江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学(word版含答案)

合集下载

2020-2021学年江苏省南京市高二上学期期中调研测试数学试题 Word版

2020-2021学年江苏省南京市高二上学期期中调研测试数学试题 Word版

南京市2020-2021学年度第一学期期中调研测试高 二 数 学2020.11注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置. 3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内,在其他位置作答一律无效.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.在平面直角坐标系xOy 中,已知抛物线x 2=2y 的焦点为F ,准线为l ,则点F 到直线l 的距离为A .12B .1C .2D .42.已知向量a =(-2,3,-1),b =(4,m ,n ),且a ∥b ,其中m ,n ∈R ,则m +n = A .4 B .-4 C .2 D .-2 3.若sin θ=2cos(π-θ),则tan(θ+π4)的值为 A .3 B .13C .-3D .-134.在平面直角坐标系xOy 中,若椭圆C :x 29+y 2m =1与双曲线T :x 2-y 2m =1有相同的焦点,则双曲线T 的渐近线方程为 A .y =±14x B .y =±12xC .y =±4xD .y =±2x5.在平面直角坐标系xOy 中,直线x +2y -4=0与两坐标轴分别交于点A ,B ,圆C 经过A ,B ,且圆心在y 轴上,则圆C 的方程为A .x 2+y 2+6y -16=0B .x 2+y 2-6y -16=0C .x 2+y 2+8y -9=0D .x 2+y 2-8y -9=06.如图,已知圆柱的底面半径为2,与圆柱底面成60°角的平面截这个圆柱得到一个椭圆,则该椭圆的焦距为A .2 2B .2 3C .42D .437.如图,在三棱柱ABC -A 1B 1C 1中,BC 1与B 1C 相交于点O ,∠A 1AB =∠A 1AC =60°, ∠BAC =90°,A 1A =3,AB =AC =2,则线段AO 的长度为 A .292B .29C .232D .23 8.在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,点M ,N 在双曲线C 上.若四边形OFMN 为菱形,则双曲线C 的离心率为 A .3-1 B .5-1 C .3+1 D .5+1二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得3分,不选或有错选的得0分.9.已知两个不重合的平面α,β及直线m ,下列说法正确的是A .若α⊥β,m ⊥α,则m ∥βB .若α∥β,m ⊥α,则m ⊥βC .若m ∥α,m ⊥β,则α⊥βD .若m ∥α,m ∥β,则α∥β10.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆 x 24+y 22=1的左、右焦点,点A 在椭圆上.若△AF 1F 2为直角三角形,则AF 1的长度可以为 A .1B .2C .3D .411.如图,直线l 1,l 2相交于点O ,点P 是平面内的任意一点,若x ,y 分别表示点P 到l 1,l 2的距离,则称(x ,y )为点P 的“距离坐标”.下列说法正确的是 A .距离坐标为(0,0)的点有1个 B .距离坐标为(0,1)的点有2个NP l 1(第6题)C 1(第7题)ABCB 1OC .距离坐标为(1,2)的点有4个D .距离坐标为(x ,x )的点在一条直线上12.20世纪50年代,人们发现利用静态超高压和高温技术,通过石墨等碳质原料和某些金属反应可以人工合成金刚石.人工合成金刚石的典型晶态为立方体(六面体)、八面体和立方八面体以及它们的过渡形态.其中立方八面体(如图所示)有24条棱、12个顶点、14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.已知一个立方八面体的棱长为1,则A .它的所有顶点均在同一个球面上,且该球的直径为2B .它的任意两条不共面的棱所在直线都相互垂直C .它的体积为523D .它的任意两个共棱的面所成的二面角都相等三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上. 13.在平面直角坐标系xOy 中,已知直线l 1:x +ay =0和直线l 2:2x -(a -3)y -4=0,a ∈R .若l 1与 l 2平行,则l 1与 l 2之间的距离为▲________.14.在空间直角坐标系中,若三点A (1,-1,a ),B (2,a ,0),C (1,a ,-2)满足(AB →-2AC →)⊥BC →,则实数a 的值为▲________.15.词语“堑堵”、“阳马”、“鳖臑”等出自中国数学名著《九章算术·商功》,是古代人对一些特殊锥体的称呼.在《九章算术·商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中P A ⊥平面ABC ,P A =AC =1,BC =2,则四面体P ABC 的外接球的表面积为▲________.16.早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击.现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同.建立如图所示的平面直角坐标系xOy ,根据图上尺寸,溢流孔ABC 所在抛物线的方程为▲________,溢流孔与桥拱交点A 的横坐标...为▲________.