四川省成都市石室联合中学2018-2019学年度下期八年级半期数学试卷
石室佳兴外国语学校2018-2019年八年级下入学考试数学试题

数学试卷成都石室佳兴外国语学校八年级下期数学入学考试题(考试时间90分钟,总分120分)A 卷(共100分)一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一项是符合要求的,把符合要求的选项的代号填入题后的答题卡内. 1. 9的平方根是( )(A )81 (B )3± (C )3 (D )3-2. 已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解,那么a 的值是( )(A )1 (B )3 (C )3- (D )43.若三角形三边长为a ,b ,c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ) (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 4.在实数:3.14159,,1.010010001…,∙∙12.4,π,722中,无理数有( ) (A )1个 (B )2个 (C )3个 (D )4个 5. 下列说法正确的是( )(A )三角形的三个内角中,小于90的角不能少于两个(B )三角形的一个外角大于任何一个内角 (C )同旁内角一定互补 (D )凡是定理都可以作为公理 6.若10<<a ,则点M (1-a ,a )在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7.已知:一次函数b kx y +=(0≠k )的图像经过(12-,)、(4,3-)两点,则它的图象不经过( ) (A )第一象限(B )第二象限(C )第三象限(D )第四象限8. 下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( ) (A )甲比乙的成绩稳定 (B )乙比甲的成绩稳定 (C )甲、乙两人的成绩一样稳定 (D )无法确定谁的成绩更稳定9.用图象法解方程组⎩⎨⎧=+=-4242y x y x 时,下图中正确的是( )10. △ABC 中,AB=7,BC=24,AC=25.在△ABC 内有一点P 到各边的距离相等,则这个距离为( ) (A )2 (B )3 (C )4 (D )5 得 分 评卷人11. 若一个数的平方根是它本身,则这个数的立方根是 . 12.若正比例函数y =-3mx 的图像过点A (31,1),则m=_______. 13.已知:在平面直角坐标系中,若点M (1,0)与点N (a ,0)之间的距离是5,则a 的值是 . 14.在△ABC 中,AB=AC=17cm ,BC=16 cm ,AD ⊥BC 于点D ,则AD=_______. 得 分 评卷人15. (本小题满分12分,每题6分)(1)计算:121212218-⎪⎭⎫ ⎝⎛+-+- (2)解方程组:⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x16.(本小题满分6分)如图,在直角坐标系中:(1)描出下列各点,并将这些点用线段依次连接起来:(﹣2,4),(﹣3,8),(﹣8,4),(﹣3,1),(2,4);(2)作出(1)中的图形关于y 轴的对称图形.二、填空题(每小题4分,共l6分)三、解答题(本大题共6个小题,共54分)(A ) xy O 4 22 4 xyO4 4-2 -2 (B ) xyO 44 2 -2(C ) xyO44 -2(D )xy O 1 2 3 4 56 7 891 2 3 4 5 6 7 8 9-9 -8 -7 -6 -5 -4 -3 -2 -117.(本小题满分8分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试项目测试成绩/分甲 乙 丙 笔试92 90 95 面试85 95 80 图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题: (1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?18.(本小题满分8分)已知:如图所示,AB ∥CD ,∠A =∠F ,∠D =∠E .求证:AF ⊥DE .19.(本小题满分10分)如图,在平面直角坐标系中,一次函数5+=kx y 的图象经过点A (1,4),点B 是一次函数5+=kx y 的图象与正比例函数x y 32=的图象的交点. (1)求点B 的坐标. (2)求△AOB 的面积.20. (本小题满分10分)小明的妈妈在菜市场买了3斤萝卜、2斤排骨,准备做萝卜排骨汤,回到家中后,一家人之间发生了如下的对话:妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”; 小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你根据以上对话中蕴含的信息,通过列方程(组)分别求出这天萝卜、排骨的单价(单位:元/斤).B 卷(共20分)得 分 评卷人21. 三元一次方程组⎪⎩⎪⎨⎧-=-+=++=+-3423103292z y x z y x z y x 的解为 .22. 如右图所示,点A 的坐标为(1,0),点B 在直线x y -= 上运动,当线段AB 最短时,点B 的坐标为 . 23. 若0121322=++++-b b a a ,则b aa -+221= 得 分 评卷人26.(本小题满分8分)如图所示,直线l :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 为何值时△COM ≌△AOB ,并求此时M 点的坐标.一、填空题(每小题4分,共12分)二、解答题A DFH CBEG O(图一) 甲 34% 丙 28% 乙 ______ 其他甲 乙 丙竞选人100 95 90 85 80 75 70分数 笔试 面试 (图二) A BOxyABOxyAMC B Oxyl。
成都石室联中初二半期数学试卷及解析

D=m,若坐 AD = k (k::>1),取
中点0,连接OP..,用m � k.表示SMJDP , 并
说明理由.
F
B卷 C 共·so 分)
�
一、填空题〈每小题4分,共20分)
21.直角三角形中,一条边长为3.另 一条长为4,则第三条边长为
根
5石 据上述方法.求出
+」(12-x}2 仲的最小值为一一一
y
s
(3
B!-飞 C
。‘
νT ,..
24 题图
E
25题图 .
2018-2019八上半期数字试是-
第3页 {共4页}
二、解答题(共30分)
ι可 汇U i 26.时) ( )已知 y =
, 求版的值叫)
、I -Fx"-�:= (2)已知
’ 7、,求’Xl·:+」γ+:14飞的值. (4分)』
f-o , Ji (2)当P运动到民<
’
)-. 时 -求此时t)p的长及点D的坐标: (4分)
叫否存在点P(m ,川为正整数〉,使t::.OD抖的面积的等于子?若盹,求出
符合条件的点P的坐标:若不存在 1 请说明理由,'(5分〉
y
y
N
u「
·x'
M
B
x
·备用图
2018-2019八主半期数学试题
第 4 页 l .,号 4 页}
19. C本小题8们知x古 i :Y古,求川+叫
,10••>句。19. ·、土半期数学试题
第2页(共4页)
作ru2r0E.C体 关于情 直接10A余 B的〉捕 对意图,A形D6爪 BEF’·连 L4接吻DC。,、ED是F,届DF主钊 的气B点 交,于且PA点D=· BE,ζI =L2, (1)求证: AADE旦bJJEC;
2018-2019学年石室联中数学一诊试卷

2019年四川省成都市青羊区石室联中中考数学一诊试卷一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)的相反数是()A.3B.﹣3C.D.2.(3分)下列几何体的主视图是三角形的是()A.B.C.D.3.(3分)习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()A.135×107B.1.35×109C.13.5×108D.1.35×10144.(3分)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上.若∠1=70°,∠2=50°,则∠ABC 等于()A.95°B.100°C.110°D.120°5.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5B.x≤﹣5C.x≥5D.x≤56.(3分)某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A.众数为14B.极差为3C.中位数为13D.平均数为147.(3分)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4)B.(﹣1,﹣2)C.(﹣2,﹣4)D.(﹣2,﹣1)8.(3分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1B.m≤1C.m≤4D.9.(3分)如图,P A、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.πB.πC.D.10.(3分)抛物线y=ax2+bx+c(对称轴为x=1)的图象如图所示,下列四个判断中正确的是()A.a>0,b>0,c>0B.b2﹣4ac<0C.2a+b=0D.a+b+c>0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:m2n﹣n3=.12.(4分)如图,四边形ABCD与四边形EFGH位似为点O,且=,这=.13.(4分)方程的解是.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=8,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q.过P、Q两点作直线交BC于点D,则CD的长是.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:(π﹣2)0+﹣2cos30°+(2)化简:16.(6分)已知关于x的一元二次方程x2+(2m+1)x+m﹣1=0,若方程的一个根为2,求m的值和方程的另一个根.17.(8分)如图,甲、乙两座建筑物的水平距离BC为70m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°.求甲、乙建筑物的高度AB和DC(结果取整数).(参考数据:tan48°≈1.11,tan58°≈1.60).18.