解一元一次不等式各个步骤的根据

合集下载

一元一次不等式组(基础) 知识讲

一元一次不等式组(基础) 知识讲

一元一次不等式组(基础)知识讲解责编:杜少波【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组 (1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

一元一次不等式组的解法过程

一元一次不等式组的解法过程

一元一次不等式组的解法过程
一元一次不等式是以一元一次方程作为基础,将加法或减法操作应用在方程右边,把无解方程化成有解方程的经典题型。

以下是解一元一次不等式组的方法步骤:
1、将一元一次不等式组改写成等式组:即把所有的不等式变成等号,并把所有的等号变成不等号。

2、利用等号的同类项加减:即让两边的变量相连,然后把该变量的系数分别相加减。

3、利用减号的同类项分开:即把不等号右边的减号的同类项分开,把左右两边的未知数各自相减,得出未知数的值或范围。

4、重新把等式变成不等式:将上一步求出的未知数值或范围根据原不等式组的符号状态,重新把等式变回不等式。

5、得出最后答案。

一元一次不等式组的解法步骤例题

一元一次不等式组的解法步骤例题

一元一次不等式组的解法步骤一元一次不等式组是数学中常见的一类问题,它可以通过一定的方法和步骤得到解决。

在本文中,我们将针对一元一次不等式组的解法步骤进行全面评估,并提供例题来帮助读者更深入理解。

解法步骤:1. 确定不等式组的条件:我们需要明确所给出不等式组的条件。

不等式组通常包括多个不等式,我们需要确保每个不等式都满足一元一次不等式的标准形式,即ax+b>c或ax+b<c。

2. 求出每个不等式的解集:针对每个不等式,我们需要求出其解集。

这一步骤需要运用代数式的加减乘除法,并结合不等式的性质来确定不等式的解集。

3. 得出整体的解集:在求出每个不等式的解集之后,我们需要将这些解集合并起来,求得整体的解集。

在合并解集的过程中,需要注意考虑每个不等式的关系,以确保得出正确的整体解集。

下面我们通过一个具体的例题来展示以上的解法步骤:例题:求解不等式组 {2x+1>5, 3x-2<7}解法步骤:1. 确定不等式组的条件:给出的不等式组已经满足一元一次不等式的标准形式,因此不需要进行进一步的调整。

2. 求出每个不等式的解集:分别对每个不等式进行求解,得到2x>4和3x<9。

通过简单的代数运算,我们可以得到x>2和x<3。

3. 得出整体的解集:通过整合每个不等式的解集,我们可以得到最终的解集为2<x<3。

个人观点和理解:从上面的例题中可以看出,解决一元一次不等式组主要是通过逐步求解各个不等式,然后再将它们的解集合并起来,得到最终的整体解集。

在这个过程中,需要注意准确地运用代数运算,同时也要考虑不等式之间的关系,确保最终的解集是正确的。

总结回顾:通过本文的讲解和例题,我们对一元一次不等式组的解法步骤有了更深入的了解。

从确定条件、求解各个不等式到得出整体的解集,这些步骤是解决一元一次不等式组问题的关键。

我们也注意到在解题的过程中,需要不断地练习和总结,才能更熟练地应对各种类型的不等式组问题。

一元一次不等式的解法

一元一次不等式的解法

一元一次不等式的解法
解一元一次不等式的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤
系数化为1;⑥其中当系数是负数时,不等号的方向要改变。