(第12题)ABC P(第15题)第16题四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤. 17.(本小题满分10分)在 ①sin(A -B )=sin B +sin C ;②2a cos C =2b +c ;③△ABC 的面积S =34(a 2-b 2-c 2) 三个条件中任选一个,补充在下面的问题中,并解答该问题.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,__________,D 是边BC 上的一点,∠BAD =π2,且b =4,c =2,求线段AD 的长.注:如果选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)在平面直角坐标系xOy 中,已知圆F :(x -2)2+y 2=1,动圆M 与直线l :x =-1相切且与圆F 外切.(1)记圆心M 的轨迹为曲线C ,求曲线C 的方程;(2)已知A (-2,0),曲线C 上一点P 满足P A =2PF ,求∠P AF 的大小.19.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,D 为AC 中点. (1)求证:B 1A ∥平面C 1BD ;(2)若AA 1=AB =3,BC =4,且AB ⊥BC ,求三棱锥B -B 1C 1D 的体积.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,点A ,B 是直线x -y +m =0(m ∈R )与圆O 的两个公共点,点C 在圆O 上.(1)若△ABC 为正三角形,求直线AB 的方程;(2)若直线x -y -3=0上存在点P 满足AP →·BP →=0,求实数m 的取值范围.DBB 1A 1(第19题)C 1AC21.(本小题满分12分)如图,在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,P A ⊥AB ,P A =AD =4, BC ∥AD ,AB ⊥AD ,AB =BC =2,→PE =λ→PC (0≤λ<1). (1)若λ=12,求直线DE 与平面ABE 所成角的正弦值;(2)设二面角B -AE -C 的大小为θ,若|cos θ|=23417,求λ的值.22.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0) 的左顶点与上顶点的距离为23,且经过点(2,2).(1)求椭圆C 的方程;(2)直线l 与椭圆C 相交于P ,Q 两点,M 是PQ 的中点.若椭圆上存在点N 满足 ON →=3MO →,求证:△PQN 的面积S 为定值.(第21题)PABCDE(第22题图)南京市2020-2021学年度第一学期期中调研测试高二数学参考答案 2020.11一、单项选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.D 4.D 5.A 6.D 7.A 8.C 二、多项选择题:本大题共4小题,每小题5分,共20分. 9.BC 10.ABC 11.ABC 12.ACD三、填空题:本大题共4小题,每小题5分,共20分. 13. 2 14.-92 15.4π 16.y =-536(x -14)2,14013四、解答题:本大题共6小题,共70分. 17.(本小题满分10分) 解:选①.由条件① sin(A -B )=sin B +sin C ,在△ABC 中,A +B +C =π,所以sin(A -B )=sin B +sin(A +B ),即 sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ……………… 2分 从而sin B =-2cos A sin B .因为B 为三角形内角,所以sin B ≠0,所以cos A =-12.因为A 为三角形内角,所以A =2π3. ……………… 4分在△ABC 中,因为b =4,c =2, 故由正弦定理b sin B =c sin C得4sin C =2sin B ,即2sin C =sin B , 所以sin B =2sin C =2sin(π3-B )=3cos B -sin B ,即2sin B =3cos B .由sin B ≠0知cos B ≠0,因此tan B =sin B cos B =32. ……………… 8分因为∠BAD =π2,所以AD =AB ·tan B =3. ……………… 10分选②.由条件②2a cos C =2b +c ,结合余弦定理得2a ×b 2+a 2-c 22ab=2b +c ,即 a 2=b 2+c 2+bc , ……………… 2分 所以cos A =b 2+c 2-a 2 2bc =-12,因为A 为三角形内角,所以A =2π3. ……………… 4分在△ABC 中,因为b =4,c =2, 故由正弦定理b sin B =c sin C得4sin C =2sin B ,即2sin C =sin B , 所以sin B =2sin C =2sin(π3-B )=3cos B -sin B ,即2sin B =3cos B .由sin B ≠0知cos B ≠0,因此tan B =sin B cos B =32. ……………… 8分因为∠BAD =π2,所以AD =AB ·tan B =3. ……………… 10分选③.由条件③,△ABC 的面积S =34(a 2-b 2-c 2), 得12bc sin A =34(-2bc cos A ),即sin A =-3cos A , ……………… 2分 因为A 为三角形内角,所以sin A ≠0,从而cos A ≠0,所以tan A =sin A cos A =-3,所以A =2π3. ……………… 4分在△ABC 中,因为b =4,c =2, 故由正弦定理b sin B =csin C得4sin C =2sin B ,即2sin C =sin B , 所以sin B =2sin C =2sin(π3-B )=3cos B -sin B ,即2sin B =3cos B .