人教版八年级数学上册第十一章教案

合集下载

最新人教版八年级上册数学教案教师用书

最新人教版八年级上册数学教案教师用书

人教版八年级上册数学教案第十一章全等三角形11.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.全等三角形课时作业1如图所示,两个三角形全等,其中已知某些边的长度和某些角的度数,则x=_______.2.如图1,已知△OCA≌△OBD,C和B、D和A是对应顶点,这两个三角形中相等的角是,相等的边是.图1 图2 图3 图43.如图2,已知△ABC≌△ADE,∠B与∠D是对应角,那么AC与是对应边,∠BAC与是对应角.4.如图3,已知△ABC≌△DEF,对应边AB=DE,,对应角∠B=DEF,.5.如图4,已知△ABC≌△DEC,其中AB=DE,∠ ECB=30°,那么∠ACD=.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).11.2.1三角形全等的判定(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD .”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF ,AC=DE ,BE=CF ,BC 与EF 相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF ,△ABC ≌△DFE )五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.11.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用全等三角形证明.教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,交OB 于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识.二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B的点,连接AC并延长到D,使CD=CA,连接BC并延长到E,•使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC•就全等了.证明:在△ABC和△DEC中12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT ;(2)以A 为圆心,以适当长为半径,画弧,交BT 于C 、C ′;(3)•连线AC ,AC ′,△ABC 与△ABC ′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P10练习第1、2题.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.11.2.3 三角形全等判定(ASA)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE(SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:D CBAE画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B : 1.画A ′B ′=AB ;2.在A ′B ′的同旁画∠DA ′B ′=∠A ,∠EBA ′=∠B ,A ′D ,B ′E 交于点C ′。

人教版八年级上册第十一章三角形(教案)

人教版八年级上册第十一章三角形(教案)
-三角形面积计算方法的选择与应用:在实际问题中,学生可能难以选择合适的面积计算方法。
-突破方法:通过实际问题引入,训练学生根据已知信息选择最佳计算方法的能力。
-解直角三角形的实际应用:将理论知识应用于解决实际问题。
-突破方法:设计实际情境题目,如测量高度、计算距离等,指导学生如何建立直角三角形模型并求解。
二、核心素养目标
1.培养学生的空间观念与几何直观能力,通过观察、操作、推理等过程,理解三角形的性质、全等与相似关系,形成对几何图形的认识和判断。
2.提升学生运用符号意识和逻辑推理能力,掌握全等与相似三角形的判定方法,能够准确运用几何语言表达解题过程。
3.培养学生的数据分析观念,通过对三角形周长、面积的计算,提高解决实际问题的能力。
3.重点难点解析:在讲授过程中,我会特别强调三角形的性质、全等与相似判定这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形稳定性的基本原理。
其次,全等与相似三角形的判定方法是学生们的一个难点。在教学过程中,我尝试通过对比练习、具体案例分析等方式帮助学生理解。但从学生的反馈来看,这部分内容仍然需要进一步巩固。我考虑在下一节课中,设计更多具有针对性的练习题,让学生在实际操作中更好地掌握这些判定方法。
此外,实践活动环节,学生们分组讨论和实验操作表现得非常积极。他们能够将所学的三角形知识应用到实际问题中,并提出自己的观点和想法。这让我深感欣慰,也证明了这个教学环节的成功。在以后的教学中,我会继续加大实践环节的比重,让学生在实践中掌握知识,提高他们的动手能力和团队协作能力。

人教版八年级数学上册第十一章三角形数学活动教学设计

人教版八年级数学上册第十一章三角形数学活动教学设计
(五)总结归纳
1.教师引导学生回顾本节课所学的三角形知识,总结三角形的基本性质、分类、相似三角形的判定和应用。
2.学生分享自己的学习心得,教师给予鼓励和指导。
3.教师强调本章节的重点和难点,提醒学生课后加强练习,巩固所学知识。
4.教师布置课后作业,要求学生在课后进一步巩固三角形相关知识。
五、作业布置
4.通过数学学习,使学生认识到数学与现实生活的密切联系,体会数学在生活中的重要作用,培养学生的数学素养。
在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习,提高学生的数学素养。同时,教师要善于运用教育机智,灵活处理教学中的各种问题,使学生在掌握知识的同时,培养良好的情感态度与价值观。
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的求知欲,培养学生的创新思维能力。
(3)采用小组合作、讨论交流等形式,促进学生之间的互动,培养学生的团队协作能力和沟通能力。
2.教学策略:
(1)注重直观演示,结合实际生活中的三角形实例,帮助学生建立对三角形的直观认识,为后续的抽象思维打下基础。
二、学情分析
八年级的学生已经具备了一定的数学基础,对几何图形有了初步的认识,特别是在之前的课程中,学生对三角形的基本概念和性质有了初步的了解。在此基础上,本章的教学将更加深入地探讨三角形的性质、分类及应用。然而,学生在探究三角形相似、计算面积等方面可能还存在一定的困难,需要教师在教学过程中给予适当的引导和帮助。
4.小组合作完成一份关于三角形的数学手抄报,内容可以包括三角形的定义、性质、分类、相似三角形的判定和应用等。要求:版面设计美观,知识点清晰,能够体现出小组合作的精神。
5.预习下一节课内容,提前思考以下问题:如何运用三角形的性质来解决一些特殊的几何问题?相似三角形在实际问题中的应用有哪些?

人教版八年级数学上册第十一章教案

人教版八年级数学上册第十一章教案

人教版八年级数学上册第十一章教案11.1.1三角形的边教学对象:八年级(4)、(6)班备课时间:2016/9/1教学用具:PPT 课件、教案、课本等教学目标:1、知识与技能:了解三角形的意义, 认识三角形的边、内角、顶点,能用符号语言表示三角形;理解三角形三边不等的关系,会判断三条线段能否构成一个三角形, 并能运用它解决有关的问题。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。

教学重点:三角形的有关概念和符号表示,三角形三边间的不等关系是重点教学难点:用三角形三边不等关系判定三条线段可否组成三角形是难点教学过程: 一、情景导入三角形是一种最常见的几何图形,]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?c 二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做A 三角形。

C (1)注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示, 顶点B 所对的边AC 可用b 表示, 顶点A 所对的边BC 可用a 表示. 三、三角形三边的不等关系探究:任意画一个△ABC, 假设有一只小虫要从B 点出发, 沿三角形的边爬到C, 它有几种路线可以选择? 各条路线的长一样吗? 为什么?有两条路线:(1)从B→C,(2)从B→A→C;不一样,AB+AC >BC ①;因为两点之间线段最短。

同样地有 AC+BC>AB ② AB+BC>AC ③B由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边. 四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

