD 于B 形ACD 的面积为100花瓣图形的结构是正方形的面积,加上四个-圆面积后,再割去四个半圆的面积.圆的半4径为1厘米,正方形边长为4厘米.故花瓣图形的面积是223 21 4 1- 4 1- 4 1619.1416(平方厘米).4 28. 2.43平方厘米.如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即1121 245 十… (2 2 3) 2—22—2 -3.14 22.43(平万厘2 22 360米).又圆半径为 6.28 2 50(平方厘米).(3.14 2) 10(厘米),因为 1 15 , 又OA=OD,故AOC15 2 30 ,扇形AOC 的面积为1气(平方厘米).三角形AOC 的面积为5030 23.14 102360261 25 1丄(平方厘米),从而阴影部分的面积为50 11 48— 6 6 6 67. 19.1416.25(平方厘米).方形面积为(平方厘米).DCOE.三角ED A F9. 60.234影部分面积为甘12.将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一x,则有:3S 2x 2S 2,于是 S 2x 2 (1) 色」8 2,解得S=6.半,即阴影部分面积等于622 422 10 (平方厘米).设扇形ABC 圆心角的度数是x,半圆的半径OA=r,有11 3360解得x=60. (2r)210. 0.14.扇形面积为3.14 2213'14(平方厘米)’甲部分面积为222 3^2 0"3(平方厘米),乙部分面积为3.14 1 ;°.57(平方厘米)’甲乙两部分面积差为0.57 0.430.14(平方厘米).11.如图,小正方形的边长为,则①的面积为:21 22 r r71 ②的面积为丄2224「2’①和②的面积和为1手「2r 2 2-r 2.即阴 713.设一个阴影部分的面积为3又2S -x 9 ,于是有x2③23414.圆板的正面滚过的部分如右图阴影部分所求 它的面积为:2 22 (20 2)1 42 6 (20 4) 4 (20 2) 14(4212)22220423D228.07(平方厘米).。
圆与组合图形
圆与组合图形一.选择题(共4小题)1.如图,4个圆的直径都是2cm,圆心分别在四边形ABCD的四个顶点上,阴影部分的面积的和是()cm2.A.37.68B.25.12C.9.42D.6.28C.18.75兀平方厘米D.15兀平方厘米3.如图,正方形的边长为5厘米,以AD为半径,以D为圆心做弧线与BD交于E点,以AB为直径做半圆交BD于F.则图中阴影部分的面积是()平方厘米.(兀取3)4.如图,将A ABC绕点A逆时针旋转30。
后得到A ADE,点B经过的路径为弧BD,已知AC=3,BC=4,A.6.25B.7.25C.8.25D.10.254B=5,则图中阴影部分的面积为()A. 2512B. 4冗3C.3兀4D. 5冗12二.填空题(共8小题)115.如图,两个圆重叠部分的面积相当于小圆的1,相当于大圆的—.点O是小圆的圆心,A、B两点分812别是两圆的交点,直角三角形AOB的面积是40cm2,大圆的面积是cm2.6•下面涂色部分的周长是cm,面积是cm2・7•如图,阴影部分的面积是9cm2,则圆环的面积是cm2・8.如图,将直径AB=10的半圆绕着点A逆时针旋转30。
,点B落在点C,则图中阴影部分的面积是—(结果保留冗)10.如图,四个圆的半径都为3cm,圆心分别在四边形的四个顶点上,则阴影部分的面积为cm2.(兀取13.如图,半圆S的面积是14.13cm2,圆S的面积是19.625cm2,求长方形(阴影部分)的面积.1214.如图,正方形边长为8厘米,大阴影三角形面积比小阴影三角形面积大16.8平方厘米,线段AE长多少厘米?DCAB E15.求阴影部分的面积.(单位:cm)18.三角形ABC是直角三角形,阴影I的面积比阴影II的面积小25cm2,AB=8cm,求BC的长度.(兀取3.14)19.如图所示,阴影部分的面积是85平方厘米,圆环的面积是多少平方厘米?(兀取3.14)20.如图,在直角三角形中,一个直角边长为6厘米,另一个直角边长为8厘米.求阴影部分的面积.21.如图,将两个半径分别是2厘米和3厘米的半圆如图放置,求阴影部分的周长.22.如图是一个漂亮而巧妙的图形,图中大圆的直径是10厘米,求阴影部分的面积.23.A ACB是等腰直角三角形,求阴影面积.四.应用题(共1小题)26.萌萌爸爸到商店买了4瓶啤酒,售货员将4瓶啤酒用胶带缠在一起(如图).瓶身直径为7cm,缠4圈28.如图是由两个完全一样的直角三角形叠在一起而成的,求阴影部分的面积.(单位:厘米)B S g C27.一块草地的形状如图的阴影部分,它的周长和面积各是多少?29•求图中阴影部分的面积(结果精确到0.01,冗取3.14)30.如图,BCEF是平行四边形,三角形ABC是直角三角形,BC长8厘米,AC长7厘米,阴影部分面积比三角形ADH的面积大12平方厘米.求HC的长度.31.如图所示,在半径为4cm的图中有两条互相垂直的线段,阴影部分面积A与其它部分面积B之差(大面积等于6平方公分,求五边形ABGEF的面积.33.如图所示,在一个边长为1的大正方形中有两个小正方形,他们的面积分别为m、n.猜猜看,是m大还是n大?并求-的值?34.如图所示,正方形ABCD的面积为2平方厘米,它的对角线长AC=2厘米,扇形ACD是以D为圆心,以AD为半径的圆面积的一部分,那么,阴影部分的面积是多少平方厘米?(冗取3.14)35.如图:直角三角形ABC中AB=15厘米,BC=20厘米,AC=25厘米,OD=5.84厘米.阴影部分是小正方形,求这个正方形的边长是多少厘米?36.如图,是大小两个正方形组成的图形,大正方形边长是8厘米,小正方形边长为6厘米,求阴影部分的面积.38.在长方形ABCD中,AD=15厘米,AB=8厘米,四边形EFGO的面积是9平方厘米,阴影部分的面C D37.如图,正方形ABCD的边AB、BC分别在三角形BEF的BE、BF边上,顶点D在EF边上,点D把EF积是多少平方厘米?39.如图,直角梯形ABCD的上底和高相等,正方形DEFH的边长是6厘米,阴影部分的面积是多少平方厘米?从图看出:S=S所以S=S于是S=S=ABHDABEBOHDEO阴影DHEA BEJ40.图中长方形的面积是180平方厘米,S与S的面积都是60平方厘米,阴影部分的面积是多少平方厘米?1241•如图,三角形ABC是等腰直角三角形,AB二AC二8cm,Z C二45。
最权威圆的面积大全组合图形
最权威圆的面积大全组合图形(总
7页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
组合图形
姓名:
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
(完整版)圆的组合图形面积及答案
圆的组合图形面积姓名:【知识与方法】要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。