由sin B ≠0知cos B ≠0,因此tan B =sin B cos B =32. ……………… 8分因为∠BAD =π2,所以AD =AB ·tan B =3. ……………… 10分另解:A =2π3(略)……………… 4分在△ABC 中,因为b =4,c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =42+22-2×4×2×cos 2π3=28,所以a =27.……………… 6分 由正弦定理得a sin A =bsin B ,则sin B =b sin A a =4×sin2π327=217,又B 为锐角,所以cos B =1-sin 2B =277,则tan B =sin B cos B =32.……… 8分 在△ABD 中,因为∠BAD =π2,所以AD =AB ·tan B =3. ……………… 10分18.(本小题满分12分)解:(1)设M (x ,y ),圆M 的半径为r .由题意知,MF =r +1,M 到直线l 的距离为r .方法一:点M 到点F (2,0)的距离等于M 到定直线x =-2的距离,根据抛物线的定义知,曲线C 是以F (2,0)为焦点,x =-2为准线的抛物线. 故曲线C 的方程为y 2=8x . ……………………6分 方法二:因为MF =(x -2)2+y 2=r +1,|x +1|=r ,x >-1, 所以(x -2)2+y 2=x +2,化简得y 2=8x ,故曲线C 的方程为y 2=8x . ……………………6分 (2)方法一:设P (x 0,y 0),由P A =2PF ,得(x 0+2)2+y 02=2[(x 0-2)2+y 02], ……………………8分 又y 02=8x 0,解得x 0=2,故P (2,±4), ……………………10分 所以k P A =±1,从而∠P AF =π4. …………………12分方法二:过点P 向直线x =-2作垂线,垂足为Q .由抛物线定义知,PQ =PF ,所以P A =2PQ , ……………………8分 在△APQ 中,因为∠PQA =π2,所以sin ∠QAP =PQ P A = 22, ……………………10分从而∠QAP =π4,故∠P AF =π4. …………………12分19.(本小题满分12分)(1)证明:连结B 1C 交BC 1于点O ,连结OD . 在三棱柱ABC -A 1B 1C 1中,BC =B 1C 1,BC ∥B 1C 1,所以四边形B 1BCC 1为平行四边形,所以O 为B 1C 中点. 又因为D 为AC 中点, 所以OD 为△CB 1A 的中位线,所以B 1A ∥OD . …………………3分 又因为B 1A ⊄平面C 1BD ,OD ⊂平面C 1BD ,所以B 1A ∥平面C 1BD . …………………5分 (2)解:方法一:三棱锥B -B 1C 1D 的体积就是三棱锥D -BB 1C 1的体积. …7分过点D 作DE ⊥BC ,垂足为E .在直三棱柱ABC -A 1B 1C 1中,B 1B ⊥平面ABC .B 1(第19题)A 1C 1BDAC OE因为DE ⊂平面ABC , 所以B 1B ⊥DE .又因为DE ⊥BC ,且B 1B ,BC ⊂平面B 1BCC 1,B 1B ∩BC =B , 所以DE ⊥平面B 1BCC 1,即DE 为三棱锥D -BB 1C 1的高. ………9分在△ABC 中,AB =3,BC =4,且AB ⊥BC , 所以AC =32+42=5,sin C =35,在Rt △DEC 中,DC =12AC =52,所以DE =DC ×sin C =32.又△BB 1C 1的面积S =12×BB 1×B 1C 1=12×3×4=6,所以三棱锥D -BB 1C 1的体积V =13×S ×DE =3,故三棱锥B -B 1C 1D 的体积等于3.………12分方法二:三棱锥B -B 1C 1D 的体积就是三棱锥B 1-BDC 1的体积. ………7分 因为(1)中已证B 1A ∥平面C 1BD ,所以B 1到平面BDC 1的距离等于A 到平面BDC 1的距离. 因此三棱锥B 1-BDC 1的体积等于三棱锥A -BDC 1的体积, 即等于三棱锥C 1-ABD 的体积.在直三棱柱ABC -A 1B 1C 1中,C 1C ⊥平面ABC , 所以C 1C 为三棱锥C 1-ABD 的高.………10分因为AB =3,BC =4,且AB ⊥BC ,S △ABC =12×AB ×BC =6.因为D 是AC 的中点,所以△ABD 的面积S =12S △ABC =3.故三棱锥C 1-ABD 的体积V =13×S ×C 1C =3,即三棱锥B -B 1C 1D 的体积等于3.………12分20.(本小题满分12分)解:(1)由△ABC 为正三角形,得∠AOB =2∠ACB =2π3,所以∠ABO =∠BAO =π6,所以原点O 到直线AB 的距离d =1×sin π6=12. ………3分由点到直线的距离公式得|m |2=12,解得m =22或-22.所以直线AB 的方程为2x -2y +2=0或2x -2y -2=0. ………5分 (2)方法一:设A (x 1,y 1),B (x 2,y 2),P (x ,y ). 因为AP →·BP →=0,所以点P 在以AB 为直径的圆上.记该圆圆心为(x 0,y 0),则⎩⎨⎧x =x 0,y =y 0是方程组⎩⎨⎧x +y =0,x -y +m =0的解,解得⎩⎨⎧x 0=-m 2,y 0=m 2.故以AB 为直径的圆的方程为(x +m 2)2+(y -m 2)2=1-m 22,其中-2<m <2. …9分又点P 在直线x -y - 3 =0上,即直线与圆有公共点, 所以|m +3|2≤1-m 22,即2m 2+23m +1≤0.