(8分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读,某校对A《三国演义》、B《红楼梦》、C 《西游记》、D《水浒传》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著(A、B、C、D)中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中A和B的概率.19.(10分)如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)在第一象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=x向上平移后与反比例函数图象在第一象限内交于点B,与y轴交于点C,且△ABO 的面积为,求直线BC的解析式.20.(10分)如图,AB为⊙O的直径,AC,BC是⊙O的两条弦,过点C作∠BCD=∠A,CD交AB的延长线与点D.(1)求证:CD是⊙O的切线;(2)若tan A=,求的值;(3)在(2)的条件下,若AB=7,∠CED=∠A+∠EDC,求EC与ED的长.一、填空题:(每小题4分,共20分)21.(4分)已知x,y满足方程组,则x2﹣4y2的值为.22.(4分)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.23.(4分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第1个正方形的面积为;第4个正方形的面积为.24.(4分)如图,△ABC内接于⊙O.AB为⊙O的直径,BC=3,AB=5,D、E分别是边AB、BC上的两个动点(不与端点A、B、C重合),将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上(包含端点A、C),若△ADB′为等腰三角形,则AD的长为.25.(4分)如图,直线y=2x+b与双曲线y=(k>0)交于点A、D,直线AD交y轴、x轴于点B、C,直线y=﹣+n过点A,与双曲线y=(k>0)的另一个交点为点E,连接BE、DE,若S△ABE=4,且S△ABE:S△DBE=3:4,则k的值为.二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?27.(10分)如图,在菱形ABCD中,对角线AC、BD交于点O,已知AC=2,AB=5.(1)求BD的长;(2)点E为直线AD上的一个动点,连接CE,将线段EC绕点C顺时针旋转∠BCD的角度后得到对应的线段CF(即∠ECF=∠BCD),EF交CD于点P.①当E为AD的中点时,求EF的长;②连接AF、DF,当DF的长度最小时,求△ACF的面积.28.(12分)如图1,在平面直角坐标系xOy中,抛物线y=﹣(x﹣a)(x﹣4)(a<0)与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)若D点坐标为(),求抛物线的解析式和点C的坐标;(2)若点M为抛物线对称轴上一点,且点M的纵坐标为a,点N为抛物线在x轴上方一点,若以C、B、M、N为顶点的四边形为平行四边形时,求a的值;(3)直线y=2x+b与(1)中的抛物线交于点D、E(如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D′,与直线的另一个交点为E′,与x轴的交点为B′,在平移的过程中,求D′E′的长度;当∠E′D′B′=90°时,求点B′的坐标.。
四川成都2018-2019学度初二下年末数学试卷含解析解析

四川成都 2018-2019 学度初二下年终数学试卷含分析分析【一】选择题〔本题共16 小题,每题 3 分,共 48 分、〕1、假定分式旳值为0,那么x旳值为〔〕A、 x=0B、 x=1C、 x=﹣ 2D、 x=﹣ 12、将分式中分子与分母旳各项系数都化成整数,正确旳选项是〔〕A、 B 、 C 、 D 、3、某种流感病毒旳直径是0.00000008m,那个数据用科学记数法表示为〔〕A、 8× 10﹣6mB、 8× 10﹣5mC、 8× 10﹣8 mD、8× 10﹣4m4、函数 y=﹣中旳自变量 x 旳取值范围是〔〕A、 x≥ 0B、x< 0 且 x≠ 1C、 x<0D、 x≥ 0 且 x≠ 15、一次函数 y=﹣ 2x﹣ 1 旳图象不经过〔〕A、第一象限B、第二象限C、第三象限D、第四象限6、如图, AD⊥ BC,D 是 BC旳中点,那么以下结论错误旳选项是〔〕A、△ ABD≌△ ACDB、∠ B=∠ CC、△ ABC是等腰三角形D、△ ABC是等边三角形7、假定点〔﹣3, y1〕,〔﹣ 2, y2〕,〔﹣ 1, y3〕在反比率函数y= ﹣图象上,那么以下结论正确旳选项是〔〕A、 y1>y2> y3B、 y2> y1> y3C、 y3> y1> y2D、 y3> y2> y18、如图,某中学制作了300 名学生选择棋类、拍照、书法、短跑四门校内课程状况旳扇形统计图,从图中可以看出选择短跑旳学生人数为〔〕A、 33B、 36C、 39D、42A、全等三角形旳对应角相等B、直角三角形两锐角互余C、全等三角形旳对应边相等D、两直线平行,同位角相等10、尺规作图作∠AOB旳均分线方法以下:以O为圆心,随意长为半径画弧交OA, OB于C, D,再分别以点 C, D 为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP、由作法得△OCP≌△ ODP旳依据是〔〕A、 SASB、 ASAC、 AASD、 SSS11、某校八年级 1 班一个学习小组旳7 名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据旳众数和中位数分别是〔〕A、 93、 89B、 93、 93C、 85、93D、 89、9312、将一张矩形纸对折再对折,而后沿着如图中旳虚线剪下,翻开,那个图形必定是一个〔A、三角形B、矩形C、菱形D、正方形13、等腰梯形两底旳差是 4,两腰旳长也是 4,那么那个等腰梯形旳两锐角差不多上〔〕A、75° B、60° C、 45° D、 30°14、如图,矩形 ABCD中, BE、CF 分别均分∠ ABC和∠ DCB,点 E、 F 都在 AD上,以下结论不正确旳选项是〔A、△ ABE≌△ DCFB、△ ABE和△ DCF差不多上等腰直角三角形C、四边形BCFE是等腰梯形D、 E、 F 是 AD旳三均分点15、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香、以下四个图象中,大概能表示蚊香节余长度y〔cm〕与所经过时辰x〔 h〕之间旳函数关系旳是〔〕A、B、C、D、16、如图,点 P 是菱形 ABCD内一点, PE⊥AB, PF⊥ AD,垂足分别是 E 和 F,假定 PE=PF,以下说法不正确旳选项是〔〕A、点 P 必定在菱形ABCD旳对角线 AC上B、可用 H?L 证明 Rt△ AEP≌Rt △ AFPC、 AP 均分∠ BADD、点 P 必定是菱形ABCD旳两条对角线旳交点【二】填空题17、计算:〔 a﹣3〕2〔 ab2〕﹣3=〔结果化为只含正整数指数幂旳形式〕18、把命题“平行四边形旳两组对边分别相等”改写成“若是,那么”旳形式是、19、点 P〔﹣ 4, 5〕对于 x 轴对称旳点P′旳坐标是、20、到三角形各极点距离相等旳点是三角形旳交点、21、四边形ABCD中, AD∥ BC,要使四边形ABCD成为平行四边形还需知足旳条件是〔横线只要填一个你认为适合旳条件即可〕22、小青在八年级上学期旳数学成绩以下表所示、平时测试期中考试期末考试成绩869081若是学期总评成绩依据以下列图旳权重计算,小青该学期旳总评成绩是分、23、若是对于x 旳方程=无解,那么m=、24、如图,双曲线与直线y=mx+n在第一象限内交于点A〔 1, 5〕和 B〔 5, 1〕,依据图象,在第一象限内,反比率函数值大于一次函数值时x 旳取值范围是、【三】解答题〔第 25 题 18 分,其他每题 8 分,共50 分〕25、〔 1〕计算:〔﹣2〕3+〔﹣〕﹣2?〔 1﹣〕0〔 2〕先化简,再求值:÷﹣,此中x=〔 3〕解方程:=+2、26、 2018 年 4 月 20,我省雅安市芦山县发生了里氏7.0 级激烈地震、为增援灾区,某中学八年级师生发起了自发捐钱活动、第一天捐钱4800 元,翌日捐钱6000 元,翌日捐钱人数比第一天捐钱人数多50 人,且两天人均捐钱数相等,那么两天共参加捐钱旳人数是多少?27、:如图,在△ABC中, AB=AC,∠ B=36°、〔1〕尺规作图:作 AB旳垂直均分线交 BC于点 D,垂足为 F,连结 AD;〔保存作图印迹,不写作法〕〔2〕求证:△ ACD是等腰三角形、28、如图,直线y=kx+b 与反比率函数y= 〔 x< 0〕旳图象订交于点A、点B,与x 轴交于点C,此中点A 旳坐标为〔﹣2, 4〕,点B 旳横坐标为﹣4、〔1〕试确立反比率函数旳关系式;〔2〕求△ AOC旳面积、29、经市场检查,某种优良西瓜质量为〔5± 0.25 〕kg 旳最为热销、为了操控西瓜旳质量,农科所采用A、B 两各栽种技术进行试验,现从这两种技术栽种旳西瓜中各随机抽取10 颗,记录它们旳质量以下〔单位:kg〕:A: 5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B: 4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9〔 1〕假定质量为〔5± 0.25 〕 kg 旳为优等品,依据以上信息达成如表:栽种技术优等品数目〔颗〕均匀数〔 kg〕方差A 0.068B 4.9〔2〕请分别从优良品数目、均匀数与方差三方面对 A、 B 两种技术作出评论;从市场销售旳角度看,你以为推行哪各栽种技术较好、【四】能力展现题30、某商场预备购进A、 B 两种品牌旳饮料共100 件,两种饮料每件收益分别是15 元和 13 元、设购进种饮料 x 件,且所购进旳两种饮料能所有卖出,获取旳总收益为y 元、〔 1〕求 y 与 x 旳函数关系式;〔 2〕依据两种饮料历次销量记录: A 种饮料起码购进30 件, B 种饮料购进数目很多于 A 种饮料件数旳A 2倍、问: A、 B 两种饮料进货方案有几种?哪一种方案能使商场所获收益最高?最高收益是多少?31、如图,在△ ABC中∠ ACB=90°,D 是 AC旳中点,过点 A 旳直线 l ∥ BC,将直线 AC绕点 D 逆时针旋转〔旋转角α<∠ ACB〕,分别交直线 l 于点 F 与 BC旳延伸线交于点 E,连结 AE、CF、〔1〕求证:△ CDE≌△ ADF;〔2〕求证:四边形 AFCE是平行四边形;AFCE成为正方形?