1.1函数与极限

合集下载

高等数学教材二目录

高等数学教材二目录

高等数学教材二目录第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念及基本性质1.3 极限的运算法则1.4 无穷小与无穷大1.5 一元函数的连续性第二章:导数与微分2.1 导数的定义与性质2.2 基本函数的导数2.3 高阶导数与隐函数求导2.4 微分的概念及其应用2.5 泰勒公式与应用第三章:函数的应用3.1 函数的单调性与极值3.2 函数的最值与最值问题3.3 简单的应用问题3.4 分类讨论与探究第四章:不定积分4.1 不定积分的概念与基本性质 4.2 基本积分公式与换元法4.3 牛顿-莱布尼茨公式与应用 4.4 微分方程的基本概念4.5 可降次的微分方程第五章:定积分与定义5.1 定积分的概念与性质5.2 积分中值定理与应用5.3 积分的换元法与分部积分 5.4 可积函数与不可积函数5.5 微元法与应用第六章:定积分的应用6.1 曲线下的面积与弧长6.2 旋转体的体积与侧面积6.3 质量、质心与转动惯量6.4 弹性势能与物体受力6.5 场景模拟与实际问题第七章:多元函数的偏导数与全微分 7.1 二元函数与偏导数7.2 偏导数的连续性与可导性7.3 二元函数的全微分与近似计算 7.4 复合函数的求导法则7.5 总微分与偏导数的几何意义第八章:多元函数的积分8.1 二重积分的概念与性质8.2 二重积分的计算方法8.3 三重积分与坐标变换8.4 曲线与曲面的面积8.5 曲线积分与曲面积分第九章:无穷级数9.1 数列及其极限9.2 级数的概念与性质9.3 正项级数的审敛法与上下界9.4 绝对收敛与条件收敛9.5 幂级数与函数展开第十章:常微分方程10.1 常微分方程的基本概念10.2 一阶线性微分方程10.3 高阶线性常微分方程10.4 非齐次线性微分方程10.5 高阶线性方程的振动与抽样总结:通过本教材的学习,读者将对高等数学的核心概念及其应用有深入的了解。

每个章节都涵盖了特定的数学内容,从函数与极限开始深入探讨到常微分方程的应用。

高等数学a1_学习笔记

高等数学a1_学习笔记

第一章:函数与极限1.1函数的定义与性质1.2极限的概念与计算1.3右极限与左极限1.4极限的性质第二章:连续性2.1连续函数的定义2.2连续性的判别2.3连续函数的性质2.4介值定理第三章:导数与微分3.1导数的定义与几何意义3.2导数的计算法则3.3微分的概念与应用3.4逻辑与高阶导数第四章:应用导数4.1函数的单调性与极值4.2曲线的凹凸性与拐点4.3应用导数解决实际问题4.4L'Hôpital法则第五章:定积分5.1定积分的定义与性质5.2定积分的计算方法5.3牛顿莱布尼茨公式5.4定积分的应用第六章:不定积分6.1不定积分的基本概念6.2常见的不定积分公式6.3不定积分的计算技巧6.4分部积分法与换元积分法第1章:函数与极限函数的定义与性质函数的定义:一个函数是一个将每个输入(自变量)与一个唯一的输出(因变量)相对应的关系。

通常用f(x)表示,其中x是自变量。

定义域:函数的定义域是所有可能的自变量x的集合。

值域:函数的值域是所有可能的因变量f(x)的集合。

例子:f(x)=x^2,定义域为所有实数,值域为所有非负实数。

单调性:如果对于任意的x1<x2,有f(x1)<f(x2),则f(x)是单调递增的;反之则是单调递减的。

有界性:如果存在M,使得对所有x,|f(x)|≤M,则f(x)是有界的。

奇偶性:如果f(x)=f(x),则f(x)是奇函数;如果f(x)=f(x),则f(x)是偶函数。

周期性:如果存在T,使得f(x+T)=f(x),则f(x)是周期函数。

例子:正弦函数sin(x)是周期函数,其周期为2π。

复合函数:如果g(x)是另一个函数,则复合函数f(g(x))是将g(x)的输出作为f(x)的输入。

例子:若f(x)=x^2,g(x)=x+1,则复合函数f(g(x))=(x+1)^2。

反函数:若f(x)是单调函数,则存在反函数f^(1)(x),使得f(f^(1)(x))=x。

高等数学第一章《函数与极限》

高等数学第一章《函数与极限》

第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。

高等数学(电子版)