解得-3+12≤m ≤1-32. 综上,实数m 的取值范围是[-3+12,1-32]. ………12分方法二:设A (x 1,y 1),B (x 2,y 2).联立直线AB 与圆O 方程,得⎩⎨⎧x 2+y 2=1,x -y +m =0,消去y 得2x 2+2mx +m 2-1=0. ①所以x 1,x 2是①的两个解,判别式△=(2m )2-4×2×(m 2-1)>0,即-2<m <2, 且x 1+x 2=-m ,x 1x 2=m 2-12.………7分设点P (x ,y ),则AP →=(x -x 1,y -y 1),BP →=(x -x 2,y -y 2). 由AP →·BP →=0,得(x -x 1) (x -x 2)+(y -y 1) (y -y 2)=0, ②将y =x -3,y 1=x 1+m ,y 2=x 2+m 代入②,整理得2x 2-2(x 1+x 2+m +3)x +2x 1x 2+(m +3)(x 1+x 2)+(m +3)2=0. 又x 1+x 2=-m ,x 1x 2=m 2-12,所以2x 2-23x +m 2+3m +2=0,关于x 的方程2x 2-23x +m 2+3m +2=0有实数解, ………10分因此(-23)2-4×2×(m 2+3m +2)≥0,即2m 2+23m +1≤0, 解得-3+12≤m ≤1-32. 综上,实数m 的取值范围是[-3+12,1-32]. ………12分 21.(本小题满分12分)解:因为平面P AB ⊥平面ABCD ,P A ⊥AB ,平面P AB ∩平面ABCD =AB ,P A ⊂平面P AB ,所以P A ⊥平面ABCD .因为AD ⊂平面ABCD ,所以P A ⊥AD .又AB ⊥AD ,所以P A ,AB ,AD 两两互相垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系A -xyz .…………2分 因为P A =AD =4,AB =BC =2,所以A (0,0,0),B (2,0,0),C (2,2,0),D (0,4,0),P (0,0,4).(1)若λ=12,即E 为PC 中点,则E ()1,1,2,所以DE →=()1,-3,2,AB →=()2,0,0,AE →=()1,1,2. 设平面ABE 的一个法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎪⎨⎪⎧2x 1=0,x 1+y 1+2z 1=0.令z 1=1,得y 1=-2,所以平面ABE 的一个法向量为m =(0,-2,1). …………………4分 设直线DE 与平面ABE 所成角为α,则sin α=|cos <DE →,m >|=|6+214×5|=47035. …………………6分(2)因为PE →=λPC →(0≤λ<1),则E (2λ,2λ,4-4λ).设平面ABE 的一个法向量为n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AE →=0,即⎩⎪⎨⎪⎧2x 2=0,2λx 2+2λy 2+(4-4λ)z 2=0.令y 2=2,得z 2=λλ-1,所以平面ABE 的一个法向量为n =(0,2,λλ-1).设平面AEC 的一个法向量为l =(x 3,y 3,z 3),则⎩⎪⎨⎪⎧l ·AC →=0,l ·AP →=0,即⎩⎪⎨⎪⎧2x 3+2y 3=0,4z 3=0.令x 3=1,得y 3=-1,所以平面AEC 的一个向量为l =(1,-1,0). ……………………9分 (或证明CD ⊥平面P AC ,从而CD →为平面P AC 的一个法向量) 因为二面角B -AE -C 的大小为θ,且|cos θ|=23417,得|cos <n ,l >|=|-24+(λλ-1)2×2|=23417,整理得3λ2+2λ-1=0,解得λ=13,或λ=-1(舍).所以λ=13. ……………12分22.(本小题满分12分)解:(1)椭圆C 的左顶点(-a ,0),上顶点(0,b ).因为左顶点与上顶点的距离为23,所以a 2+b 2=23,化简得a 2+b 2=12. ① 因为椭圆经过点(2,2),所以4a 2+2b 2=1,② …………2分由①②解得a 2=8,b 2=4或a 2=6,b 2=6(舍去),所以椭圆C 的方程为x 28+y 24=1. …………4分(2)当PQ 斜率不存在时,N 为(±22,0),PQ 方程为x =±223,易得PQ =823,此时S =12×MN ×PQ =12×823×823=649. …………5分当PQ 斜率存在时,设PQ 的方程为y =kx +m (m ≠0), 联立⎩⎪⎨⎪⎧y =kx +m ,x 28+y 24=1得(1+2k 2)x 2+4kmx +2(m 2-4)=0,由△=(4km )2-8(1+2k 2)(m 2-4)>0,得0<m 2<8k 2+4. (*) 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2(m 2-4)1+2k 2, 因此PQ 的中点M 为(-2km 1+2k 2,m1+2k 2). 又因为ON →=3MO →,所以N (6km 1+2k 2,-3m 1+2k 2),将点M 代入椭圆方程,得18k 2m 24(1+2k 2)2+9m 24(1+2k 2)2=1,化简得2k 2+1=94m 2,符合(*)式. ……………9分记点O 到直线l 的距离为d ,则S =4S △OPQ =2PQ ×d =21+k 2|x 1-x 2|×d=21+k 2×22×8k 2+4-m 21+2k 2×|m |1+k2=42|m |×8k 2+4-m 21+2k 2, 将2k 2+1=94m 2代入,得S =42|m |×9m 2-m 294m 2=649. 综上,△PQN 的面积S 为定值649. …………12分。