最新人教版初二数学八年级上册 第十一章三角形 全单元教案

最新人教版初二数学八年级上册 第十一章三角形 全单元教案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边◇教学目标◇【知识与技能】1.认识三角形的概念及其基本要素;2.掌握三角形三条边之间的关系.【过程与方法】1.通过操作对比、观察、推理、交流等活动认识三角形及其概念和表示方法,运用分类思想对三角形进行分类;2.经历度量三角形边长的实践活动中,理解三角形的三边关系. 【情感、态度与价值观】培养学生的符号语言表达能力,体会三角形在日常生活中的应用价值.◇教学重难点◇【教学重点】三角形的三边关系.【教学难点】三角形三边关系的应用.◇教学过程◇一、情境导入埃及金字塔、常见的交通标志和移动信号塔都是什么形状?在我们日常生活中还有哪些东西是三角形的?二、合作探究探究点1三角形的概念典例1看图填空:(1)图中共有个三角形,它们是;(2)△BGE的三个顶点分别是,三条边分别是,三个角分别是;(3)△AEF中,顶点A所对的边是;(4)∠ACB是△的内角,∠ACB的对边是.[解析]根据三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.[答案](1)4;△ABC,△EBG,△AEF,△CGF(2)B,G,E;BE,EG,BG;∠B,∠BEG,∠BGE(3)EF(4)ACB;AB探究点2三角形的分类典例2如图,过A,B,C,D,E五个点中的任意三点画三角形.(1)以AB为边画三角形,能画几个?写出各三角形的名称.(2)分别指出(1)中的三角形中的等腰三角形和钝角三角形.[解析](1)如图所示,以AB为边的三角形能画3个,分别是△EAB,△DAB,△CAB.(2)△ABD是等腰三角形,△EAB,△CAB是钝角三角形.探究点3三角形的三边关系典例3已知三角形的三条边互不相等,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个符合上述条件的第三边长.(2)符合上述条件的三角形有多少个?[解析](1)第三边长是4.(答案不唯一)(2)∵2<m<16,∴m的值为4,6,8,10,12,14,共六个.【归纳总结】在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.变式训练“佳园工艺店”打算制作一批两边长分别是7分米,3分米,第三边长为奇数的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有几种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元/分米,问至少需要多少钱购买材料?(忽略接头)[解析](1)三角形的第三边x满足:7-3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5,7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),所以51×8=408(元).答:至少需要408元购买材料.三、板书设计三角形的边三角形◇教学反思◇由于初次接触三角形的相关元素,教师要注意引导学生发现三角形的三边关系,要留给学生充足的时间和空间去思考讨论,培养学生解决问题的能力.11.1.2三角形的高、中线与角平分线◇教学目标◇【知识与技能】1.了解三角形的高、中线、角平分线的概念;2.会用工具准确画出三角形的高、中线、角平分线.【过程与方法】1.让学生经历画三角形的高、中线、角平分线过程,理解三角形的高、中线、角平分线的特点以及符号语言和图形语言的表达方法;2.培养学生观察、分析、作图、解决问题的能力.【情感、态度与价值观】培养学生敢于实践操作、勇于发现、大胆探索、合作创新的精神.◇教学重难点◇【教学重点】三角形的高线、中线、角平分线的概念及画法.【教学难点】探究三角形的三条高线、三条角平分线、三条中线都交于一点的过程.◇教学过程◇一、情境导入有一块三角形的地,小明的爸爸想种花草,妈妈想种菜.于是想平分三角形的面积,一半种花草,一半种菜,不知如何作,小明说,这还不好办,做一边的中线就行了,聪明的你,能帮他们家把这块地分成面积相等的两部分吗?知道小明这样做的原因吗?二、合作探究探究点1三角形的高典例1如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD,BE相交于点F,连接CF.(1)在△ABC中,AC边上的高为,BC边上的高为;(2)在△ABD中,AD边上的高为;(3)在△BCE中,CE边上的高为;(4)在△BCF中,BC边上的高为;(5)在△ABF中,AF边上的高为,BF边上的高为. [解析]三角形的高即从三角形的一个顶点向它的对边所在直线引垂线,顶点和垂足间的线段.[答案](1)BE;AD(2)BD(3)BE(4)FD(5)BD;AE【归纳提升】锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.变式训练下列尺规作图,能判断AD是△ABC边上的高的是()[答案] D探究点2中线的特性典例2三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形[解析]根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.[答案] B【技巧点拨】三角形的中线把三角形分为两个等底同高的三角形,这两个三角形的面积相等.探究点3三角形的角平分线典例3如图,CD,BE分别是△ABC的角平分线,它们相交于点I,则:(1)∠ACD=∠= ∠ACB,∠ABC= ∠ABE.(2)BI是∠的平分线,CI是∠的平分线.(3)若∠ABC=60°,∠ACB=80°,则∠BIC= 度.(4)你能画出△ABC的第三条角平分线吗?[解析](1)BCD;;2.(2)ABC;ACB.(3)110°.(4)连接AI并延长,即为∠BAC的角平分线.探究点4三角形的中线与周长典例4如图,AD是△ABC的中线,且AB=10 cm,AC=6 cm,求△ABD与△ACD的周长之差.[解析]∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵AB=10,AC=6,∴△ABD与△ACD的周长之差=10-6=4 cm.变式训练在△ABC中,AB=AC,AD是中线,△ABC的周长为34 cm,△ABD的周长为30 cm,求AD的长.[解析]由题意得AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得2AB+2AD+BC=60,③③-①得2AD=26,∴AD=13 cm.三、板书设计三角形的高、中线与角平分线三角形的高、中线与角平分线◇教学反思◇通过本课时的教学要让学生认识三角形的三条重要线段的概念、图形和它们的相关特性,如三角形的中线把三角形分为面积相等的两部分,三角形的三条高线、三条中线、三条角平分线都相交于一点的性质,应逐步加强学生几何语言的表达能力.11.1.3三角形的稳定性◇教学目标◇【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.◇教学重难点◇【教学重点】三角形的稳定性.【教学难点】三角形稳定性的应用.◇教学过程◇一、情境导入三角形在我们日常生活中应用广泛,仔细观察上面一组图片,你知道有些物体的形状做成三角形的原因吗?三角形形状的物体有什么作用?二、合作探究探究点1三角形的稳定性典例1如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.三角形的稳定性[解析]观察图可发现图中窗钩构造了一个三角形AOB,根据三角形稳定性,可得答案.[答案] D变式训练如图所示是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形两边之差小于第三边D.直角三角形[答案] B探究点2四边形的不稳定性的应用典例2(1)工程建筑中经常采用三角形的结构,如屋顶的钢架,输电线的支架等,这里运用的三角形的性质是.(2)下列图形具有稳定性的有个.①正方形;②长方形;③直角三角形;④平行四边形.(3)已知四边形的四边长分别为2,3,4,5,这个四边形的四个内角的大小能否确定?(4)要使五边形木架(用5根木条钉成)不变形,工人准备再钉上两根木条,如图的两种钉法中正确的是.(5)要使四边形木架(用4根木条钉成)不变形,至少需要加1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,……,如果要使一个n边形木架不变形,至少需要加根木条固定.[解析](1)三角形的稳定性.(2)1.(3)不能确定.(4)方法一.(5)根据三角形具有稳定性,可以知道需要的木条数等于过多边形的一个顶点的对角线的条数.过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.【技巧点拨】这里是利用三角形的稳定性以及多边形的对角线解决问题,考虑到利用对角线把多边形分成三角形是解题的关键.变式训练如图,由6条钢管铰接而成的六边形是不稳定的,请你再用三条钢管连接使之稳固.(方法很多,请提供四种不同连接方法)[解析]根据三角形具有稳定性,将六边形分成若干个小三角形即可. [答案]如图所示.(答案不唯一,合理即可)探究点3克服四边形的不稳定性典例3如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A,C两点之间B.E,G两点之间C.B,F两点之间D.G,H两点之间[解析]用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.[答案] B【方法点拨】三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.三、板书设计三角形的稳定性三角形的稳定性◇教学反思◇通过对生活中三角形稳定性的探索,吸引学生的注意力,调动学生的积极性,体会数学的应用价值.11.2与三角形有关的角11.2.1三角形的内角◇教学目标◇【知识与技能】应用三角形内角和定理解决一些简单的实际问题.【过程与方法】通过小组学习,经历得出三角形内角和等于180°的过程,进一步提高学生利用所学知识解决问题的能力.【情感、态度与价值观】经历猜想、归纳、证明等过程,学会研究问题的方法.◇教学重难点◇【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推理过程.◇教学过程◇一、情境导入如图,小学的时候我们通过度量或剪拼得到:∠A+∠B+∠ACB=180°.