(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。

(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。

(3)移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。

(4)合并同类项。

(5)将未知数的系数化为1:根据不等式基本性质2或3,特别要注意系数化为1时,系数是负数,不等号要改变方向。

(6)有些时候需要在数轴上表示不等式的解集。

不等式的基本性质1:不等式两边加或减同一个数或式子,不等号的方向不变。

用式子表示:如果a>b,那么a±c>b±c
不等式的基本性质2:不等式两边都乘或除以同一个正数,不等号的方向不变。

用式子表示:如果a>b,c>0,那么ac>bc
不等式的基本性质3:不等式两边乘或除以同一个负数,不等号的方向改变。

用式子表示:如果a>b,c<0,那么ac<bc
感谢您的阅读,祝您生活愉快。

一元一次不等式组的解法经典例题透析

一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。

思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。

解析:解不等式①,得x≥-;解不等式②,得x<1。

所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。

总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。

有等号画实心圆点,无等号画空心圆圈。

举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。

解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。

即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。

所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。

思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。

解一元一次不等式口诀

解一元一次不等式口诀

求一元一次不等式组解集的口诀
解一元一次不等式组分两步:第一、“分开解”,即分别求各个不等式的解集.第二、“集中判”,将各个解集在数轴上表示出来,判定不等式组的解集. 对于一元一次不等式组的解集是利用数轴来求的,为了便于记忆,,我们不妨根据等式组解集的四种特点并结合数轴归纳其口诀,奉献给读者.
一、同大取大:即在一个不等式组的最后解集中,如果两个不等号都是大于号,则取较大数作为解集.
例:)(b a b x a x ⎩⎨⎧则不等式组的解集为:
x >a ,在数轴上表示为:如图1;
二、同小取小:即在一个不等式组最后的解集中,如果两个不等号
都是小于号,则取较小数作为解集.
例:)(b a b
x a x ⎩⎨⎧则不等式组的解集为:x <a ,在数轴上表示为:
如图2;
三、大小小大中间夹:即在一个不等式组最后的解集中,如果大
于号对的是小数而小于号对的是大数,则取两数中间的部分作为
集为.
例:)(b a a
x b x ⎩⎨⎧则不等式组的解集为:b <x <a ,在数轴上表示为:如图3;
四、大大小小无解答:即在一个不等式组最后的解集中,如果大于号对的是大数而小于号对的是小数,则这个不等式组无解. 例:)(b a b x a x ⎩
⎨⎧则不等式组无解,在数轴上表示为:如图4; 因此得到求一元一次不等式组解集的口诀:
同大取大,同小取小,大小小大中间夹,大大小小无解答.

3 图4。

高中数学论文一元一次不等式组复习要点

高中数学论文一元一次不等式组复习要点

一元一次不等式组复习要点一元一次不等式组,是初中数学的重要内容。

它在中考中也占有非常重要的地位。

为了帮助同学们掌握好这一部分的内容,本文从一元一次不等式组的基础知识梳理、一元一次不等式组的解题要领和一元一次不等式组的题型归纳三个方面,对这一部分的内容进行梳理归纳,希望能对同学们的学习有帮助。

一、基础知识梳理1、一元一次不等式组的定义:有两个或两个以上的一元一次不等式组成的一组不等式。

说明:一个一元一次不等式组中至少要包含两个一元一次不等式。

2、一元一次不等式组的常见类型我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常把一元一次不等式组分成如下的四类:设a >b① 大于型:⎩⎨⎧b x a x , ②小于型:⎩⎨⎧bx a x ,③小大、大小型:⎩⎨⎧b x a x , ④大大、小小型:⎩⎨⎧b x a x 。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。

但是,在解题的过程中,这个等号要与相连的不等号,不能分开。

3、一元一次不等式组解集的确定确定一元一次不等式组的解集,是解一元一次不等式组的关键点。

为此,我们为同学们,提供如下的口诀,帮助同学们在最关键时候收好关。

具体为:大于号,大于号,留下大数错不了。

小于号、小于号,留下小数错不了。

小于、大于混其中,两种情况要分清,小于号连大数,解集就在中间驻。

小于号接小数,一定无解即清楚。

二、一元一次不等式组解题的要领解一元一次不等式组,不能象解一元一次不等式那样,步步都要书写,特别是求每一个不等式的解集时,详细的解题过程都应写在草纸上,只保留如下四个主要步骤,具体模式为: 解:不等式(1)的解集是 ,不等式(2)的解集是 ,所以,原不等式组的解集是 ,在数轴上的表示为 。