2021年江苏省苏州市中考数学真题试卷(word版,含解析)

2021年江苏省苏州市中考数学真题试卷(word版,含解析)

2021年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算()2的结果是()A.B.3C.2D.92.如图,圆锥的主视图是()A.B.C.D.3.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B()A .B .C .D .4.已知两个不等于0的实数a、b满足a+b=0,则+等于()A.﹣2B.﹣1C.1D.25.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计班级一班二班三班四班五班4.5 4.45.1 3.3 5.7废纸重量(kg)则每个班级回收废纸的平均重量为()A.5kg B.4.8kg C.4.6kg D.4.5kg6.已知点A (,m),B (,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定7.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,根据题意可列出的方程组是()A .B .C.D.8.已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,则k的值是()A.﹣5或2B.﹣5C.2D.﹣29.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线得到△AB′C,连接B′D,若∠B=60°,AC=,则B′D的长是()A.1B.C.D.10.如图,线段AB=10,点C、D在AB上,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),则S关于t的函数图象大致是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上。

江苏省苏州市2023-2024学年高三上学期期初调研测试生物

江苏省苏州市2023-2024学年高三上学期期初调研测试生物

2023~2024学年第一学期高三期初调研测试生物学2023. 09一、单项选择题:共14 题,每题2分,共28分。

每题只有一个选项最符合题意。

1.下列关于细胞生命历程的叙述,正确的是A.多细胞生物的生长是细胞增殖的结果B.高度分化的细胞中不存在DNA复制C.衰老细胞的染色质固缩,细胞核缩小D.细胞凋亡时,基因发生了选择性表达2.高尔基体是有“极性”的,其顺面接受由内质网合成的物质并转入中间膜囊进一步修饰加工,反面参与溶酶体酶等蛋白质的分类和包装。

如图是发信号生在反面的3条分选途径。

下列叙述错误的是A.在高尔基体中间膜囊中会形成具有一定功能的蛋白质B.胰岛B细胞分泌胰岛素的过程属于是调节型分泌.C.若反面上的M6P受体数量减少会影响衰老细胞器的水解D.膜的流动性使顺面和反面的蛋白质种类和数量相同3.线粒体内膜是有氧呼吸第三阶段的场所,其上存在两条呼吸途径。

主呼吸链途径发生时,电子传递链释放的能量使H+通过蛋白复合体从基质移至内外膜间隙,然后H+驱动ATP合酶合成ATP;交替呼吸途径发生时,不发生H+的跨膜运输。

下列叙述的错误是A.合成ATP时H+顺浓度梯度由内外膜间隙进人基质B.主呼吸链途径中的蛋白复合体起载体蛋白的作用C.交替呼吸途径比主呼吸链途径产生更多的ATPD.乳酸菌细胞内不存在主呼吸链和交替呼吸途径4.下列关于构成细胞的元素和化合物的叙述,正确的是A.Mg是叶绿素的重要组分,缺Mg叶脉周围通常呈现黄色B.缺乏P时细胞中磷脂、核酸和A TP等物质的合成会受影响C.果糖是光合作用植物特有的,而半乳糖是动物特有的D.真核生物遗传信息的载体主要是由蛋白质和DNA组成的5.某家族患有甲、乙两种单基因遗传病,其中一种病的致病基因位于X染色体上。

研究人员通过调查得到了该家族的遗传系谱图(图1) ,然后对I1、II2、II3及III2的两对基因进行电泳分离,得到了不同的条带(图2)。

下列叙述正确的是A.甲病是伴X染色体显性遗传病,乙病是常染色体隐性遗传病B.条带①代表甲病的致病基因,条带③代表乙病的致病基因C.对II的两对基因进行电泳分离,所得的条带应该是①和③D.只考虑甲、乙两种遗传病,I4和II1基因型相同的概率是1/26.为研究DNA复制机制,科学家用荧光染料给Rep(解旋酶中驱动复制叉移动的结构)加上标记,以获知Rep相对于DNA分子的运动轨迹(如图)。

江苏省南京市2020-2021学年七年级下学期期中考试数学试卷(word版 含答案)

江苏省南京市2020-2021学年七年级下学期期中考试数学试卷(word版 含答案)