现在你能用我们学习的方法给出证明吗?二、合作探究探究点1三角形内角和定理典例1如图,在△ABC中,BD为△ABC的角平分线,如果∠A=47°,∠ADB=116°,求∠ABC和∠C的度数.[解析]∵∠A=47°,∠ADB=116°,∴∠ABD=180°-47°-116°=17°,∵BD为△ABC的角平分线,∴∠ABC=2∠ABD=34°,∴∠C=180°-47°-34°=99°.变式训练如图,在△ABC中,∠BAC=56°,∠ABC=74°,BP,CP分别平分∠ABC 和∠ACB,则∠BPC=()A.102°B.112°C.115°D.118°[答案] D探究点2三角形内角和定理的应用典例2如图,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度数.[解析]在△ABD中,∵∠B=65°,∠BAD=40°,∴∠BDA=180°-(∠B+∠BAD)=180°-(65°+40°)=75°,∵∠CDE=45°,∴∠ADE=180°-(∠BDA+∠CDE)=180°-(75°+45°)=60°,在△ADE中,∵∠AED=100°,∴∠CAD=180°-∠ADE-∠AED=180°-60°-100°=20°.变式训练完成下面的推理过程:如图,在三角形ABC中,已知∠2+∠3=180°,∠1=∠A,试说明∠CFD=∠B.解:∵∠2+∠DEF=180°(邻补角定义),∠2+∠3=180°(已知),∴(同角的补角相等).∴AC∥EF().∴∠CDF= (两直线平行,内错角相等).∵∠1=∠A(已知),∴∠CDF=∠A(等量代换).∴DF∥AB().∴∠CFD=∠B().[答案]∠DEF=∠3;内错角相等,两直线平行;∠1;同位角相等,两直线平行;两直线平行,同位角相等探究点3直角三角形的两锐角互余典例3如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°[解析]根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.∵CD⊥BD,∠C=55°,∴∠CBD=90°-55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.[答案] D变式训练如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°[答案] B三、板书设计三角形的内角三角形的内角和◇教学反思◇本节课主要是通过小学的探究形式,引导学生寻找做辅助线,对三角形的内角和等于180°进行严谨的证明,慢慢培养学生对证明的理解,逐步认识几何证明的必要性.在解决问题的过程中,关注学生在推理中语言使用的准确性,引导学生用规范的格式进行书写.11.2.2三角形的外角◇教学目标◇【知识与技能】了解三角形的外角的两条性质,能利用三角形的外角性质解决问题.【过程与方法】经历观察、探索、交流等过程,增强表达能力和推理能力.【情感、态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯.◇教学重难点◇【教学重点】三角形的外角的性质.【教学难点】探究三角形外角的性质,进行相关计算.◇教学过程◇一、情境导入两只野狼在如图的A处发现有一只野牛离群独自在O处觅食,野狼打算用迂回的方式,一只先从A前进到B处,然后再折回在C处截住野牛返回牛群的去路D处,另一只则直接从A处扑向野牛,已知∠BAC=40°,∠ABC=70°,问野狼从B处要转多少度才能直达C处? 二、合作探究探究点1三角形的外角典例1如图,CE是△ABC的外角∠ACD的平分线,若∠B=25°,∠ACE=60°,则∠A=()A.105°B.95°C.85°D.25°[解析]先根据角平分线的性质求出∠ACD的度数,再由三角形外角的性质即可得出结论.∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠B=25°,∴∠A=120°-25°=95°.[答案] B变式训练一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°[答案] D探究点2三角形外角的性质的应用典例2如图,已知D为△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=30°,∠D=40°,求∠ACD的度数.[解析]∵DF⊥AB,∠D=40°,∴∠DFB=90°,∴∠B=90°-∠D=90°-40°=50°,∵∠ACD是△ABC的外角,∠A=30°,∴∠ACD=∠B+∠A=50°+30°=80°.【技巧点拨】解决几何问题的关键是认准图形,找出图中三角形的外角,利用“三角形的一个外角等于和它不相邻的两个内角的和”的性质和三角形内角和定理解决.变式训练如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°[答案] A三、板书设计三角形的外角三角形的外角◇教学反思◇本节课的教学围绕三角形的外角识别、性质及应用展开教学,在讲解外角和内角关系时层层递进,使重点得到突出;及时根据学生学习的情况进行点评和分析;对于易错问题及时讲解,此外注意指导学生总结解题思路和方法,让学生对所学知识的掌握更到位.11.3多边形及其内角和11.3.1多边形◇教学目标◇【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图等过程,进一步发展空间能力.【情感、态度与价值观】经历探索、归纳等过程,学会研究问题的方法.◇教学重难点◇【教学重点】了解多边形、内角、外角、对角线等数学概念以及凸多边形和正多边形的概念.【教学难点】多边形定义的准确理解.◇教学过程◇一、情境导入请同学们回忆一下三角形的概念,并尝试说明多边形的概念.二、合作探究探究点1多边形的概念典例1如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个[解析]根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫做多边形.显然只有第一个、第二个、第五个是多边形.[答案] A变式训练如图,下列图形不是凸多边形的是()[答案] C探究点2正多边形的概念典例2我们知道各边都相等,各角都相等的多边形是正多边形,小明却说各边都相等的多边形就是正多边形,各角都相等的多边形也是正多边形,他的说法对吗?如果不对,你能举反例(画出相应图形)说明吗?[解析]他的说法错误.菱形各边相等,但不是正多边形.如图,菱形ABCD的四个角不相等,不是正多边形;矩形各个角相等,但四边不一定相等,不是正方形.探究点3多边形的剪切典例3若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14或15或16B.15或16C.14或16D.15或16或17[解析]因为一个多边形截去一个角后,根据剪的角度、方式不同,多边形的边数可能增加了一条,也可能不变或减少了一条,依此即可解决问题.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.[答案] A【技巧点拨】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.变式训练把一个四边形锯掉一个角,剩下的多边形是()A.三角形B.四边形C.五边形D.三角形或四边形或五边形[答案] D三、板书设计多边形多边形◇教学反思◇通过类比的数学思想,引导学生理解多边形的相关概念,引导学生自主探索多边形的边数与对角线的数量关系.教师应注重课堂小结,激发学生参与的主动性.11.3.2多边形的内角和◇教学目标◇【知识与技能】了解多边形的内角、外角等概念,能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.【过程与方法】经历合作、交流等过程,初步形成推理思维.【情感、态度与价值观】经历猜想、探索、归纳等过程,学会多角度、全方位研究问题的方法,体会转化、类比等数学思想.◇教学重难点◇【教学重点】多边形的内角和公式与外角和公式.【教学难点】多边形的内角和定理的推导以及对多边形外角和的理解.◇教学过程◇一、情境导入如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是多少米?你能计算吗?二、合作探究探究点1多边形的内角和典例1已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形[解析]设这个多边形是n边形,内角和是(n-2)·180°,这样就得到一个关于n的方程,从而求出边数n的值.[答案] C变式训练把n边形变为(n+x)边形,内角和增加了720°,则x的值为()A.4B.6C.5D.3[答案] A探究点2多边形的外角和典例2小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多()A.1080°B.720°C.540°D.360°[解析]根据多边形的内角和公式(n-2)·180°,外角和等于360°列出算式求解即可.(8-2)×180°-360°=1080°-360°=720°.故该游戏盘的内角和比外角和多720°.[答案] B【方法总结】多边形的外角和与边数无关,任何多边形的外角和都是360°.变式训练如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.7[答案] C探究点3正多边形的内角与外角典例3如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3B.4C.5D.6[答案] D变式训练如图,边长相等的正方形、正六边形的一边重合,则∠1的度数为()A.20°B.25°C.30°D.35°[答案] C探究点4多边形外角的理解典例4如图,小东在足球场的中间位置,从A点出发,每走6 m向左转60°,已知AB=BC=6 m.(1)小东是否能走回A点,若能回到A点,则需走多少米?走过的路径是一个什么图形?为什么?(路径A到B到C到…)(2)求出这个图形的内角和.[解析](1)∵从A点出发,每走6 m向左转60°,∴360°÷60°=6,∴走过的路径是一个边长为6的正六边形.(2)正六边形的内角和为(6-2)×180°=720°.三、板书设计多边形的内角和多边形的内角◇教学反思◇通过丰富有趣的探究活动,让学生积极参与其中,充分调动学生的学习热情,使学生灵活掌握多边形内角和与外角和的概念与运用.多数学生能达到预期目的,对课上吃力的同学,课下还要及时进行进一步的关注,以后在课堂上还应充分给学生探究的时间和空间,使每一个学生均有收获.。