高等数学(电子版)

高等数学(电子版)第一章函数与极限1.1 函数的概念函数是数学中最基本的概念之一,它描述了两个变量之间的依赖关系。

在高等数学中,我们主要研究实数集上的函数,即定义域和值域都是实数集的函数。

1.2 函数的性质函数具有许多重要的性质,如单调性、奇偶性、周期性等。

这些性质有助于我们更好地理解和分析函数的行为。

1.3 极限的概念极限是研究函数在某一点附近行为的一种方法。

当我们讨论一个函数的极限时,我们关注的是当自变量趋近于某个特定值时,函数值的变化趋势。

1.4 极限的运算法则极限运算法则是指对于一些基本函数的极限,我们可以通过简单的运算得到它们的极限。

这些运算法则包括极限的四则运算、复合函数的极限、数列的极限等。

1.5 无穷小与无穷大无穷小与无穷大是描述函数极限的两种特殊情况。

无穷小是指当自变量趋近于某个特定值时,函数值趋近于0;无穷大是指当自变量趋近于某个特定值时,函数值趋近于正无穷大或负无穷大。

1.6 连续性与间断点连续性是函数的一个重要性质,它描述了函数在某一点附近的行为。

如果一个函数在某个点连续,那么它在该点附近的极限存在且等于该点的函数值。

间断点是函数不连续的点,它们在函数图像上表现为跳跃或断开。

第二章导数与微分2.1 导数的概念导数是描述函数在某一点附近变化率的一种方法。

它表示了函数在该点的斜率,即函数图像在该点的切线斜率。

2.2 导数的运算法则导数运算法则是指对于一些基本函数的导数,我们可以通过简单的运算得到它们的导数。

这些运算法则包括导数的四则运算、复合函数的导数、幂函数的导数等。

2.3 高阶导数高阶导数是指函数的导数的导数。

它们描述了函数在某一点附近更复杂的变化率。

高阶导数在研究函数的凹凸性、拐点等方面具有重要意义。

2.4 微分的概念微分是导数的一种应用,它描述了函数在某一点附近的微小变化。

微分运算可以用来求解一些实际问题,如曲线的切线问题、最值问题等。

2.5 微分的应用微分在物理学、工程学等领域有广泛的应用。

高数大一必考知识点归纳

高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。

为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。

1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。

1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。

1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。

2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。

2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。

2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。

3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。

3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。

3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。

4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。

4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。

4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。

5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。