2020~2021学年度第二学期期中学情分析样题七年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卷及本试卷上.3.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.在下列图形中,∠1与∠2是同位角的是A .B .C .D .2.计算(-a 2)3的结果是 A .a 5B .-a 5C .a 6D .-a 63.下列各式能用平方差公式计算的是 A .(a +b )(b +a )B .(2a +b )(2b -a )C .(a +1)(-a -1)D .(2a -1)(2a +1)4.如图,点E 在AC 的延长线上,下列条件中不能判断....BD ∥AC 的是 A .∠1=∠2B .∠3=∠4C .∠D =∠DCE D .∠D +∠ACD =180°5.能说明命题“如果|a |=|b |,那么a =b ”是假命题的反例是A .a =2,b =2B .a =-2,b =3C .a =-3,b =3D .a =-3,b =-3 6.如图,两个正方形的边长分别为a 和b ,如果a +b =10,a b =22,那么阴影部分的面积是 A .15B .17C .20B 31 4 2(第4题)ACDE121 21221(第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:20= ▲ ,2-1= ▲ . 8.多项式3a 2b -6a 3b 各项的公因式是 ▲ .9.新型冠状病毒的直径大约是0.000 000 7米,将0.000 000 7用科学记数法表示为 ▲ .10.已知⎩⎨⎧x =2,y =3是二元一次方程x +ky =-1的一个解,那么k 的值是 ▲ .11.若 2m =3,2n =2,则2m -2n的值为 ▲ .12.已知x 、y 满足方程组⎩⎪⎨⎪⎧x +3y =-1x -y =3 则x +y 的值为 ▲ .13.命题“垂直于同一条直线的两条直线平行”写成“如果…,那么…”的形式为:如果 ▲ ,那么14.公式(a -b )2=a 2a +b )2=a 2+2ab +b 2推导得出,已知 (a +b )3=a 3+3a 2b +3ab 2+b 3,则(a -b )3= ▲ .15.如图,将一张长方形纸片沿EF 折叠后,点D 落在BC 上的点D'处,点C 落在点C'处.若∠DEF =62°,则∠C'F D'= ▲ °.16.如图,AB //DE ,∠C =30°,∠CDE -∠B =110°,则∠CDE = ▲ °.三、解答题(本大题共10小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(1)a 6÷a 2-2a 3·a ; (2)2x (x -2y )-(x -y )2.18.(6分)因式分解:(1)3ab 2+6ab +3a ; (2)a 2(a -b )-4(a -b ).(第15题)ABCDEFD ´C ´AB(第16题)ED, ,19.(7分)先化简,再求值:(m -2n )(m +2n )-(m -2n )2+4n 2,其中m =-2,n =12.20.(7分)解二元一次方程组⎩⎪⎨⎪⎧3x +y =1, ①x -2y =12.②(1)有同学这么做:由②,得x =2y +12.③将③代入①,得3(2y +12)+y =1,解得y =-5,将y =-5代入③,得x =2,所以这个方程组的解为⎩⎨⎧x =2y =-5.该同学解这个方程组的过程中使用了代入消元法,目的是把二元一次方程组转化为 ▲ . (2)请你用加减消元法解该二元一次方程组.21.(5分)如图,点A 、B 、C 、D 在同一条直线上,EC //FD ,∠F =∠E ,求证:AE //BF .将证明过程补充完整,并在括号内填写推理依据. 证明:∵EC //FD ,(已知)∴∠F =∠ ▲ .( ▲ ) ∵∠F =∠E ,(已知)∴∠ ▲ =∠E ,( ▲ ) ∴AE //BF .( ▲ )CDEABF(第21题)1222.(6分)如图,在每个小正方形边长为1的方格纸中,点A 、B 、A 1都在方格纸的格点上. (1)平移线段AB ,使点A 与点A 1重合,点B 与点B 1重合,画出线段A 1B 1; (2)连接AA 1、BB 1,AA 1与BB 1的关系是 ▲ ; (3)四边形ABB 1A 1的面积是 ▲ .23.(6分)同底数幂的乘法公式为:a m ·a n = ▲ (m 、n 是正整数).请写出这一公式的推导过程.24.(6分)观察下列各式:①32-12=4×2; ②42-22=4×3; ③52-32=4×4;……(1)探索以上式子的规律,写出第n 个等式 ▲ (用含n 的字母表示); (2)若式子a 2-b 2=2020满足以上规律,则a = ▲ ,b = ▲ ; (3)计算:20+24+28+ (100)(第22题)A。

2024-2025学年江苏省苏州市高三上学期开学调研化学试题及答案

2024-2025学年江苏省苏州市高三上学期开学调研化学试题及答案

2025届高三年级期初阳光调研试卷化学注意事项:1.本试卷分为单项选择题和非选择题两部分,试卷满分100分。

考试时间75分钟。

2.将选择题答案填涂在答题卡的对应位置上,非选择題的答案写在答题卡的指定栏目内。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Fe 56 Mo 96一、单项选择题:共13题,每题3分,共39分。

每题只有一个选项最符合题意。

1.第19届杭州亚运会采用石墨烯纳米防滑涂层以增加地面防滑性。

石墨烯属于()A .有机材料B .无机非金属材料C .金属材料D .复合材料2.草酸易被NaClO 氧化:22422H C O +NaClO=NaCl+2CO +H O ↑,下列说法不.正确的是()A .2CO 的空间构型为直线形B .NaClO 属于离子化合物C .2H O 的电子式为+2-+H [O ]H ∶∶D .Cl 的结构示意图为3.实验室模拟侯氏制碱法制备23Na CO ,下列装置与原理均正确的是()A .制取2COB .制取3NHC .制取3NaHCOD .制取23Na CO 4.()344Cu NH SO ⎡⎤⎣⎦常用作杀虫剂、媒染剂。

下列说法正确的是()A .原子半径:r(N)>r(O)>r(S)B .沸点:223H S>H O>NHC .第一电离能:111I (N)>I (O)>I (S)D .电负性:χ(N)>χ(O)>χ(Cu)阅读下列材料,完成5~7题:VA 族元素及其化合物应用广泛。

3NH 催化氧化生成NO ,NO 继续被氧化为2NO ,将2NO 通入水中可制得3HNO ;肼(24N H )常温下为液态,燃烧热大(-1642kJ mol ⋅),产物无污染,常用作火箭燃料:白磷(4P )为正四面体结构,常用来制烟雾弹、燃烧弹;雄黄(44As S )具有解毒、杀虫功效,燃烧后生成砒霜(23As O )和一种具有刺激性气味的气体;锑是一种银白色金属,其氧化物23Sb O 可用于制造颜料,铅锑合金可用作铅蓄电池的电极材料。