2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.1.3 三角形的稳定性教案

2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.1.3 三角形的稳定性教案

第十一章三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性第1课时三角形的稳定性一、教学目标【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】了解三角形的稳定性及其在生产、生活中的应用.【教学难点】1.了解三角形的稳定性.2.体会三角形的稳定性在生产和生活中的应用,会利用三角形的稳定性解决实际问题。

.五、课前准备教师:课件、三角尺、四边形框架、小木棍等。

学生:三角尺、四边形框架、小木棍、细绳。

六、教学过程(一)导入新课教师问:三角形在我们日常生活中应用广泛,在我们的生产和生活中哪里用到了三角形?学生回答:房屋的人字梁、大桥钢架、索道支架、建筑用的三脚架等.教师问:观察下图,将四边形木架上再钉一根木条,将它的一对顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?(二)探索新知师生互动,探究新知1.通过实际操作探索三角形的稳定性教师问:如图,在盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做?(出示课件3)学生讨论,得出各种结论.这样不容易变形.教师问:将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(出示课件5)生动手操作,通过实验得出结论:它的形状不会改变.教师问:将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?学生动手操作,通过实验得出结论:它的形状会改变.教师总结:(1)三角形具有稳定性.(2)四边形没有稳定性.(出示课件6)教师问:在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?学生动手操作,通过实验得出结论:它的形状不会改变.教师问:经过以上三次实验,你发现了什么规律?学生讨论回答:可以发现,三角形不会变形,即三角形具有稳定性,而四边形不具有稳定性.教师总结讲解:(出示课件7)“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.2.通过生活中的实例感受数学知识在生产和生活中的应用教师问:三角形的稳定性在我们的生产和生活中有哪些应用?学生回答:起重机、屋顶架构等.(出示课件8-10)教师问:四边形的不稳定性在我们的生产和生活中有哪些应用?学生回答:衣服挂架、放缩尺等.(出示课件13-15)例:要使四边形木架不变形,至少要钉上一根木条,把它分成两个三角形使它保持形状,那么要使五边形,六边形木架,七边形木架保持稳定该怎么办呢?(出示课件20)师生共同解答如下:都加上木条,分成三角形即可,如下图:总结点拨:为了使多边形具有稳定性,一般需要用木条将多边形固定成由一个一个的三角形组成的形式.(三)课堂练习(出示课件23-28)1.下列图中具有稳定性有()A.1个B.2个C.3个D.4个2.下列关于三角形稳定性和四边形不稳定性的说法正确的是()A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3. 如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.三角形两边之和大于第三边C.长方形的四个角都是直角D.三角形的稳定性4. 如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A. 节省材料,节约成本B. 保持对称C. 利用三角形的稳定性D. 美观漂亮5. 如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?(3)AB、BC、CD能围成一个三角形吗?参考答案:1.C2.C3.D4.C5. 解:(1)x最大值= AB + BC + CD = 19.x最小值=BC – AB – CD = 3;(2)3 < x < 19;(3)不能.(四)课堂小结今天我们学了哪些内容:本节课主要学习三角形的稳定性、四边形的不稳定性及其在生产、生活中的应用.(五)课前预习预习下节课(11.2.1)的相关内容。