请说明原因;〔 3〕当∠ B=22.5 °, AC=BC时,请研究:能否存在这样旳α 能使四边形假定能,求出这时旳旋转角α旳度数和 BC与 CE旳数目关系、2018-2016 学年四川省成都市八年级〔下〕期末数学试卷参照【答案】与试题【分析】【一】选择题〔本题共16 小题,每题 3 分,共 48 分、〕1、假定分式旳值为0,那么x旳值为〔〕A、 x=0B、 x=1C、 x=﹣ 2D、 x=﹣ 1【考点】分式旳值为零旳条件、【专题】计算题、【剖析】分式旳值是0 旳条件是:分子为0,分母不为0、【解答】解:∵x﹣ 1=0 且 x+2≠ 0,∴x=1、应选 B、【评论】分式是0 旳条件中特意需要注意旳是分母不可以是0,这是常常考察旳知识点、2、将分式中分子与分母旳各项系数都化成整数,正确旳选项是〔〕A、B、C、D、【考点】分式旳差不多性质、【剖析】依据分式旳分子分母都乘或除以同一个不为零旳整式,分式旳值不变,可得【答案】、【解答】解:分式中分子与分母旳各项系数都化成整数,正确旳选项是,应选: A、【评论】本题考察了分式旳差不多性质,利用了分式旳差不多性质、3、某种流感病毒旳直径是 0.00000008m,那个数据用科学记数法表示为〔〕A、 8× 10﹣6mB、 8× 10﹣5mC、 8× 10﹣8 mD、8× 10﹣4m【考点】科学记数法—表示较小旳数、【剖析】绝对值小于 1 旳正数也可以利用科学记数法表示,一般形式为a× 10﹣n,与较大数旳科学记数法不一样旳是其所使用旳是负指数幂,指数由原数左侧起第一个不为零旳数字前面旳0 旳个数所决定、【解答】解: 0.00000008=8 × 10﹣8、应选: C、【评论】本题考察用科学记数法表示较小旳数、一般形式为a× 10﹣n,此中 1≤ |a| <10, n 为由原数左侧起第一个不为零旳数字前面旳0 旳个数所决定、4、函数y=﹣中旳自变量x 旳取值范围是〔〕A、 x≥ 0B、x< 0 且x≠ 1C、 x<0D、 x≥ 0 且x≠ 1【考点】函数自变量旳取值范围;分式存心义旳条件;二次根式存心义旳条件、【剖析】依据二次根式旳性质和分式旳意义,被开方数大于等于0,分母不等于【解答】解:依据二次根式旳性质和分式旳意义,被开方数大于等于0,可知:0,就可以求解、 x≥ 0;分母不等于0,可知: x﹣ 1≠0,即 x≠1、所以自变量x 旳取值范围是x≥0 且 x≠ 1、应选 D、【评论】本题考察旳是函数自变量取值范围旳求法、函数自变量旳范围一般从三个方面考虑:〔 1〕当函数表达式是整式时,自变量可取全体实数;〔 2〕当函数表达式是分式时,考虑分式旳分母不可以为0;〔 3〕当函数表达式是二次根式时,被开方数非负、5、一次函数y=﹣ 2x﹣ 1 旳图象不经过〔〕A、第一象限B、第二象限C、第三象限D、第四象限【考点】一次函数图象与系数旳关系、【剖析】由于 k=﹣2< 0, b=﹣ 1< 0,依据一次函数 y=kx+b 〔 k≠ 0〕旳性质获取图象经过第【二】四象限,图象与 y 轴旳交点在 x 轴下方,所以可推测一次函数 y=﹣ 2x﹣ 1 旳图象不经过第一象限、【解答】解:对于一次函数y=﹣ 2x﹣ 1,∵k=﹣ 2< 0,∴图象经过第【二】四象限;又∵ b=﹣ 1< 0,∴一次函数旳图象与 y 轴旳交点在 x 轴下方,即函数图象还经过第三象限,∴一次函数y=﹣ 2x﹣ 1 旳图象不经过第一象限、应选 A、【评论】本题考察了一次函数y=kx+b〔 k≠ 0〕旳性质:当k<0,图象经过第【二】四象限,y 随 x 旳增大而减小;当k> 0,经图象第【一】三象限,y 随 x 旳增大而增大;当b> 0,一次函数旳图象与y 轴旳交点在 x 轴上方;当b<0,一次函数旳图象与y 轴旳交点在x 轴下方、6、如图, AD⊥ BC,D 是 BC旳中点,那么以下结论错误旳选项是〔〕A、△ ABD≌△ ACDB、∠ B=∠ CC、△ ABC是等腰三角形D、△ ABC是等边三角形【考点】全等三角形旳判断与性质;等腰三角形旳判断与性质;等边三角形旳判断、【剖析】依据垂直旳定义可得∠ADB=∠ ADC=90°,依据线段中点旳定义可得BD=CD,而后利用“边角边”证明△ ABD和△ ACD全等,依据全等三角形对应角相等可得∠B=∠ C,全等三角形对应边相等可得AB=AC,而后选择【答案】即可、【解答】解:∵AD⊥BC,∴∠ ADB=∠ADC=90°,∵ D 是 BC旳中点,∴ BD=CD,在△ ABD和△ ACD中,,∴△ ABD≌△ ACD〔 SAS〕,∴∠ B=∠ C, AB=AC,故 A、 B、C 选项结论都正确,只有 AB=BC时,△ ABC是等边三角形,故 D 选项结论错误、应选 D、【评论】本题考察了全等三角形旳判断与性质,等腰三角形旳判断与性质,等边三角形旳判断,娴熟掌握三角形全等旳判断方法是解题旳重点、7、假定点〔﹣3, y1〕,〔﹣ 2, y2〕,〔﹣ 1, y3〕在反比率函数y= ﹣图象上,那么以下结论正确旳选项是〔〕A、 y1>y2> y3B、 y2> y1> y3C、 y3> y1> y2D、 y3> y2> y1【考点】反比率函数图象上点旳坐标特色、【专题】计算题、【剖析】依据反比率函数图象上点旳坐标特色获取﹣ 3?y1=﹣ 1,﹣2?y2=﹣ 1,﹣ 1?y3=﹣ 1,而后分别计算出y1、 y2、 y3旳值后比较大小即可、【解答】解:依据题意得﹣3?y1=﹣ 1,﹣ 2?y2=﹣ 1,﹣ 1?y3=﹣ 1,解得y1= , y2 = , y3=1,所以 y1< y2< y3、应选 D、y=xk 〔 k 为常数,k≠ 0〕旳图象是双曲【评论】本题考察了反比率函数图象上点旳坐标特色:反比率函数线,图象上旳点〔x, y〕旳横纵坐标旳积是定值k,即 xy=k 、8、如图,某中学制作了300 名学生选择棋类、拍照、书法、短跑四门校内课程状况旳扇形统计图,从图中可以看出选择短跑旳学生人数为〔〕A、 33B、 36C、 39D、42【考点】扇形统计图、【剖析】先求出选择短跑旳学生所占旳百分比,再乘以总人数即可、【解答】解:依据题意得:300×〔 1﹣33%﹣ 26%﹣ 28%〕=39〔名〕、答:选择短跑旳学生有39 名、应选 C、【评论】本题考察了扇形统计图,扇形统计图斩钉截铁反应部分占整体旳百分比大小,重点是求出选择短跑旳学生所占旳百分比、9、以下命题中,抗命题是假命题旳是〔〕A、全等三角形旳对应角相等B、直角三角形两锐角互余C、全等三角形旳对应边相等D、两直线平行,同位角相等【考点】命题与定理、【剖析】把一个命题旳条件和结论交换就获取它旳抗命题,再进行推测即可、【解答】解: A、全等三角形旳对应角相等旳抗命题是对应角相等旳三角形全等,是假命题;B、直角三角形两锐角互余旳抗命题是两锐角互余旳三角形是直角三角形,是真命题;C、全等三角形旳对应边相等旳抗命题是对应边相等旳三角形全等,是真命题;D、两直线平行,同位角相等旳抗命题是同位角相等,两直线平行,是真命题;应选 A、【评论】本题考察了命题与定理,两个命题中,若是第一个命题旳条件是第二个命题旳结论,而第一个命题旳结论又是第二个命题旳条件,那么这两个命题叫做互抗命题、此中一个命题称为另一个命题旳抗命题、10、尺规作图作∠AOB旳均分线方法以下:以O为圆心,随意长为半径画弧交OA, OB于C, D,再分别以点 C, D 为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP、由作法得△OCP≌△ ODP旳依据是〔〕A、 SASB、 ASAC、 AASD、 SSS【考点】作图—差不多作图;全等三角形旳判断、【剖析】仔细阅读作法,从角均分线旳作法得出△OCP与△ ODP旳两边分别相等,加上公共边相等,所以两个三角形切合SSS判断方法要求旳条件,【答案】可得、【解答】解:∵以O为圆心,随意长为半径画弧交OA, OB于 C, D,即 OC=OD;以点C, D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△ OCP和△ ODP中,,∴△ OCP≌△ ODP〔 SSS〕、应选 D、【评论】本题考察三角形全等旳判断方法,判断两个三角形全等旳一般方法有:SSS、SAS、ASA、AAS、HL、注意: AAA、SSA不可以判断两个三角形全等,判断两个三角形全等时,一定有边旳参加,假定有两边一角对应相等时,角一定是两边旳夹角11、某校八年级 1 班一个学习小组旳7 名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据旳众数和中位数分别是〔〕A、 93、 89B、 93、 93C、 85、93D、 89、93【考点】众数;中位数、【剖析】依据众数旳定义即众数是一组数据中出现次数最多旳数和中位数旳定义即中位数是将一组数据从小到大〔或从大到小〕从头摆列后,最中间旳那个数〔最中间两个数旳均匀数〕,即可得出【答案】、【解答】解:∵ 85,93, 62, 99, 56,93, 89 中, 93 出现了 2 次,出现旳次数最多,∴这七个数据旳众数是 93,把 85, 93, 62, 99, 56, 93, 89 从小到大摆列为:56,62, 85,89, 93,93, 99,最中旳数是89,那么中位数是89;应选 A、【评论】本题考察了众数与中位数,中位数是将一组数据从小到大〔或从大到小〕从头摆列后,最中间旳那个数〔最中间两个数旳均匀数〕,叫做这组数据旳中位数,众数是一组数据中出现次数最多旳数、12、将一张矩形纸对折再对折,而后沿着如图中旳虚线剪下,翻开,那个图形必定是一个〔A、三角形B、矩形C、菱形D、正方形【考点】剪纸问题、【剖析】依据折叠可得剪得旳四边形四条边都相等,依据此特色可得那个图形是菱形、【解答】解:依据折叠方法可知:所获取图形旳 4 条边差不多上所剪直角三角形旳斜边,同时相等,依据四条边相等旳四边形是菱形可得那个图形是菱形,应选: C、【评论】本题重要考察学生旳着手能力及空间想象能力,重点是正确理解剪图旳方法、13、等腰梯形两底旳差是 4,两腰旳长也是 4,那么那个等腰梯形旳两锐角差不多上〔〕A、75° B、60° C、 45° D、 30°【考点】等腰梯形旳性质、【剖析】依据题意画出图形,过点 A 作 AE∥ CD交 BC于点 E,依据等腰梯形旳性质,易得四边形AECD是平行四边形,依据平行四边形旳对边相等,可得△ABE是等边三角形,即可得∠ B 旳值、【解答】解:以下列图:梯形 ABCD是等腰梯形,且 AD∥ BC,过点 A 作 AE∥ CD交 BC于点 E,∵ AD∥ BC,∴四边形AECD是平行四边形,∴AE=CD, AD=EC,∵BE=BC﹣ CE=BC﹣ AD=AB=CD=4,∴∠ B=60°、∴那个等腰梯形旳锐角为 60°、应选 B、【评论】本题考察了等腰梯形旳性质、平行四边形旳判断与性质以及等边三角形旳性质,依据题意作出协助线,结构出平行四边形是解答本题旳重点、14、如图,矩形 ABCD中, BE、CF 分别均分∠ ABC和∠ DCB,点 E、 F 都在 AD上,以下结论不正确旳选项是〔A、△ ABE≌△ DCFB、△ ABE和△ DCF差不多上等腰直角三角形C、四边形BCFE是等腰梯形D、 E、 F 是 AD旳三均分点【考点】矩形旳性质、【剖析】 A、由 AAS证得△ ABE≌△ DCF;B、依据矩形旳性质、角均分线旳性质推知△ABE和△ DCF差不多上等腰直角三角形;C、由 A 中旳全等三角形旳性质获取BE=CF、联合矩形旳对边平行获取四边形BCFE是等腰梯形;D、依据 A 在全等三角形旳性质只好获取AE=DF,点E、 F 不必定是AD旳三均分点、【解答】解:如图,∵四边形ABCD是矩形 ABCD,∴∠ A=∠ D=∠ DCB=∠ABC=90°、又 BE、 CF分别均分∠ ABC和∠ DCB,∴∠ ABE=∠DCF=45°,∴∠ AEB=∠ABE=45°,∠ DFC=∠ DCF=45°,∴AB=AE, DF=DC,∴△ ABE和△ DCF差不多上等腰直角三角形、故 B正确;在△ ABE与△ DCF中,、那么△ ABE≌△ DCF〔AAS〕,故A正确;∵△ ABE≌△ DCF,∴BE=CF、又 BE 与 FC不平行,且 EF∥BC, EF≠BC,∴四边形 BCFE是等腰梯形、故 C正确;∵△ ABE≌△DCF,∴ AE=DF、但是不可以确立 AE=EF=FD建立、即点 E、 F 不必定是 AD旳三均分点、故 D错误、应选: D、【评论】本题考察了矩形旳性质,全等三角形旳性质和判断,平行线旳性质旳应用,重要考察学生旳推理能力、15、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香、以下四个图象中,大概能表示蚊香节余长度y〔cm〕与所经过时辰x〔 h〕之间旳函数关系旳是〔〕A、B、C、D、【考点】函数旳图象、【专题】压轴题、【剖析】由于该盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香,所以蚊香节余长度y 随所经过时辰x 旳增添而减少,又中间熄灭了2h,由此即可求出【答案】、【解答】解:由于蚊香节余长度y 随所经过时辰x 旳增添而减少,又中间熄灭了2h、应选 C、【评论】解决此类识图题,同学们要注意剖析此中旳“重点点”,还要擅长剖析各图象旳变化趋向、16、如图,点 P 是菱形 ABCD内一点, PE⊥AB, PF⊥ AD,垂足分别是 E 和 F,假定 PE=PF,以下说法不正确旳选项是〔〕A、点 P 必定在菱形ABCD旳对角线 AC上B、可用 H?L 证明 Rt△ AEP≌Rt △ AFPC、 AP 均分∠ BADD、点 P 必定是菱形ABCD旳两条对角线旳交点【考点】菱形旳性质;全等三角形旳判断;角均分线旳性质、【剖析】依据到角旳两边距离相等旳点在角旳均分线上推测出 AP均分∠ BAD,依据菱形旳对角线均分一组对角线可得 AC均分∠ BAD,而后对各选项剖析推测利用清除法求解、【解答】解:∵PE⊥AB, PF⊥ AD, PE=PF,∴AP均分∠ BAD,∵四边形 ABCD是菱形,∴对角线 AC均分∠ BAD,故 A、C 选项结论正确;可以利用“ HL”证明 Rt △ AEP≌ Rt △ AFP,故 B 选项正确;点 P 在 AC上,但不必定在 BD上,所以,点 P必定是菱形 ABCD旳两条对角线旳交点不必定正确、应选 D、【评论】本题考察了菱形旳性质,到角旳两边距离相等旳点在角旳均分线上旳性质,全等三角形旳判断与性质,娴熟掌握各性质是解题旳重点、【二】填空题17、计算:〔a﹣3〕2〔 ab2〕﹣3=\frac{1}{{a}^{9}{b}^{6}} 〔结果化为只含正整数指数幂旳形式〕【考点】负整数指数幂、【剖析】依据负整数指数幂旳运算法那么分别进行计算,即可得出【答案】、【解答】解:〔 a﹣3〕2〔 ab2〕﹣3=〔〕2〔=? = ;故【答案】为:、【评论】本题考察了负整数指数幂,掌握负整数指数幂旳法那么:任何不等于零旳数旳﹣n〔 n 为正整数〕次幂,等于那个数旳n 次幂旳倒数是本题旳重点、18、把命题“平行四边形旳两组对边分别相等”改写成“若是,那么”旳形式是若是一个四边形是平行四边形,那么它两组对边分别相等、【考点】命题与定理、【剖析】若是后边应是命题中旳条件,那么后边是由条件获取旳结论、【解答】解:原命题旳条件是:四边形是平行四边形,结论是两组对边分别相等;改写成“若是,那么”旳形式是:若是一个四边形是平行四边形,那么它两组对边分别相等,故【答案】为:若是一个四边形是平行四边形,那么它两组对边分别相等、【评论】本题考察了命题与定理旳知识,解决本题旳重点是正确找到所给命题旳条件和结论、19、点 P〔﹣ 4, 5〕对于 x 轴对称旳点P′旳坐标是〔﹣4,﹣ 5〕、【考点】对于x 轴、 y 轴对称旳点旳坐标、【剖析】对于 x 轴对称点旳坐标特色:横坐标不变,纵坐标互为相反数可得【答案】、【解答】解:点 P〔﹣ 4, 5〕对于 x 轴对称旳点 P′旳坐标是〔﹣ 4,﹣ 5〕,故【答案】为:〔﹣ 4,﹣ 5〕、【评论】本题重要考察了对于x 轴对称点旳坐标,重点是掌握点旳坐标旳变化规律、20、到三角形各极点距离相等旳点是三角形三条边旳垂直均分线旳交点、【考点】线段垂直均分线旳性质、【剖析】依据线段旳垂直均分线旳性质理解到三角形旳一边旳两个端点距离相等旳点应当在这边旳垂直均分线上,第一知足到两个极点即到一条线段〔边〕,再知足到另一个极点即可,所以到三角形各极点距离相等旳点应当在三边旳垂直均分线上,由此可以获取结论、【解答】解:∵到三角形旳一边旳两个端点距离相等旳点应当在这边旳垂直均分线,到三角形旳另一边旳两个端点距离相等旳点应当在这边旳垂直均分线,二垂直均分线有一个交点,由等量代换可知到三角形各极点距离相等旳点是三角形三条边旳垂直均分线旳交点、故填空【答案】:三条边旳垂直均分线、【评论】本题重要考察线段旳垂直均分线旳性质等几何知识、分别知足所要求旳条件是正确解答本题旳重点、21、四边形 ABCD中,AD∥ BC,要使四边形A BCD成为平行四边形还需知足旳条件是AD=BC〔或 AD∥BC〕〔横线只要填一个你以为适合旳条件即可〕【考点】平行四边形旳判断、【专题】开放型、【剖析】在一组对边平行旳基础上,要判断是平行四边形,那么需要增添另一组对边平行,或平行旳这组对边相等,或一组对角相等均可、【解答】解:依据平行四边形旳判断方法,知需要增添旳条件是 AD=BC或 AB∥ CD或∠ A=∠ C 或∠ B=∠D、故【答案】为 AD=BC〔或 AB∥ CD〕、【评论】本题考察了平行四边形旳判断,为开放性试题,【答案】不独一,要掌握平行四边形旳判断方法、两组对边分别平行旳四边形是平行四边形;两组对边分别相等旳四边形是平行四边形;一组对边平行且相等旳四边形是平行四边形;两组对角相等旳四边形是平行四边形;对角线相互均分旳四边形是平行四边形、22、小青在八年级上学期旳数学成绩以下表所示、平时测试期中考试期末考试成绩 86 90 81若是学期总评成绩依据以下列图旳权重计算,小青该学期旳总评成绩是84.2 分、【考点】加权均匀数;扇形统计图、【剖析】依据总成绩中由三次成绩构成并且所占比率不一样,运用加权均匀数旳计算公式求出即可、【解答】解:总评成绩为:86×10%+90×30%+81×60%=84.2〔分〕、故【答案】为84.2 、【评论】本题重要考察了加权均匀数旳应用,注意学期旳总评成绩是依据平时成绩,期中成绩,期末成绩旳权重计算得出,注意加权均匀树算法旳正确运用,在考试中是易错点、23、若是对于x 旳方程=无解,那么m=﹣ 5、【考点】分式方程旳解、【剖析】分式方程无解旳条件是:去分母后所得整式方程无解,或解那个整式方程获取旳解使原方程旳分母等于 0、【解答】解:去分母得:x﹣3=m,解得: x=m+3,∵原方程无解,∴最简公分母:x+2=0,解得: x=﹣2,即可得: m=﹣ 5、故【答案】为﹣5、【评论】本题考察了分式方程旳解,分式方程无解分两种状况:整式方程自己无解;分式方程产生增根、24、如图,双曲线与直线y=mx+n在第一象限内交于点A〔 1, 5〕和 B〔 5, 1〕,依据图象,在第一象限内,反比率函数值大于一次函数值时x 旳取值范围是0<x< 1 或 x> 5、【考点】反比率函数与一次函数旳交点问题、【剖析】依据图象观看,反比率函数图象在一次函数图象上方时,即反比率函数旳值大于一次函数旳值、【解答】解:从图象可知反比率函数图象在一次函数图象上方时,即反比率函数旳值大于一次函数旳值,所以 x 旳取值范围是0< x<1 或 x> 5、故【答案】为:0< x< 1 或 x>5、【评论】本题考察了由图象确立两函数旳大小问题,斩钉截铁由图象下手较为简单、【三】解答题〔第25 题 18 分,其他每题8 分,共 50 分〕25、〔 1〕计算:〔﹣ 2〕3+〔﹣〕﹣2?〔 1﹣〕0〔 2〕先化简,再求值:÷﹣,此中x=〔 3〕解方程:= +2、【考点】分式旳化简求值;零指数幂;负整数指数幂;解分式方程、【专题】计算题、【剖析】〔 1〕原式第一项利用乘方旳意义化简,第二项利用负指数幂、零指数幂法那么计算即可获取结果;〔 2〕原式第一项利用除法法那么变形,约分后利用同分母分式旳减法法那么计算获取最简结果,将x 旳值代入计算即可求出值;〔 3〕分式方程去分母转变为整式方程,求出整式方程旳解获取x 旳值,经查验即可获取分式方程旳解、【解答】解:〔1〕原式 =﹣ 8+9× 1=﹣ 8+9=1;〔 2〕原式 = ? ﹣=﹣= ,当 x=时,原式==﹣ 3;〔3〕去分母得: 2x〔 x+1〕 =1+2x2﹣2,去括号得: 2x 2+2x=2x2﹣ 1,解得: x=﹣,经查验 x=﹣是分式方程旳解、【评论】本题考察了分式旳化简求值,娴熟掌握运算法那么是解本题旳重点、26、 2018 年 4 月 20,我省雅安市芦山县发生了里氏7.0 级激烈地震、为增援灾区,某中学八年级师生发起了自发捐钱活动、第一天捐钱4800 元,翌日捐钱6000 元,翌日捐钱人数比第一天捐钱人数多50 人,且两天人均捐钱数相等,那么两天共参加捐钱旳人数是多少?【考点】分式方程旳应用、【剖析】设第一天捐钱旳人数为x 人,翌日捐钱旳人数为〔x+50 〕人,依据两天人均捐钱数相等,列方程求解、【解答】解:设第一天捐钱旳人数为x 人,翌日捐钱旳人数为〔x+50〕人,由题意得,= ,解得: x=200,经查验, x=200 是原分式方程旳解,且切合题意、那么两天共参加旳捐钱人数为: 2× 200+50=450〔人〕、答:两天共参加捐钱旳人数是 450 人、【评论】本题考察了分式方程旳应用,解答本题旳重点是读懂题意,设出未知数,找出适合旳等量关系,列方程求解,注意查验、。
2022-2023学年四川省成都市青羊区石室联中八年级(下)期中数学试卷