江苏省苏州市2021届高三第一学期开学调研数学试卷

江苏省苏州市2021届高三第一学期开学调研数学试卷

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.集合A ={}2230x x x --≤,B ={}1x x >,A B =A .(1,3)B .(1,3]C .[﹣1,+∞)D .(1,+∞)2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为 A .第一象限B .第二象限C .第三象限D .第四象限 3.421(2)x x-的展开式中x 的系数为 A .﹣32B .32C .﹣8D .84.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为 A .0.2 B .0.3 C .0.4 D .0.65.在△ABC 中,AB+AC=2AD ,AE+2DE=0,若EB=XAB+YAC ,则 A .y =2x B .y =﹣2x C .x =2y D .x =﹣2y6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Qlog 100成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为 A .1800 B .2700 C .7290 D .81007.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是 A .直线BC 与平面ABC 1D 1所成的角等于4πB .点C 到面ABC 1D 1 C .两条异面直线D 1C 和BC 1所成的角为4πD .三棱柱AA 1D 1—BB 1C 1外接球半径为3 8.设a >0,b >0,且2a +b =1,则12a a a b++ A .有最小值为4B .有最小值为221+ C .有最小值为143D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.A ,B 是不在平面α内的任意两点,则A .在α内存在直线与直线AB 异面B .在α内存在直线与直线AB 相交C .存在过直线AB 的平面与α垂直D .在α内存在直线与直线AB 平行10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()Ry f t ==sin()t ωϕ+(t ≥0,ω>0,2πϕ<),则下列叙述正确的是 A .3πϕ=-B .当t ∈(0,60]时,函数()y f t =单调递增C .当t ∈(0,60]时,()f t 的最大值为33D .当t =100时,PA 6=11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有 A .()y f x =的图象不经过第三象限 B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为1D .函数()()g x f x x =+不存在零点 12.数列{}n a 为等比数列 A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知tan 2α=,则cos(2)2πα+=.14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面被正方体表面所截得的所有的弧长和为.15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k =. 16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2=3S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC 中,a =()3f π,且,求2b +c 的取值范围. 18.(本小题满分12分)已知各项均不相等的等差数列{}n a 的前4项和为10,且1a ,2a ,4a 是等比数列{}n b 的前 3项.(1)求{}n a ,{}n b ; (2)设1(1)n n n n c b a a =++,求{}n c 的前n 项和n S .19.(本小题满分12分)如图,在四棱锥S —ABCD 中,ABCD 是边长为4的正方形,SD ⊥平面ABCD ,E ,F 分别为AB ,SC 的中点.(1)证明:EF ∥平面SAD ;(2)若SD =8,求二面角D —EF —S 的正弦值.20.(本小题满分12分)某省2021年开始将全面实施新高考方案,在6门选择性考试科目中,物理、历史这两门科目采用原始分计分:思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为A ,B ,C ,D ,E 共5个等级,各等级人数所占比例分别为15%、35%、35%、13%和2%,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)某校生物学科获得A 等级的共有10名学生,其原始分及转换分如表:现从这10名学生中随机抽取3人,设这3人中生物转换分不低于95分的人数为X ,求X 的分布列和数学期望;(2)假设该省此次高一学生生物学科原始分Y 服从正态分布N(75.8,36).若Y~N(μ,2σ),令Y μησ-=,则η~N(0,1),请解决下列问题:①若以此次高一学生生物学科原始分C 等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留整数)②现随机抽取了该省800名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记ξ为被抽到的原始分不低于71分的学生人数,求P(ξ=k )取得最大值时k 的值.附:若η~N(0,1),则P(η≤0.8)≈0.788,P(η≤1.04)≈0.85. 21.(本小题满分12分)如图,已知椭圆22221x y a b+=(a >b >0)的长轴两个端点分别为A ,B ,P(0x ,0y )(0y >0)是椭圆上的动点,以AB 为一边在x 轴下方作矩形ABCD ,使AD =kb (k >0),PD 交AB 于 E ,PC 交AB 于F .(1)若k =1,△PCD 的最大面积为12,离心率为3,求椭圆方程; (2)若AE ,EF ,FB 成等比数列,求k 的值.22.(本小题满分12分)已知函数()ln sin 1f x x x x =-++.(1)求证:()f x 的导函数()f x '在(0,π)上存在一零点; (2)求证:()f x 有且仅有两个不同的零点.。

江苏省苏州市2024届高三上学期期初调研测试英语答案解析

江苏省苏州市2024届高三上学期期初调研测试英语答案解析

2024届苏州四市五区高三期初考试解析(附原创作文2篇)答案汇总:听力1-5 CABAB6-10 ACCBA11-15 BCABC16-20 ACCBB传统阅读21-23 BCB24-27 CADC28-31 ABDA32-35 ACDB7选5阅读36-40 BDCFG完形填空41-45 CADBA46-50 BBCBA51-55 DBCDA语法填空56. that / which57. expected58. what59. a60. is scheduled61. With62. reveals63. generals64. adding65. valuable / invaluable01阅读答案:21-23 BCB24-27 CADC28-31 ABDA32-35 ACDBA篇主要向读者介绍了一些形式不一但都别具特色的艺术项目。

B篇主要向我们介绍了世界第一个自然河流公园的相关事项,主要包括其所在地区的自然环境、河流公园的成形过程以及其成就、特色。

C篇主要打破了普遍认知,通过一位心理学家的实验介绍了被打断的好处,也介绍了蔡格尼克记忆效应的应用,呼吁我们享受并利用好被打断。

D篇是科学研究类题目,介绍了科学家通过改变蚊子基因来控制疟疾,并从实验原理、实验过程、实验评价多方面进行介绍。

详细解析:A篇第21题B 根据本篇文章的小标题kinship和Family Memory Box都与家人、亲属有关,而两场展览也都是围绕着家人与亲属进行展开,故二者属于同一个主题。