数学人教版八年级上册第11章数学活动平面镶嵌(教案)

数学人教版八年级上册第11章数学活动平面镶嵌(教案)
在总结回顾环节,同学们能够较好地掌握今天所学的内容,但仍有个别同学对难点知识点的理解不够透彻。为了帮助这部分同学,我计划在课后安排一些辅导时间,为他们解答疑问,确保每个人都能跟上教学进度。
总之,今天的课堂让我收获颇丰,既看到了学生的进步,也发现了教学中需要改进的地方。在今后的教学工作中,我将不断反思、总结,努力提升自己的教学水平,为同学们提供更优质的教学服务。
3.重点难点解析:在讲授过程中,我会特别强调平面镶嵌的种类和判断方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平面镶嵌相关的实际问题,如:如何用正三角形、正方形和正六边形进行镶嵌。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生将使用纸质图形进行实际镶嵌,观察不同图形的镶嵌效果。
-难点二:计算进行平面镶嵌时所需图形的数量。学生需要理解每个顶点处内角的和以及多边形边数与镶嵌图形数量的关系。
-难点三:设计具有美感的镶嵌图案。学生需要运用几何图形的对称性、周期性等美学原则,创造出美观的镶嵌图案。
举例:
-难点一:以正五边形为例,解释为什么不能单独进行平面镶嵌,因为其内角和不为360°,需要结合其他图形一起镶嵌。
五、教学反思
在今天的教学过程中,我注意到同学们对平面镶嵌的概念和种类表现出浓厚的兴趣。在导入新课环节,通过提问日常生活中遇到的镶嵌实例,学生们迅速进入了学习状态,这让我感到很高兴。然而,我也发现了一些需要改进的地方。
首先,在新课讲授环节,虽然我尽量用简洁明了的语言解释平面镶嵌的概念,但仍有部分同学在理解上存在困难。我意识到,对于这部分同学,可能需要更多具体的例子和直观的演示来帮助他们理解。在今后的教学中,我会尝试运用更多实物模型或互动式教学手段,以提高学生的理解程度。

人教版初中数学八年级上册第十一章:三角形(全章教案)

人教版初中数学八年级上册第十一章:三角形(全章教案)