2022-2023学年成都市青羊区石室联中八年级(下)期中数学试卷一、选择题:(每小题4分,共32分)1.(4分)下列图形是中心对称图形的是()A.B.C.D.2.(4分)下列等式从左到右的图形,属于因式分解的是()A.m(a﹣b)=ma﹣mb B.2a2+a=a(2a+1)C.(x+y)2=x2+2xy+y2D.m2+4m+4=m(m+4)+43.(4分)不等式x≤2在数轴上表示正确的是()A.B.C.D.4.(4分)要使分式有意义,m应满足的条件是()A.m<4B.m=4C.m≠4D.m>45.(4分)如图,在下列给出的条件中,可以判定四边形ABCD为平行四边形的条件是()A.AD=BC,∠B=∠D B.AD∥BC,AB=CDC.AB=CD,AD=BC D.AB∥CD,∠A=∠B6.(4分)如图,△DEF是由△ABC沿射线AB方向经过平移得到的,若∠A=33°,则∠EDF的度数为()A.33°B.80°C.57°D.67°7.(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原计划参加旅游的同学共有x人,则根据题可列方程()A.B.C.=2D.8.(4分)如图,在菱形ABCD中,菱形的边长为5,对角线AC的长为8,延长AB至E,BF平分∠CBE,点G是BF上任意一点,则△ACG的面积为()A.20B.6C.12D.24二、填空题:(每小题4分,共20分)9.(4分)把6a2b﹣3ab因式分解的结果是.10.(4分)已知分式的值为0,则x=.11.(4分)一个多边形的内角和度数是720°,则它的边数是.12.(4分)如图,在△ABC中,∠B=70°,∠C=25°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为.13.(4分)如图,在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3,AE=,则BD=.三、解答题:(本大题共5个小题,共48分)14.(12分)计算:(1)解方程:.(2)解不等式组:.15.(8分)先化简,再求值:÷(m+2),其中m是方程x2+3x﹣2=0的根.16.(8分)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)画出△ABC绕点O逆时针旋转90°后的图形△A1B1C1,并写出点C1的坐标;(2)将(1)中所得△A1B1C1先向左平移4个单位,再向上平移2个单位得到A2B2C2,画出△A2B2C2,并写出点C2的坐标.17.(8分)如图,在▱ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE;(2)若BC=2AE,∠E=34°,求∠DAB的度数.18.(12分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部时,连接CE,则BP与CE的数量关系是,CE与AD的位置关系是;(2)如图2,当点E在菱形ABCD外部时,连接CE.求证:CE+PD=BD;(3)如图3,当点P在线段BD的延长线上时,连接BE.若,,求PD.一、填空题(每小题4分,共20分)19.(4分)若y﹣x=﹣1,xy=2,则代数式﹣2x3y+4x2y2﹣2xy3的值是.20.(4分)若实数A、B使得恒成立,则A=,B=.21.(4分)若一次函数y=(a﹣1)x+a﹣8的图象经过第一、三、四象限,且关于y的分式方程的解大于﹣3,则a的取值范围是.22.(4分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=8.如果在三角形内部有一条动线段MN∥BC,且MN=,则AN+BM+CN的最小值为.23.(4分)如图(1)四边形ABCD是一张矩形纸片,其中BC=1,,CF平分∠BCD,点E为CD 边上一动点沿CF剪掉△BFC如图(2),再将△EFC沿EF翻折,点C的对应点为C′如图(3),将△E FC′纸片再沿C′F折叠,点E的对应点为E′.当FE′与矩形的边垂直时,CE的长为.二、解答题(共30分)24.(8分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元的资金购进这两款汽车共15辆,且A款汽车的数量不少于6辆,有几种进货方案?25.(10分)如图,在平面直角坐标系中,直线m:y=﹣x+b与直线n:y=ax+8(a≠0)交于点A(﹣1,5),直线m、n分别与x轴交于点B、C.(1)求S△ABC;(2)若线段AC上存在一点P,使得S△ABP=10,求点P的坐标;(3)在(2)的条件下,在平面直角坐标系中找一点Q,使得以点A、B、P、Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.26.(12分)已知,如图,△ABC和△ADE是两个完全相同的等腰直角三角形,且∠ABC=∠AED=90°;(1)如图1,当△ADE的AD边与△ABC的AB边重合时,连接CD,求∠BCD的度数;(2)如图2,当A,B,D不在一条直线上时,连接CD,EB,延长EB交CD于F,过点A作AG⊥EB,垂足为点G,过点D作DT⊥EB,垂足为点T,求证:EG=FT;(3)在(2)的条件下,若AF=3,DF=2,求EF的长.。
成都石室中学初中学校八年级数学下册第十九章《一次函数》经典练习卷(提高培优)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,1) C .(0,103) D .(0,2)3.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x 的解集是( )A .0<x <32B .32<x <6C .32<x <4 D .0<x <3 4.如图,直线5y x =+和直线y ax b =+相交于点P ,根据图象可知,方程组5y x y ax b =+⎧⎨=+⎩的解是( )A .510x y =⎧⎨=⎩B .1520x y =⎧⎨=⎩C .2025x y =⎧⎨=⎩D .2530x y =⎧⎨=⎩5.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,106.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→ B .CDE A →→→ C .A E C B →→→ D .A E D C →→→7.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,48.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 9.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<10.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫⎪⎝⎭B .2,02⎛⎫⎪⎪⎝⎭C .1010⎛⎫⎪⎪⎝⎭D .1,010⎛⎫⎪⎝⎭11.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限12.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ,使∠BAC=90°,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是( )A .B .C .D .13.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .经过第一、二、三象限 B .与x 轴交于()1,0- C .与y 轴交于()0,1D .y 随x 的增大而减小14.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限 B .第二象限C .第三象限D .第四象限15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.17.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________. 18.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.19.甲,乙两人都要从A 仓库运送货物到B 仓库.甲从A 仓库出发匀速行驶,1小时后乙也从A 仓库出发沿同一线路匀速行驶,当乙先到达B 仓库送完货物后(不考虑货物交接的时间)立刻以原速一半的速度返回并在途中与甲第二次相遇.设甲行驶的时间为()h x ,甲和乙之间的距离为()km y 与甲出发的时间x 的函数关系式如图所示.则甲与乙第二次相遇时到A 仓库的距离为______km .20.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.21.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.22.函数51y x=-的定义域是______. 23.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.24.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.25.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________. 26.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题27.直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点,直线24(0)y kx k k =+->与直线2y x =--相交于C 点.(1)请说明24(0)y kx k k =+->经过点(4,2);(2)1k =时,点D 是直线24(0)y kx k k =+->上一点且在y 轴的右侧,若2DOBDOA SS=,求点D 的坐标;(3)若点C 在第三象限,求k 的取值范围.28.如图,在平面直角坐标系中,直线AB 交坐标轴于点(0,6)A ,(8,0)B ,点C 为x 轴正半轴上一点,连接AC ,将ABC 沿AC 所在的直线折叠,点B 恰好与y 轴上的点D 重合.(1)求直线AB 的解析式;(2)点P 为直线AB 上的点,请求出点P 的坐标使94COP S△. 29.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)30.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x 千米,应付给个体车主的月费用是1y 元,应付给出租车公司的月租费用是2y 元,1y ,2y 分别与x 之间的函数关系图象如图,观察图象回答下列问题:(1)求1y ,2y 分别与x 之间的函数关系式; (2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2400千米,那么这个单位租哪一家的车合算,并说明理由?。
【三套打包】四川省成都市石室中学八年级下学期期中数学试题及答案