5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。

5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。

综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。

大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。

大一高数第一二章知识点

大一高数第一二章知识点

大一高数第一二章知识点高等数学是大多数理工科专业的基础课程之一,它为我们提供了解决实际问题的数学方法和工具。

在大一的学习过程中,我们通常会学习高数的第一二章知识点,从简单的函数概念和性质开始,逐渐深入到导数的定义和应用。

下面我们来一起回顾这些重要的知识点。

第一章:函数与极限1.1 函数的概念与性质函数是一种数学关系,它将一个自变量的集合映射到一个因变量的集合。

函数可以用公式、图像或者图表来表示。

我们通常会考虑函数的定义域、值域、奇偶性和周期性等性质。

1.2 极限的概念与性质极限是描述函数变化趋势的概念。

当自变量无限接近某个值时,函数的取值也会无限接近一个确定的值。

我们通常用极限符号“lim”来表示。

重要的极限性质包括极限存在性、极限唯一性和四则运算法则等。

1.3 极限的计算方法在计算极限时,我们可以运用一些基本的极限公式和运算法则。

这包括常用的极限:无穷大与无穷小、有界函数的极限、基本初等函数的极限等。

第二章:导数与微分2.1 导数的定义与性质导数是描述函数变化速率的概念。

它表示函数在某一点的瞬时变化率,可以理解为函数曲线在该点的切线斜率。

导数的定义是极限的一种特殊形式,通常用“f'(x)”或者“dy/dx”表示。

2.2 导数的计算方法导数的计算方法主要包括用基本导数公式、四则运算法则、链式法则和隐函数求导法则等。

这里需要掌握一些常用函数的导数,如多项式函数、指数函数、对数函数和三角函数等。

2.3 导数的应用导数的应用非常广泛,它可以用来解决实际问题。

应用方面包括函数的最值问题、曲线的凸凹性与拐点、函数图像的草图和导数的物理意义等。

通过对大一高数第一二章的学习,我们能够加深对函数与极限、导数与微分的理解。

掌握这些重要的知识点,不仅能够解决一些实际问题,还能为后续更深入的数学学习奠定坚实的基础。

因此,在学习高数的过程中,我们要多加练习,理解每个概念和定理的思想和逻辑,同时注意思维的拓展和应用的实践。

大学高数第一章函数和极限

大学高数第一章函数和极限

x1
x1
x1
x1
3lim x2 2 lim x 1
x1
x1
312 2 11 2
可见,上例求极限,可以直接用定理 1.1 中的(1).
只须将 x x0 之 x0 代入函数中的 x 处运算即可。
例 求 limx(x 2) x2 x2 1
解:lx im 2 x(xx2 12)
limx(x2) xl i2m (x2 1)
必经过点(0,1)
f(x)log2 x
f (x)log0.5 x
正弦、余弦函数基本性质
解析式: ysinx/cosx
基本特征:定义域为实数集R,值域为[-1,1],最小正
周期T为 2
正切、余切函数基本性质
解析式: ytanx/cotx
基本性质:正切函数定义域为 {x|x2k,,余kZ}
医用高等数学
第1章 函数和极限
1.1 函数 1.1.1函数的概念
定义 1.1 设 X ,Y 是非空数集,对于集合 X 中的任意一个数 x , 在集合 Y 中均有确定值 y 与其对应,则称 y 是 x 的函数,记为:
y f (x) ,其中 x 称为自变量, y 称为因变量,
其中,集合 X 称为定义域,集合 Y 称为值域。
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是 变量 x 的函数,即: y f (u), u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
例 讨论函数 f (x) | x | 当 x 0 时的极限. x