第十一章三角形本章主要内容有三角形的有关线段、与三角形有关的角、多边形及其内角和.三角形是最简单的多边形,也是认识其他图形的基础.本章将在学习与三角形有关的线段(三角形的高、中线和角平分线)和角(三角形的内角、外角)的基础上学习多边形的有关知识,如借助三角形的内角和探究多边形的内角和.学习本章后,我们不仅可以进一步认识三角形,还可以了解一些几何中研究问题的基本思路和方法.在中考中,本章考查的重点是三角形的有关线段、角,多边形及其内角和.【本章重点】三角形三边关系、内角和,多边形的外角和与内角和公式.【本章难点】三角形内角和等于180°的证明,根据三条线段的长度判断它们能否构成三角形.【本章思想方法】1.体会和掌握分类讨论思想.如:解决已知等腰三角形的周长和一边长的相关问题或与三角形高相关的问题,需要分类讨论.2.体会方程思想.如:根据多边形内角和公式可以建立方程,从而运用方程思想解决相关问题.11.1与三角形有关的线段3课时11.2与三角形有关的角3课时11.3多边形及其内角和2课时11.1与三角形有关的线段11.1.1三角形的边(第1课时)一、基本目标【知识与技能】理解三角形的表示法、分类法以及三边存在的关系,发展空间观念.【过程与方法】经历探索三角形中三边关系的过程,认识三角形这个最简单、最基本的几何图形,提高推理能力.【情感态度与价值观】培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值.二、重难点目标【教学重点】掌握三角形三边关系.【教学难点】三角形三边关系的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P4的内容,完成下面练习.【3 min反馈】1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.如图,线段AB、BC、CA是三角形的边,点A、B、C是三角形的顶点,∠A、∠B、∠C是相邻两边组成的角,叫做三角形的内角,简称三角形的角.3.三角形的表示:顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.4.等边三角形:三条边都相等的三角形叫做等边三角形.5.等腰三角形:有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.6.三角形按边的相等关系分类如下:三角形⎩⎨⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形5.三角形三边关系:三角形的两边的和大于第三边.推论:三角形两边的差小于第三边.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是( ) A .2,3,5 B .5,6,10 C .1,1,3D .3,4,9【互动探索】(引发学生思考)三角形的三边满足:任意两边之和大于第三边.A 中,2+3=5,不能组成三角形;B 中,5+6>10,能组成三角形;C 中,1+1<3,不能组成三角形;D 中,3+4<9,不能组成三角形.故选B.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只需判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→分类讨论:已知边长是腰长还是底边长→得三角形另外两边长→三角形三边关系进行判断.【解答】(1)设底边长为x 厘米,则腰长为2x 厘米. 根据题意,得x +2x +2x =18,解得x =3.6. ∴三边长分别为3.6厘米、7.2厘米、7.2厘米. (2)分情况讨论:当4厘米长为底边长时,设腰长为x 厘米,则 4+2x =18,解得x =7.此时等腰三角形的三边长为7厘米、7厘米、4厘米;当4厘米长为腰长时,设底边长为x 厘米,则4×2+x =18,解得x =10. ∵4+4<10,∴此时不能构成三角形,故可围成满足条件的等腰三角形,且三边长分别为7厘米、7厘米、4厘米.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰长还是底边长,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则︱a+b―c︱-︱b-c-a︱的化简结果是(D) A.2a B.-2bC.2a+2b D.2b-2c3.已知等腰三角形的两边长分别为4 cm和6 cm,且它的周长大于14 cm,则第三边长为6 cm.4.三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.解:2,3,4;3,4,5;4,5,6;5,6,7.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!11.1.2三角形的高、中线与角平分线(第2课时)一、基本目标【知识与技能】1.掌握三角形的高、中线和角平分线的定义.2.能够准确的画出三角形的高、中线和角平分线.【过程与方法】会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)、三条中线、三条角平分线都分别交于一点.【情感态度与价值观】通过对问题的解决,分别培养学生的合作精神,树立学好数学的信心.二、重难点目标【教学重点】理解三角形的高、中线与角平分线.【教学难点】会利用三角形的三条高、三条中线与三条角平分线分别交于一点解决问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P4~P5的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高.2.在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线.三角形的三条中线相交于一点.三角形三条中线的交点叫做三角形的重心.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.环节2合作探究,解决问题活动1小组讨论(师生互学)1.画三角形的高.如图,线段AD是△ABC中BC边上的高.注意:标明垂直符号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.结论:由作图可得:(1)三角形的三条高线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)钝角三角形的三条高线相交于三角形的外部;(4)直角三角形的三条高线相交于三角形的直角顶点.2.画三角形的中线.如图,线段AD是△ABC中BC边上的中线.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形的三条中线相交于三角形的内部;(3)钝角三角形的三条中线相交于三角形的内部;(4)直角三角形的三条中线相交于三角形的内部.3.画三角形的角平分线.如图,线段AD是△ABC的一条角平分线,则∠BAD=∠CAD.讨论3:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形的三条角平分线相交于三角形的内部;(3)钝角三角形的三条角平分线相交于三角形的内部;(4)直角三角形的三条角平分线相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中,EF∥AC,BD⊥AC于点D,交EF于点G,则下面说法中错误的是(C)A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD.∵△BCD的周长比△ACD的周长大3 cm,∴(BC+BD+CD)-(AC+AD+CD)=3 cm,∴BC-AC=3 cm.又∵BC=8 cm,∴AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!11.1.3三角形的稳定性(第3课时)一、基本目标【知识与技能】通过实践活动,使学生掌握三角形的稳定性.【过程与方法】培养学生从周围生活中发现数学问题,运用所学知识解决实际问题的能力,使学生体验到数学与日常生活的密切联系.【情感态度与价值观】在活动中培养学生知识迁移的能力和创造性思维.二、重难点目标【教学重点】三角形具有稳定性.【教学难点】三角形的稳定性在实际生活中的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.三角形具有稳定性,四边形不具有稳定性.2.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这是为了防止窗框变形.3.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中圆地球轨道卫星,是我国北斗三号第一、二颗组网卫星,开启了北斗卫星导航系统全球组网的新时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:三角形具有稳定性.4.下列设备,没有利用三角形的稳定性的是(A)A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(1)动手操作探究三角形的稳定性.①如图1,将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?图1图2图3②如图2,将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?③在四边形的木架上再钉一根木条,将它的一对顶点连结起来,然后再扭动它,这时木架的形状还会改变吗?为什么?从上面的实验过程中你能得出什么结论?与同学交流.(2)了解四边形的不稳定性的应用.四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?【互动探索】(引发学生思考)三角形木架形状不会改变,四边形木架形状会改变.这就是说,三角形具有稳定性,四边形不具有稳定性.【解答】(1)①不会改变.②会改变.③不会改变.原因:斜钉一根木条后,四边形变成两个三角形,由于三角形具有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.从上面的实验得出:三角形具有稳定性.(2)有应用价值,实例不唯一,如:活动2巩固练习(学生独学)1.下列图形中具有稳定性的是(B)A.平行四边形B.等腰三角形C.长方形D.梯形2.下列实际情景运用了三角形稳定性的是(C)A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒活动3拓展延伸(学生对学)【例2】要使下列木架稳定,可以在任意两个点之间钉上木棍,各至少需要钉上多少根木棍?【互动探索】三角形具有稳定性,怎样添加木棍才能使多边形具有稳定性呢?【解答】①四边形木架至少需要钉上1根木棍;②五边形木架至少需要钉上2根木棍;③六边形木架至少需要钉上3根木棍.如图所示:【互动总结】(学生总结,老师点评)n边形沿一个顶点的对角线添加(n-3)条木棍后就具有稳定性.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和定理一、基本目标【知识与技能】1.理解“三角形三个内角的和等于180°”.2.能运用三角形内角和定理进行计算.【过程与方法】通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过程的条理性,发展合情推理能力和语言表达能力.【情感态度与价值观】在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成和获得数学说理的习惯与能力.二、重难点目标【教学重点】三角形内角和定理.【教学难点】三角形内角和定理的推导、验证.环节1自学提纲,生成问题【5 min阅读】阅读教材P11~P13的内容,完成下面练习.【3 min反馈】1.利用三角板的三个角之和为多少度来探索三角形的内角和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形的内角和都为180°.(1)在所准备的三角形硬纸片上标出三个内角的编码.(2)动手把一个三角形的两个角剪下,拼在第三个角的顶点处,如图.用量角器量出∠BCD的度数,可得到∠A+∠B+∠ACB=180°.(3)把∠B和∠C剪下拼在一起,如图.用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°.(4)三角形内角和定理:三角形三个内角的和等于180°.3.在△ABC中,∠A=60°,∠B=80°,则∠C=40°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?(方法一)分析与解答过程见教材P12~P13.