第四环节,如果题目不作要求,同学们就可以不用画数轴。

当然,画数轴,能帮你检验你确定的解集的正误,是你能及时把错误矫正过来。

一元一次不等式及其解法—去分母

一元一次不等式及其解法—去分母

2023一元一次不等式及其解法—去分母•引言•去分母法的原理•如何去分母目录•常见错误分析•练习题及解析•总结与回顾01引言复习一元一次不等式的定义和表示方法引导学生在一元一次不等式中寻找关键信息课程导入介绍去分母法的定义:将不等式两边乘以最小公倍数,将高分母转化为低分母强调去分母法在一元一次不等式解法中的重要性:将不等式化简为更易求解的形式去分母法的定义和重要性掌握去分母法的实施步骤和注意事项学会利用去分母法解决一元一次不等式问题理解去分母法在解决实际问题中的应用本章节的学习目标02去分母法的原理等式两边同乘或同除一个非零数,等式不变不等式两边同乘或同除一个正数,不等号不变;不等式两边同乘或同除一个负数,不等号方向改变去分母法的理论依据1. 将不等式左右两边同时乘以各分母的最小公倍数3. 将不含分母的项移到不等式的另一边2. 对于只在一个分母中含有的因子,为了简便运算,可将其提取到不等式的一边4. 对不等式进行化简或变形确定各分母的最小公倍数,确保等式成立针对每个分母分别去分母,避免漏乘或错乘最后检查不等式的解是否符合原不等式的实际意义注意运算顺序和符号处理,尤其是负数的情况03如何去分母找出所有分母的最小公倍数。

最小公倍数可以通过观察分母的倍数关系,或者通过分解质因数的方法来求得。

将不等式中所有分母转化为最小公倍数。

确定分母的最小公倍数通过等式两边同时乘以适当的倍数,将不等式中所有分母转化为相同的倍数。

特别地,如果所有分母的最小公倍数是1,则不需要进行转化。

将所有分母转化为相同的倍数通过等式两边同时乘以适当的倍数,将不等式中所有分子的倍数转化为相同的倍数。

特别地,如果分子本身就是最小公倍数,则不需要进行转化。

将分子也转化为相同的倍数04常见错误分析避免在不等式两边同时乘以一个含有未知数的单项式时漏乘。

常见错误类型及避免方法漏乘避免在不等式两边同时除以一个含有未知数的单项式时,系数没有归一化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次不等式各个步骤的根据、做法、注意事项如下:
(1)去分母:
做法:不等式两边同乘分母的最小公倍数.
注意:①不要漏乘不含分母的项.
②分子是一个代数式时,分数线有括号的作用,去分母后应作为一个整体加上括号.
③不等式两边都乘同一个负数时,不等号方向要改变.
(2)去括号:
做法:先去小括号,再去中括号,最后去大括号.
注意:①一个数乘多项式时,不要漏乘括号里的项.
②不要出现符号的错误.
(3)移项:
做法:把含有未知数的项移到不等式的一边,其他项都移到不等式的另一边.注意:移项时该项要变号、不要漏项.
(4)合并同类项:
做法:系数相加,字母和字母的指数不变,把不等式化为ax>b或ax<b(a不等于0)的形式.
注意:符号问题.
(5)系数化为1:
做法:①不等式两边都乘未知数项系数(如果它是分数)的倒数.
②不等式两边都除以未知项系数.
注意:①不要把分子、分母搞颠倒.
②不等式两边都乘(或除以)同一个负数时,不等号方向要改变.
本题中不等式中不含有分母,因此只需要使用“移项,合并同类项,将变量的系数化为1”,最终就
可求出不等式的解集.
评论(4)|11。

相关文档
最新文档