八年级(下)数学期中考试试题【含答案】一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在Rt△ABC中,∠C=90°,∠A=70°,则∠B的度数为()A.20°B.30°C.40°D.70°2.(3分)在Rt△ABC中,斜边上的中线CD=2.5cm,则斜边AB的长是()A.2.5cm B.5cm C.7.5cm D.10cm3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.3,4,5B.5,12,13C.2,3,4D.8,15,17 4.(3分)如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A.6cm B.12cm C.4cm D.8cm5.(3分)在线段、角、等腰三角形、平行四边形、矩形、菱形、正方形这几个图形中,既是轴对称图形又是中心对称图形的个数是()A.3个B.4个C.5个D.6个6.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6B.5C.4D.37.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.58.(3分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形9.(3分)菱形ABCD的对角线交于点O,则下列结论不一定正确的是()A.AB=BC B.OA=OC C.OA⊥OB D.AC=BD 10.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF 11.(3分)已知直角三角形两直角边的和为,斜边长为2,则这个直角三角形的面积是()A.B.C.3D.412.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于度.14.(3分)在某直角三角形中,其中一个锐角为30°,斜边和较小的边的和为12cm,则较大的直角边的长为.15.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.16.(3分)如图,在菱形ABCD中,边长AB=6,∠ABD=30°,则菱形ABCD的面积是.17.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB边上不与A,B 重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.18.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E 作EF∥BC,分别交BD,CD于点G,F两点,若M,N分别是DG,CE的中点,则MN 的长是.三、解答题(本大题共8小题,共计66分)19.(6分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?20.(6分)若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.21.(8分)已知:如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:(1)AE=CF;(2)四边形AECF是平行四边形.22.(6分)如图,求作一点P,使PM=PN,并且使点P到∠AOB的两边OA,OB的距离相等.23.(8分)已知:如图,一轮船一直由西向东航行,早上8点,在A处测得小岛P的方向是北偏东75°,以每小时15海里的速度继续向东航行,10点到达B处,并测得小岛P 的方向是北偏东60°,若小岛周围25海里内有暗礁,问该轮船一直向东航行是否有触礁的危险?24.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F(1)若CE=12,CF=5,求OC的长;(2)当点O在边AC上运动到何处且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.26.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年广西贵港市桂平市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴∠B=90°﹣∠A=90°﹣70°=20°,故选:A.2.【解答】解:∵Rt△ABC中,斜边AB的中线CD=2.5cm,∴2CD=AB,∴AB=5cm.故选:B.3.【解答】解:在A中,32+42=252=52,故能构成直角三角形,故A不符合题意;在B中,52+122=169=132,故能构成直角三角形,故B不符合题意;在C中,22+32=13≠42,故不能构成直角三角形,故C符合题意;在D中,82+152=289=172,故能构成直角三角形,故D不符合题意;故选:C.4.【解答】解:∵▱ABCD的周长是28cm,∴AB+BC=14cm,∵AB+BC+AC=22cm,∴AC=22﹣14=8 cm.故选:D.5.【解答】解:既是轴对称图形又是中心对称图形的是:线段、矩形、菱形、正方形,共4个,故选:B.6.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE∥BC,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.7.【解答】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴×2×AC+×2×4=7,∴AC=3.故选:A.8.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.9.【解答】解:∵四边形ABCD是菱形,∴AB=BC,OA=OC,OA⊥OB.故不一定正确的是AC=BD.故选:D.10.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴C正确;∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.11.【解答】解:设直角三角形两直角边分别为a、b,由题意得,a+b=,a2+b2=22,则2ab=(a+b)2﹣(a2+b2)=3,∴直角三角形的面积=ab=,故选:B.12.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:根据平行四边形两邻角此补,可得:∠A+∠B=180°又∵∠A,∠B的度数之比为5:4,可得两角分别是100°,80°,∴平行四边形的对角相等,∴∠C等于100度.故答案为100.14.【解答】解:设较小直角边是xcm,则斜边是2xcm.根据题意,得x+2x=12,解得x=4.则2x=8.根据勾股定理,较大直角边==4(cm).故答案为4cm.15.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.16.【解答】解:连接CA交BD于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,BO=OD,在RT△ABO中,∵∠AOB=90°,AB=6,∠ABO=30°,∴AO=AB=3,BO=AO=3,∴AC=6,BD=6,∴S菱形ABCD=•BD•AC=18.故答案为18.17.【解答】解:如图,连接CP.∵∠C=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×8×6=×10•CP,解得CP=4.8.故答案为:4.818.【解答】解:过M作MK⊥CD于K,过N作NP⊥CD于P,过M作MH⊥PN于H,则MK∥EF∥NP,∵∠MKP=∠MHP=∠HPK=90°,∴四边形MHPK是矩形,∴MK=PH,MH=KP,∵NP∥EF,N是EC的中点,∴=1,==∴PF=FC=BE=2,NP=EF=3,同理得:FK=DK=1,∵四边形ABCD为正方形,∴∠BDC=45°,∴△MKD是等腰直角三角形,∴MK=DK=1,NH=NP﹣HP=3﹣1=2,∴MH=2+1=3,在Rt△MNH中,由勾股定理得:MN==;故答案为:.三、解答题(本大题共8小题,共计66分)19.【解答】解:设这个多边形的边数为n,根据题意,得:(n﹣2)×180°=360°×2+180°,解得n=7,则这个多边形的边数是7,七边形的对角线条数为:×7×(7﹣3)=14(条),答:所求的多边形的边数为7,这个多边形对角线为14条.20.【解答】解:△ABC是直角三角形.理由是:∵|a﹣3|+(4﹣b)2+=0,∴a﹣3=0,4﹣b=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,由勾股定理的逆定理可知,△ABC是直角三角形.21.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD∠ABE=∠CDF.又∵BF=DE,∴BF﹣EF=DE﹣EF,即:BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).∴AE=CF.(2)∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF∵AE=CF,∴四边形AECF是平行四边形.22.【解答】解:如图所示:点P即为所求.23.【解答】解:过点P作PD⊥AB于点.∵在A处测得小岛P的方向是北偏东75°,∴∠P AB=90°﹣75°=15°又∵在B处测得小岛P的方向是北偏东60°,∴∠PBD=90°﹣60°=30°,∵∠PBD=∠P AB+∠APB,∴∠APB=∠PBD﹣∠P AB=30°﹣15°=15°,∴∠APB=∠P AB,∴AB=PB=2×15=30(海里),在Rt△BDP中,∠PBD=30°,∴PD=BP=15(海里)<25 (海里)∴该轮船一直向东航行是有触礁的危险.24.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.25.【解答】解:(1)∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠FCD,∴∠OFC=∠OCF,∴OF=OC,∴OE=OF;∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F ∴∠ECF=90°,∵CE=12,CF=5,∴EF==13,∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∴CO是△ECF上的中线,∴CO=EF=6.5;(2)点O是AC的中点且∠ACB=90°,理由:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.26.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴PC=PE,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;人教版八年级(下)期中模拟数学试卷及答案一、选择题:共10小题,在每小题列出的四个选项中,选出符合题目要求的一项.1.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.2.(3分)若点P(﹣1,3)在函数y=kx的图象上,则k的值为()A.﹣3B.3C.D.3.(3分)如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x的不等式kx+b>0的解集是()A.x>﹣1B.x<﹣1C.x>2D.x<24.(3分)已知点(﹣3,y1),(2,y2)都在直线y=2x+1上,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定5.