(方法二)【互动探索】(引发学生思考)过点C作AD的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】∠ABC的求法同“方法一”.如图,过点C作CF⊥AD,则CH⊥BE.∵∠ACF=180°-∠DAC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,∴∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.故从B岛看A、C两岛的视角∠ABC是60°.从C岛看A、B两岛的视角∠ACB是90°.【例2】如图,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于点F ,交AC 于点E .若∠A =46°,∠D =50°,求∠ACB 的度数.【互动探索】(引发学生思考)DF ⊥AB ,∠D =50°→得∠B 的度数,结合∠A =46°→得∠ACB 的度数(三角形内角和定理).【解答】∵DF ⊥AB , ∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°, ∴∠B =40°. 又∵∠A =46°,∴∠ACB =180°-∠A -∠B =94°.【互动总结】(学生总结,老师点评)求三角形的内角,一般要用到三角形内角和定理.解决问题时,要根据图形特点,在不同的三角形中灵活运用三角形内角和定理求解.活动2 巩固练习(学生独学)1.在△ABC 中,∠A =80°,∠B =∠C ,则∠C =50°.2.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.3.已知△ABC 中,DE ∥BC ,∠AED =50°,CD 平分∠ACB ,求∠CDE 的度数.解:∵DE ∥BC ,∠AED =50°, ∴∠ACB =∠AED =50°. ∵CD 平分∠ACB , ∴∠BCD =12∠ACB =25°.又∵DE ∥BC ,∴∠CDE=∠BCD=25°.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的内角和定理:三角形三个内角的和等于180°.请完成本课时对应练习!第2课时直角三角形的两锐角互余一、基本目标【知识与技能】理解并掌握直角三角形的两锐角互余及其逆定理.【过程与方法】通过三角形的内角和定理推导出直角三角形的两锐角互余.【情感态度与价值观】在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成和获得数学说理的习惯与能力.二、重难点目标【教学重点】直角三角形的两锐角互余.【教学难点】判断三角形是直角三角形的方法.环节1自学提纲,生成问题【5 min阅读】阅读教材P13~P14的内容,完成下面练习.【3 min反馈】1.如图,在直角三角形ABC中,∠C=90°,由三角形内角和定理,得∠A+∠B+∠C =180°,即∠A+∠B+90°=180°,所以∠A+∠B=90°.2.直角三角形的两个锐角互余.3.直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.4.由三角形内角和定理可得:有两个角互余的三角形是直角三角形.5.若直角三角形的一个锐角为20°,则另一个锐角等于70°.环节2合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,DF ⊥AB ,∠A =40°,∠D =43°,则∠ACD 的度数是________.【互动探索】(引发学生思考)DF ⊥AB ,∠A =40°→∠AEF =50°(直角三角形的两个锐角互余)→∠CED =50°(对顶角相等),结合∠D =43°→∠ACD =87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】在△ABC 中,如果∠A =12∠B =13∠C ,那么△ABC 是什么三角形?【互动探索】(引发学生思考)分析法:要判断三角形的形状,应从三角形的边或角入手→已知∠A 、∠B 、∠C 的数量关系→△ABC 各内角的度数→△ABC 的形状.【解答】设∠A =x ,则∠B =2x ,∠C =3x . 根据题意,得x +2x +3x =180°,解得x =30°. ∴∠A =30°,∠B =60°, ∴△ABC 是直角三角形.【互动总结】(学生总结,老师点评)已知三角形内角的数量关系,可以利用“有两个角互余的三角形是直角三角形”判断三角形的形状.活动2 巩固练习(学生独学)1.在△ABC 中,若∠A +∠B =∠C ,则△ABC 是( B ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形2.如图,AB 、CD 相交于点O ,AC ⊥CD 于点C ,若∠BOD =38°,则∠A =52°.3.如图,Rt △ABC 中,∠ACB =90°,∠1=∠B ,∠2=∠3,则图中共有5个直角三角形.环节3课堂小结,当堂达标(学生总结,老师点评)1.直角三角形的两个锐角互余.2.有两个角互余的三角形是直角三角形.请完成本课时对应练习!11.2.2三角形的外角(第3课时)一、基本目标【知识与技能】1.三角形的外角的定义和性质.2.能利用三角形的外角性质解决问题.【过程与方法】通过合作研究三角形的内、外角之间的关系,提高学生的合作意识和沟通、表达能力.【情感态度与价值观】通过观察和动手操作,体会探索过程,学会推理的数学方法,培养主动探索、勇于发现、敢于实践及合作交流的习惯.二、重难点目标【教学重点】与三角形的外角有关的性质.【教学难点】三角形外角性质的推导.环节1自学提纲,生成问题【5 min阅读】阅读教材P14~P15的内容,完成下面练习.【3 min反馈】1.如图1,把△ABC的一边BC延长,得到∠ACD.像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.2.试结合图形写出证明过程:证明:过点C作CM∥AB,延长BC到点D,则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等),所以∠1+∠2=∠A+∠B,即∠ACD=∠A+∠B.3.三角形的一个外角等于与它不相邻的两个内角的和.4.△ABC中,∠A=80°,∠B=40°,∠ACD是△ABC的一个外角,则∠ACD=120°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角,它们的和是多少?(方法一)见教材P15解答过程.(方法二)【互动探索】(引发学生思考)考虑利用平角的性质与三角形的内角和定理求解.【解答】∵∠BAE=180°-∠1,∠CBF=180°-∠2,∠ACD=180°-∠3,∴∠BAE+∠CBF+∠ACD=180°-∠1+180°-∠2+180°-∠3=540°-(∠1+∠2+∠3)=540°-180°=360°.【互动总结】(学生总结,老师点评)(1)由此题可以得出:任意三角形的外角和都等于360°.(2)拓展:任意多边形的外角和都等于360°(同学们可自行进行证明).活动2巩固练习(学生独学)1.如果将一副三角板按如图方式叠放,那么∠1等于(B)A.120° B.105°C.60° D.45°2.求下列各图中∠1的度数.解:左图:∠1=90°;中图:∠1=80°;右图:∠1=95°.3.求下列各图中∠1和∠2的度数.解:左图:∠1=60°,∠2=30°;右图:∠1=50°,∠2=140°.活动3拓展延伸(学生对学)【例2】如图所示,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP=30°,求∠A的度数.【互动探索】∠A与已知角不在同一个三角形内→考虑作辅助线→利用三角形外角的性质求解.【解答】延长BP交AC于点E,则∠BPC、∠PEC分别为△PCE、△ABE的外角.∴∠BPC=∠PEC+∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°,∴∠A=∠PEC-∠ABE=120°-20°=100°.【互动总结】(学生总结,老师点评)解决此类题的一般方法是作辅助线,利用三角形外角的性质将已知与未知的角联系起来计算角的度数.此题也可以延长CP与AB相交,还可以连结AP并延长与BC相交,同学们可以自己尝试另外两种解法.环节3课堂小结,当堂达标(学生总结,老师点评)三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.请完成本课时对应练习!11.3多边形及其内角和11.3.1多边形(第1课时)一、基本目标【知识与技能】1.了解多边形及有关概念,理解正多边形及其有关概念.2.能正确判断正多边形的对角线条数.【过程与方法】通过类比三角形的概念归纳多边形的概念,能从实物中辨别寻找出几何图形,并由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识.【情感态度与价值观】了解类比这种重要的数学学习方法,体验生活中处处有数学.二、重难点目标【教学重点】多边形、正多边形的概念.【教学难点】解决有关多边形对角线条数的问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P19~P20的内容,完成下面练习.【3 min反馈】1.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形) 2.多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.4.各个角都相等,各条边都相等的多边形叫做正多边形.5.下列图形不是凸多边形的是(D)环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】合作探究,完成下表,将你的思路与同学交流、分享.多边形边数(n ) 四边形 五边形 六边形… n 边形 现规律,总结出n 变形的对角线总条数.【解答】【互动总结】(学生总结,老师点评)熟记n (n >3)边形的对角线总条数为n (n -3)2.活动2 巩固练习(学生独学)1.下列图形中,是正多边形的是( D ) A .直角三角形 B .等腰三角形 C .长方形D .正方形2.九边形的对角线有( C ) A .25条 B .31条 C .27条D .30条 3.下列不是凸多边形的是( C )4.连结多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( D )A .五边形B .六边形C .七边形D .八边形4.一个n 边形共有n (n -3)2条对角线,那么十边形共有35条对角线.活动3 拓展延伸(学生对学)【例2】若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17【互动探索】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则原来的多边形的边数可能为14,15或16.【答案】A【互动总结】(学生总结,老师点评)一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.多边形、多边形的内角、边、对角线、正多边形的概念. 2.正多边形需满足两个条件:(1)各边相等;(2)各角相等. 3.n (n >3)边形的对角线条数为n (n -3)2.请完成本课时对应练习!11.3.2多边形的内角和(第2课时)一、基本目标【知识与技能】掌握多边形的内角和公式、多边形的外角和是360°及其简单运用.【过程与方法】通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验.【情感态度与价值观】通过动手实践、相互间的交流,进一步激发学习热情和求知欲望.同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索性和创造性.二、重难点目标【教学重点】多边形内角和公式及多边形的外角和.【教学难点】多边形内角和公式的推导.环节1自学提纲,生成问题【5 min阅读】阅读教材P21~P23的内容,完成下面练习.【3 min反馈】1.三角形的内角和为180°.2.探究四边形的内角和是多少?(1)展示1:分成2个三角形,180°×2=360°;(2)展示2:分成4个三角形,180°×4-360°=360°;(3)展示3:分成3个三角形,180°×3-180°=360°.展示1展示2展示33.将下表填写完整:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的边教学对象:八年级(4)、(6)班 备课时间:2016/9/1教学用具:PPT 课件、教案、课本等 教学目标:1、知识与技能:了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。