第22题C 定位到文章A Tour in ASL这个部分,由该段标题可知本次展览是Virtual Portrait Signs,故是虚拟而不是实地展览,A选项错误;定位该段第一、二行which is first major Smithsonian museum to examine the War, 而D选项少了限定条件,故错误;由这一部分的第二段The Zoom link will be emailed on the morning of the program...可知,参观者可以通过Zoom进行展览的参观而不是以邮件的形式,邮件的形式主要是用于解决参观者的疑问,故B错误。

江苏省苏州市2024-2025学年高三上学期期初阳光调研语文试题及答案

江苏省苏州市2024-2025学年高三上学期期初阳光调研语文试题及答案

2024~2025学年第一学期高三期初调研测试语文2024.09一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:艺术创造不能完全脱离以往的传统基础而独立。

这在注重画学的中国应该用不着解释。

能发挥新创都是受过传统熏陶的,即使突然接受一种崭新的形式,有外来思想的影响,也仍能表现本国精神。

如南北朝的佛教雕刻,或唐宋的寺塔,都起源于印度,非中国本有的观念,但结果仍以中国风格造成成熟的中国特有艺术,驰名世界。

艺术的进境是基于丰富的遗产上,今后的中国建筑自亦不能例外。

将来中国将大量采用西洋现代建筑材料与技术。

如何发扬光大我民族建筑技艺之特点,在以往都是无名匠师不自觉的贡献,今后却要成近代建筑师的责任了。

如何接受新科学的材料方法而仍能表现中国特有的作风及意义,老树上发出新枝,则真是问题了。

中国建筑既是延续了两千余年的一种工程技术,本身已造成一个艺术系统,许多建筑物便是我们文化的表现。

除非我们不知尊重这古国灿烂的文化,如果我们有复兴国家民族的决心,便不能忽略中国建筑的研究。

东方古国的城市在建筑上若失掉艺术特性,于文化表现和观瞻方面令人痛心,代表着文化衰落。

四十年来,上海等通商大埠模仿欧美次等商业城市,多为租界外国人建设,中国市民只是附和而已。

此类建筑无中国复兴精神迹象。

今后虽仍需采用西洋方法建设,但应是自觉的,由专业建筑师指导,在科学结构上有艺术表现,为中国精神复兴而努力。

这种创造的火炬已曾在抗战前燃起,所谓“宫殿式”新建筑就是一例。

但以最清醒建筑理论来看,其不合近代科学及艺术理想。

它的产生是由于欣赏中国建筑的外貌。

在形式上它模仿清代宫衙,在结构及平面上它又仿西洋古典派的普通组织。

细项上东西凑合且多属过去时代,不适应中国经济情形也不能普遍。

这些尝试如同堆砌文字,抄袭章句,整篇结构不出于自然,辞藻也欠雅驯的文章,但这种努力是中国精神的抬头,实有无穷意义。

要能提炼旧建筑中所包含的中国质素,我们需增加对旧建筑结构系统及平面部署的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省苏州市2020~2021学年第一学期高三期初调研试卷
数学试题
2020.9
一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)
1.集合A ={}2230x x x --≤,B ={}1x x >,A B =
A .(1,3)
B .(1,3]
C .[﹣1,+∞)
D .(1,+∞)
2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.42
1(2)x x -的展开式中x 的系数为 A .﹣32 B .32 C .﹣8 D .8
4.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为
A .0.2
B .0.3
C .0.4
D .0.6
5.在△ABC 中,AB AC 2AD +=,AE 2DE 0+=,若EB AB AC x y =+,则
A .y =2x
B .y =﹣2x
C .x =2y
D .x =﹣2y
6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Q log 100
成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为
A .1800
B .2700
C .7290
D .8100
7.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是
A .直线BC 与平面ABC 1D 1所成的角等于4
π
B .点
C 到面ABC 1
D 1的距离为2
C .两条异面直线
D 1C 和BC 1所成的角为4
π
D .三棱柱AA 1D 1—BB 1C 1
8.设a >0,b >0,且2a +b =1,则12a a a b ++ A .有最小值为4 B .有最小值为221+
C .有最小值为143
D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)
9.A ,B 是不在平面α内的任意两点,则
A .在α内存在直线与直线A
B 异面 B .在α内存在直线与直线AB 相交
C .存在过直线AB 的平面与α垂直
D .在α内存在直线与直线AB 平行
10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌
田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()R y f t == sin()t ωϕ+(t ≥0,ω>0,2
πϕ<),则下列叙述正确的是 A .3π
ϕ=-
B .当t ∈(0,60]时,函数()y f t =单调递增
C .当t ∈(0,60]时,()f t 的最大值为33
D .当t =100时,PA 6=
11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有
A .()y f x =的图象不经过第三象限
B .()f x 在R 上单调递增
C .()y f x =的图象上的点到坐标原点的距离的最小值为1
D .函数()()g x f x x =+不存在零点
12.数列{}n a 为等比数列
A .{}1n n a a ++为等比数列
B .{}1n n a a +为等比数列
C .{}221n n a a ++为等比数列
D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和
三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)
13.已知tan 2α=,则cos(2)2π
α+= .
14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面
被正方体表面所截得的所有的弧长和为 .
15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k = .
16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值
为 .
四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个
条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.
已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC。

相关文档
最新文档