大学本科数学教材高等数学

大学本科数学教材高等数学

大学本科数学教材高等数学高等数学是大学本科数学教材中的重要组成部分。

它是一门综合性科学,涉及了微积分、线性代数、概率统计等多个数学分支。

通过学习高等数学,学生能够掌握基本的数学思维方法和问题求解能力,为后续学习和专业发展奠定坚实基础。

第一章微积分微积分是高等数学的核心内容之一。

它是研究函数的变化规律、导数、积分和微分方程等数学工具的科学。

本章将介绍函数与极限、导数与微分、积分与微分方程等内容。

1.1 函数与极限函数是数学中的基本概念,它描述了自变量和因变量之间的关系。

极限是函数的重要性质之一,它描述了函数在某一点附近的变化趋势。

我们将学习函数的定义、极限的概念与性质,以及如何计算极限。

1.2 导数与微分导数是函数变化率的度量,描述了函数在某一点的瞬时变化速率。

微分是导数的几何意义,它描述了函数图像的局部线性近似。

我们将学习导数的定义、计算方法、导数的应用等内容。

1.3 积分与微分方程积分是导数的逆运算,描述了函数的累积效应。

微分方程是描述自然现象的数学模型,涉及到微分和函数求解。

我们将学习积分的定义、计算方法,以及如何解微分方程。

第二章线性代数线性代数是研究向量空间及其上的线性变换的一门学科。

它在数学和应用领域都具有广泛的应用。

本章将介绍向量空间、线性变换、矩阵、行列式等内容。

2.1 向量空间向量空间是线性代数的基础概念,它描述了具有加法、数乘运算的集合。

我们将学习向量空间的定义、性质,以及如何判断一个集合是否为向量空间。

2.2 线性变换线性变换是向量空间之间的一种特殊映射,保持向量空间的线性结构不变。

我们将学习线性变换的定义、性质,以及如何求线性变换的矩阵表示。

2.3 矩阵与行列式矩阵是线性代数中的重要工具,它可以方便地表示线性变换和方程组。

行列式是矩阵的一个重要性质,它用于求解线性方程组的解。

我们将学习矩阵的基本运算、逆矩阵的求解,以及行列式的定义与计算方法。

第三章概率与统计概率与统计是研究随机事件及其规律的数学学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意: 1) 映射的三要素— 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
对映射
若 f (X ) Y , 则称 f 为满射;
X
f Y f (X)

有 X
Y
则称 f 为单射; 若 f 既是满射又是单射, 则称 f 为双射 或一一映射.
例1. 设f : R R, 对每个x R, f ( x) x2.
4(1)(3)(7)(9);6; 12(1)(5);15(1)(4);16.
x2 , 1 x 0
例. 求 y ln x , 0 x 1 的反函数及其定义域.
2ex1, 1 x 2
y
解: 当 1 x 0 时, y x2(0,1] ,
2e
则 x y , y (0,1]
当0 x 1 时, y ln x ( , 0] ,
与初等数学相比较,高等数学呈现出概念更 复杂、理论性更强、表达形式更抽象、推理更 严谨的显著特点.
为什么要学习高等数学?
•数学不仅是学习专业课程与工程计算的工 具,而且是创新人才攀登现代科技高峰的必 要基础; •思想方法的熏陶和能力的培养; •为学生打下“终身受用”的数学基础; •数学教育是一种素质教育。
则称 f (x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ). y
2 o 2 x
周期为
周期为
注: 周期函数不一定存在最小正周期 .
例如, 常量函数 f (x) C
狄里克雷函数
1, x 为有理数 0 , x 为无理数
3. 反函数与复合函数
(1) 反函数
若函数
为单射, 则存在逆映射
f是一个映射,D f R, R f { y / y 0}
例2. 设X {( x, y) | x2 y2 1},Y {( x,0) | x 1}, f : X Y , 对每个( x, y) X , 有唯一确定的
(x,0) Y与之对应。
例3. 设f :[ , ] [1,1],对每个x [ , ], f (x) sin x.
二、 映射
1. 映射的概念 引例1.
某校学生的集合
学号的集合
按一定规则查号
某教室座位
某班学生的集合
的集合
按一定规则入座
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
与之对应 , 则
称 f 为从 X 到 Y 的映射, 记作 f : X Y.
Байду номын сангаас
X
f
Y
基本概念:像 、原像、定义域、值域、单射、满射 双射、逆映射、复合映射.
特例: R R 记 R 2
为平面上的全体点集
B ABAc
B AB A
3. 区间 开区间
a,b R,且a b.
{x a x b} 记作 (a,b)
oa
b
x
闭区间
{x a x b} 记作[a,b]
oa
b
x
左闭右开区间 {x a x b} 记作[a,b) 左开右闭区间 {x a x b} 记作 (a,b] 无穷区间 [a,) {x a x} (,b) {x x b}