%教学重点:三角形的有关概念和符号表示,三角形三边间的不等关系是重点 教学难点:用三角形三边不等关系判定三条线段可否组成三角形是难点 教学过程: 一、情景导入三角形是一种最常见的几何图形,]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢 二、三角形及有关概念/bc(1)CBA不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示. 三、三角形三边的不等关系探究:任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择各条路线的长一样吗为什么有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC >BC ①;因为两点之间线段最短。

同样地有 AC+BC >AB ② AB+BC >AC ③ 由式子①②③我们可以知道什么 三角形的任意两边之和大于第三边.¥四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:三角形 直角三角形斜三角形 锐角三角形钝角三角形那么三角形按边如何进行分类呢请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形;,有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。

}⎧⎨⎩⎧⎨⎩显然,等边三角形是特殊的等腰三角形。

按边分类:三角形 不等边三角形等腰三角形 底和腰不等的等腰三角形等边三角形 例题例 :用一条长为18㎝的细绳围成一个等腰三角形。

(1)如果腰长是底边的2倍,那么各边的长是多少(2)能围成有一边长为4㎝的等腰三角形吗为什么分析:(1)等腰三角形三边的长是多少若设底边长为x ㎝,则腰长是多少(2)“边长为4㎝”是什么意思`解:(1)设底边长为x ㎝,则腰长2 x ㎝。

x+2x+2x=18 解得x=所以,三边长分别为㎝,㎝,㎝.(2)如果长为4㎝的边为底边,设腰长为x ㎝,则 4+2x=18 解得x=7如果长为4㎝的边为腰,设底边长为x ㎝,则;2×4+x=18 解得x=10因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。

由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习课本4頁练习1、2题。

六、课堂小结1、三角形及有关概念;,⎧⎨⎩⎧⎨⎩2、三角形的分类;3、三角形三边的不等关系及应用。

八、作业:课本8頁1、2、6;三角形的高、中线与角平分线<教学对象:八年级(4)、(6)班备课时间:2016/9/1教学用具:PPT课件、教案、课本等教学目标:1、知识与技能:经历画图的过程,认识三角形的高、中线与角平分线;会画三角形的高、中线与角平分线;了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。

教学重点:*三角形的高、中线与角平分线是重点教学难点:三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点教学过程一、导入新课我们已经知道什么是三角形,也学过三角形的高。

三角形的主要线段除高外,还有中线和角平分线值得我们研究。

二、三角形的高请你在图中画出△ABC 的一条高并说说你画法。

,从△ABC 的顶点A 向它所对的边BC 所在的直线画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的高,表示为AD ⊥BC 于点D 。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC 边上的高,看看有什么发现 三角形的三条高相交于一点。

如果△ABC 是直角三角形、钝角三角形,上面的结论还成立吗 现在我们来画钝角三角形三边上的高,如图。

显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

!上面的结论还成立。

三、三角形的中线如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的中线,表示为BD=DC 或BD=DC =1/2BC 或2BD=2DC=BC.A ?CODE F21DCBA请你在图中画出△ABC的另两条边上的中线,看看有什么发现三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗请画图回答。

上面的结论还成立。

-四、三角形的角平分线如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线,表示为∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。

思考:三角形的角平分线与角的平分线是一样的吗三角形的角平分线是线段,而角的平分线是射线,是不一样的。

请你在图中再画出另两个角的平分线,看看有什么发现三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗请画图回答。

^上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习课本5頁练习1、2题。

六、课堂小结1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。

,八、作业:课本8頁3、4;三角形的稳定性教学对象:八年级(4)、(6)班:备课时间:2016/9/2教学用具:PPT课件、教案、课本等教学目标:1、知识与技能:知道三角形具有稳定性,四边形没有稳定性;了解三角形的稳定性在生产、生活中的应用。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。

教学重点:三角形稳定性及应用`教学难点:三角形稳定性及应用教学过程一、情景导入盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢*二、三角形的稳定性〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗(2)不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗—会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗不会改变。

从上面的实验中,你能得出什么结论三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。

如:钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。

@你还能举出一些例子吗?四、课堂练习1、下列图形中具有稳定性的是()A正方形 B长方形 C直角三角形 D平行四边形2、要使下列木架稳定各至少需要多少根木棍3、课本7頁练习。

五、作业:8頁5;9頁10题。

"(三角形的内角教学对象:八年级(4)、(6)班备课时间:2016/9/2教学用具:PPT课件、教案、课本等教学目标:}1、知识与技能:掌握三角形内角和定理。

2、过程与方法:在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。

3、情感态度与价值观:体会数学与现实生活的联系,增强克服困难的勇气和信心。

教学重点:三角形内角和定理是重点;教学难点:三角形内角和定理的证明是难点。

教学过程:@一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出 ∠BCD 的度数,可得到∠A+∠B+∠ACB=1800。

图1%想一想,还可以怎样拼①剪下∠A ,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800。

图2②把和剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=1800。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗 已知△ABC ,求证:∠A+∠B+∠C=1800。

^证明一过点C 作CM ∥AB ,则∠A=∠ACM ,∠B=∠DCM ,B ∠C∠又∠ACB+∠ACM+∠DCM=1800∴∠A+∠B+∠ACB=1800。

即:三角形的内角和等于1800。

由图2、图3你又能想到什么证明方法请说说证明过程。

三、例题例如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度.分析:怎样能求出∠ACB的度数根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可。

∠CAB等于多少度怎样求∠CBA的度数解:∠CBA=∠BAD-∠CAD=800-500=300∵AD∥BE ∴∠BAD+∠ABE=1800∴∠ABE=1800-∠BAD=1800-800=1000∴∠ABC=∠ABE-∠EBC=1000-400=600:∴∠ACB=1800-∠ABC-∠CAB==900答:从C岛看AB两岛的视角∠ACB=1800是900。

四、课堂练习课本13頁1、2题。

五、作业:16頁1、3、4;三角形的外角.教学对象:八年级(4)、(6)班备课时间:2016/9/4教学用具:PPT课件、教案、课本等教学目标:1、知识与技能:理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。

相关文档
最新文档