(3分)已知2是关于x的方程3x2﹣2a=0的一个解,则a的值是()A.3B.4C.5D.66.(3分)如图,若DE是△ABC的中位线,△ABC的周长为1,则△ADE的周长为()A.1B.2C.D.7.(3分)若m<﹣1,则一次函数y=(m+1)x+m﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,BE =1,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则EC的长为()A.B.2C.3D.29.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD =AB•AC;③OB=AB;④OE=BC.其中成立的个数有()A.1个B.2个C.3个D.4个10.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A.当x=2时,y=5B.矩形MNPQ的面积是20C.当x=6时,y=10D.当y=时,x=10二、填空题:共8小题.11.(3分)函数中自变量x的取值范围是.12.(3分)若一元二次方程x2﹣2x﹣m=0无实根,则m的取值范围是.13.(3分)将函数y=2x+1的图象向上平移2个单位,所得的函数图象的解析式为.14.(3分)如图,等边三角形EBC在正方形ABCD内,连接DE,则∠ADE=度.15.(3分)在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.16.(3分)根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为.17.(3分)已知点A(2,﹣4),直线y=﹣x﹣2与y轴交于点B,在x轴上存在一点P,使得P A+PB的值最小,则点P的坐标为.18.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是;点B2018的坐标是.三、解答题共8小题.解答应写出文字说明、演算步骤或证明过程.19.(20分)解一元二次方程:(1)(2x+1)2=9;(2)x2+4x﹣2=0;(3)x2﹣6x+12=0;(4)3x(2x+1)=4x+2.20.(6分)已知m是方程x2﹣x﹣3=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.21.(6分)已知直线l1的函数解析式为y=x+1,且l1与x轴交于点A,直线l2经过点B,D,直线l1,l2交于点C.(1)求点A的坐标;(2)求直线l2的解析式;(3)求S△ABC的面积.22.(6分)如图,在△ABC中,AB=AC,D是BC边的中点,点E,F分别在AD及其延长线上,且CE∥BF,连接BE,CF.(1)求证:四边形EBFC是菱形;(2)若BD=4,BE=5,求四边形EBFC的面积.23.(6分)已知:关于x的一元二次方程x2+(m+1)x+m=0(1)求证:无论m为何值,方程总有两个实数根;(2)若x为方程的一个根,且满足0<x<3,求整数m的值.24.(7分)某游乐场普通门票价格40元/张,为了促销,新推出两种办卡方式:①白金卡售价200元/张,每次凭卡另收取20元;②钻石卡售价1000元/张,每次凭卡不再收费.促销期间普通门票正常出售,两种优惠卡不限次数,设去游乐场玩x次时,所需总费用为y元.(1)分别写出选择白金卡、普通门票消费时,y与x之间的函数关系式.(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点B,C的坐标.(3)请根据图象,直接写出选择哪种消费方式更合算.25.(7分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2.若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,下图①为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,0),(1)若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;(2)点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(3)若点D的坐标为(4,2),将直线y=2x+b平移,当它与点A,D的“相关矩形”没有公共点时,求出b的取值范围.26.(8分)在矩形ABCD中,AB=1,BC=2,点P是边BC上一点(点P不与点B,点C 重合),点C关于直线AP的对称点为C'.(1)如果C'落在线段AB的延长线上.①在图①中补全图形;②求线段BP的长度;(2)如图②,设直线AP与CC'的交点为M,求证:BM⊥DM.2018-2019学年北京101中八年级(下)期中数学试卷参考答案与试题解析一、选择题:共10小题,在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.2.【解答】解:∵点P(﹣1,3)在函数y=kx的图象上,∴3=﹣k,∴k=﹣3,故选:A.3.【解答】解:由题意可得:一次函数y=kx+b中,y>0时,图象在x轴上方,x>﹣1,则关于x的不等式kx+b>0的解集是x>﹣1,故选:A.4.【解答】解:∵点(﹣3,y1)和(2,y2)都在直线y=2x+1上,∴y1=2×(﹣3)+1=﹣5,y2=2×2+1=5,∴y1<y2.故选:B.5.【解答】解:把x=2代入方程3x2﹣2a=0得3×4﹣2a=0,解得a=6.故选:D.6.【解答】解:∵DE是△ABC的中位线,△ABC的周长为1,∴DE=,AD=,AE=∴△ADE的周长为.故选:C.7.【解答】解:当m<﹣1时,m+1<0,m﹣1<2,一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选:A.8.【解答】解:∵矩形纸片ABCD,∠BAE=30°,∴AE=2BE=2×1=2,∠AEB=90°﹣∠BAE=90°﹣30°=60°,∵AB沿AE翻折点B落在EC1边上的B1处,∴∠AEB1=∠AEB=60°,∵矩形对边AD∥BC,∴∠EAC1=∠AEB1=60°,∴△AEC1是等边三角形,∴BC1=AE=2,∵EC沿BF翻折点C落在AD边上的C1处,∴EC=BC1=2.故选:B.9.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵∠CAD=30°,∠AEB=60°,AD∥BC,∴∠EAC=∠ACE=30°,∴AE=CE,∴BE=CE,∵OA=OC,∴OE=AB=BC,故④正确.故选:C.10.【解答】解;由图2可知:PN=4,PQ=5.A、当x=2时,y===5,故A正确,与要求不符;B、矩形的面积=MN•PN=4×5=20,故B正确,与要求不符;C、当x=6时,点R在QP上,y==10,故C正确,与要求不符;D、当y=时,x=3或x=10,故错误,与要求相符.故选:D.二、填空题:共8小题.11.【解答】解:根据题意得:x+5≥0,解得x≥﹣5.12.【解答】解:∵关于x的一元二次方程x2﹣2x﹣m=0无实根,∴△=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案为:m<﹣1.13.【解答】解:由“上加下减”的原则可知,将函数y=2x+1的图象向上平移2个单位所得函数的解析式为y=2x+3.故答案为:y=2x+3.14.【解答】解:正方形ABCD中,BC=CD,等边△BCE中,CE=BC,∴CD=CE,∵∠DCE=90°﹣60°=30°,∴∠CDE==75°.∴∠ADE=90°﹣75°=15°.故答案为:15°.15.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.16.【解答】解:x=时,y=﹣x+2=﹣+2=.故答案为:.17.【解答】解:作点B关于x轴的对称点B′,连接AB′,交x轴于P,连接PB,此时P A+PB的值最小.设直线AB′的解析式为y=kx+b,把A(2,﹣4),B′(0,2)代入得到,解得,∴直线AB′的解析式为y=﹣3x+2,令y=0,得到x=,∴P(,0),故答案为(,0).18.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.B n的坐标是(2n﹣1,2n﹣1)∴B2018的坐标是(22018﹣1,22017).故答案为:(22018﹣1,22017).三、解答题共8小题.解答应写出文字说明、演算步骤或证明过程.19.【解答】解:(1)2x+1=±3,所以x1=1,x2=﹣2;(2)x2+4x=2,x2+4x+4=6,(x+2)2=6,x+2=±,所以x1=﹣2+,x2=﹣2﹣;(3)△=(﹣6)2﹣4×1×12<0,所以方程没有实数解;(4)3x(2x+1)﹣2(2x+1)=0,(2x+1)(3x﹣2)=0,2x+1=0或3x﹣2=0,所以x1=﹣,x2=.20.【解答】解:∵m是方程x2﹣x﹣3=0的一个实数根,∴m2﹣m﹣3=0,即m2=m+3,∴(m2﹣m)(m﹣+1)=(m+3﹣m)•=3×=3×2=6.21.【解答】解:(1)在y=x+1中,令y=0,则x=﹣1,∴A(﹣1,0);(2)设直线l2的解析式为y=kx+b,则,解得,∴y=﹣2x+6;(3)解方程组,可得,∴C(,),∴S△ABC=×(3+1)×=.22.【解答】(1)证明:∵D是BC边的中点,∴BD=CD,∵CE∥BF,∴∠DBF=∠ECD,在△BDF和△CDE中,,∴△BDF≌△CDE(ASA),∴CE=BF,又∵CE∥BF,∴四边形BFCE是平行四边形;∵AB=AC,D是BC的中点,∴AD⊥BC,又∵四边形BFCE是平行四边形,∴四边形BFCE是菱形.(2)解:在Rt△BDE中,BE=5,BD=4,∴DE==3,∵四边形BECF是菱形,∴EF=2DE=6,BC=2BD=8,∴菱形BECF的面积=×6×8=24.23.【解答】解:(1)∵△=(m+1)2﹣4×1×m =m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有两个实数根;(2)∵(x+1)(x+m)=0,∴x+1=0或x+m=0,即x1=﹣1、x2=﹣m,∵0<x<3,∴0<﹣m<3,解得:﹣3<m<0,则整数m的值为﹣2、﹣1.24.【解答】解:(1)根据题意可得:白金卡:y=20x+200.门票:y=40x(2)将y=40x代入y=200+20x,得40x=200+20x,解得x=10,把x=10代入y=40x,得y=400,所以B(10,400),把y=1000代入y=200+20x,得1000=200+20x,解得x=40,所以C(40,1000);(3)当0<x<10时,选普通门票;当x=10时,选普通门票和白金卡;当10<x<40时,选白金卡;当x=40时,选白金卡和钻石卡;当x>40时,选钻石卡25.