则称 A 与 B 相等, 记作 A B .
例如 ,
,
,
显然有下列关系 :
定义 3 . 给定两个集合 A, B, 定义下列运算:
并集 A B x 交集 A B x
或 且
A B
B A
差集 A \ B x
且 xB
A\B AB
余集 BAc A \ B (其中B A)
直积 A B (x , y) x A, y B
例如, 映射
其逆映射为
(2) 复合映射
引例.
D1
D
手电筒
D2
复合映射 D
定义.
设有映射链
g
xD
f
u D1
u g(x) g(D)
则当 g(D) D1 时, 由上述映射链可定义由 D 到 Y 的复
合映射 , 记作
或 f g(x), x D.
g(D)
注意: 构成复合映射的条件 g(D) D1 不可少.
(2) 描述法:M x x 所具有的特征
例: 整数集合 Z x x N 或 x N
有理数集
Q
p q
pZ, q N,
p 与 q 互质
实数集合 R x x 为有理数或无理数
2. 集合之间的关系及运算
定义2 . 设有集合 A, B , 若 x A 必有 x B , 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 A B.
高等数学
课程性质
高等数学不仅为学习后续课程奠定必要 的数学基础,而且在工农业生产如国防、 经济等领域中有着广泛的应用,尤其在 计算机的使用日益普及的今天,本课程 的作用更显重要。是理工科大学生的一 门重要的数学基础课。
初等数学与高等数学有何区别? 研究的对象不同:
常量 → 变量
研究的方法不同:
静止孤立 → 辨证法
称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成 y f 1(x) , x f (D)
性质: 1) y=f (x) 单调递增 (减) 其反函数
且也单调递增 (减) .
2) 函数
与其反函数
的图形关于直线
对称 .
y Q(b, a)
yx y f (x)
例如 ,
2
f
(
1 t
)
11 , t
2, t
0t 1 t 1
定义域 D [0, )
t 0时
函数无定义
值 域 f (D) [0, )
2. 函数的几种特性
设函数 y f (x) , x D , 且有区间 I D .
(1) 有界性
x D , M 0, 使 f (x) M , 称 f (x)为有界函数. x I , M 0, 使 f (x) M , 称 f (x) 在 I 上有界.
说明: 还可定义有上界、有下界、无界 (见上册 P11 )
(2) 单调性

x1, x,2 f (x1) ,
f (Ix,)当x1
M
,x2称时为, 有上界
f( M
x2
), 称 f (x) 为 I 上的 f (单x)调, 称增函为数有下; 界
y
若 若f (x对1)任意f (正x2数), 称M ,f均(x存) 为在Ix上的D, 使 f (xx)1 xM2 , x
22
22
f是一个映射,D f
[ 2 , 2 ], Rf
[1,1].
2. 逆映射与复合映射
(1) 逆映射 定义: 若映射
使
为单射, 则存在一新映射 其中
称此映射 g 为 f 的逆映射 .
f
习惯上 , y f (x), x D D
f (D)
的逆映射记成
g
y f 1(x) , x f (D)
记 ch x 双曲余弦
ex
y e
x
y ch x
o
x
y
又如,
y
f (x) ex
ex 2
奇函数
ex
ex
y sh x

sh x 双曲正弦
o
x
再如,
y sh x ch x
ex ex
ex ex
奇函数

th x 双曲正切
y
1 y th x
o
x
1
(4) 周期性
x D, l 0, 且 x l D, 若
• 定义域
使表达式及实际问题都有意义的自变量
集合.
• 对应法则的表示方法: 解析法 、图象法 、列表法
例如, 反正弦函数
定义域
值域
又如, 绝对值函数 定义域 值域
例1. 已知函数
y
f
(x)
2 x, 1 x ,
0 x 1 x 1

f
(
1 2
)

f
(
1 t
)
,
并写出定义域及值域
.
解:
f
(
1 2
)
2
1 2
2.陈万勇、葛玉凤主编 高等数学学习指导 东南大 学出版社
3.詹瑞清、卢海敏主编 高等数学全真课堂 学苑出 版社
主要内容 1. 分析基础: 函数 , 极限, 连续★
2. 微积分学: 一元微积分(上册) ★ 多元微积分 (下册)
3. 常微分方程 ★
4. 无穷级数
5. 向量代数与空间解析几何
第一章 函数与极限
元素 a 不属于集合 M , 记作 a M ( 或 a M ) . M *表示 M 中排除 0 的集 ;
注: M 为数集
M 表示 M 中排除 0 与负数的集 .
表示法:
(1) 列举法:按某种方式列出集合中的全体元素 .
例:
有限集合
A
a1
,
a2
,,
an
ai
n i 1
自然数集 N 0, 1 , 2 , , n, n
则称 f ( x ) 无界单.调减函数 .
(3) 奇偶性
x D, 且有 x D,

则称 f (x) 为偶函数;
y

则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 , 则当 x o x x
f (x) 为奇函数时, 必有 f (0) 0.
例如,
y f (x) ex ex 偶函数 2
(d ) 三角函数 y sin x y cos x
相关文档
最新文档