【解答】解:(1)∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;(2)由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(3)把A(1,0),D(4,2)分别代入y=2x+b±2,得出b=0,或b=﹣8,∴b>0或b<﹣826.【解答】解:(1)①如图①所示:②连接AC,作PH⊥AC于H.则△APB≌△APH,∴AB=AH=1,PB=PH,设PB=PH=x,∵AC==,∴CH=﹣1,在Rt△PCH中,x2+(﹣1)2=(2﹣x)2,解得x=,∴PB=.(2)如图②中,连接AC、BD交于点O.连接OM.∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵∠AMC=90°,∴OM=OA=OB=OC=OD,∴A、B、M、C、D五点共圆,∵BD是直径,∴∠BMD=90°,∴BM⊥DM.人教版八年级第二学期下册期中模拟数学试卷(答案)一、单项选择题(共10个小题,每小题3分,满分30分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.2.(3分)下列计算正确的是()A.÷2=B.(2)2=16C.2×=D.﹣=3.(3分)若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.604.(3分)下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣5.(3分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对6.(3分)如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC7.(3分)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.58.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD 的周长是()A.48B.24C.20D.9.(3分)矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分10.(3分)如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形二、填空题(共6个小题,每小题4分,满分24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)定理“对角线互相平分的四边形是平行四边形”的逆定理是.13.(4分)如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD =°.14.(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是.15.(4分)如图所示,正方形ABCD的周长为16cm,则矩形EFCH的周长是cm.16.(4分)如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为.三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)化简:18.(6分)如图,E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2.求证:四边形AECF是平行四边形.19.(6分)已知矩形ABCD中,AD=,AB=,求这个矩形的对角线AC 的长及其面积.四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C 与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA ⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.21.(7分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(7分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下:===﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简:①;②.24.(9分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.(9分)如图,在Rt△ABC中,∠B=90°,AC=12,∠A=60°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AB的长是.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.2018-2019学年广东省中山市十二校联考八年级(下)期中数学试卷参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的运算法则即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(C)原式=2,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.(3分)下列计算正确的是()A.÷2=B.(2)2=16C.2×=D.﹣=【分析】根据二次根式的除法法则对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的加减法对D进行判断.【解答】解:A、原式=2÷2=,所以A选项正确;B、原式=4×2=8,所以B选项错误;C、原式=2×=,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选:A.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.(3分)若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.60【分析】根据三边长度判断三角形为直角三角形.再求面积.【解答】解:∵△ABC的三边分别为5、12、13,且52+122=132,∴△ABC是直角三角形,两直角边是5,12,则S==30.△ABC故选:A.【点评】本题主要考查了勾股定理的逆定理和直角三角形的面积公式,关键是根据三边长度判断三角形为直角三角形.4.(3分)下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣【分析】根据实数运算的法则对各选项进行逐一解答即可.【解答】解:A、×=,故A错误;B、×3=3,故B错误;C、×2=6,故C正确;D、×(2﹣)=2﹣3,故D错误.故选:C.【点评】本题考查的是实数的运算,熟知实数运算的法则是解答此题的关键.5.(3分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对【分析】直接利用勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°.BC=3,AC=5,∴AB==.故选:A.【点评】此题主要考查了勾股定理,正确掌握勾股定理是解题关键.6.(3分)如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选:D.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.(3分)如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.5【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.【点评】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.8.(3分)如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD 的周长是()A.48B.24C.20D.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,故选:C.【点评】本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.9.(3分)矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分【分析】根据矩形的性质即可判断;【解答】解:因为矩形的对角线相等且互相平分,所以选项C正确,故选:C.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质,属于中考基础题.10.(3分)如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形。
成都XX学校2018-2019学年八年级下期中数学试卷

成都XX学校2018-2019学年八年级下期中数学试卷一、选择题(每小题4分,共32分)1.下列运算正确的是()A.B. C.D.2.在实数范围内,若有意义,则x的取值范围是()A.x≤﹣1 B.x<﹣1 C.x>﹣1 D.x≥﹣13.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4.若(x+1)2+=0,则(x+y)2012的值为()A.1 B.﹣1 C.2012 D.﹣20125.在平行四边形ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,则∠D=()A.36° B.108°C.72°D.60°6.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.ab2 B.2ab C.ab D.a2b7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.178.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B.C.7 D.二、填空题(每小题4分,共计32分)9.化简:=.10.当x=2时,=.11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为.12.如图,在平行四边形ABCD中,AC平分∠DAB,AB=4,则平行四边形ABCD的周长为.13.最简二次根式与是同类二次根式,则a=.14.连结矩形四边中点所得四边形是.15.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为cm.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.三、解答题(共计86分)17.计算:(1)(2).18.计算:2×﹣3.19.如果直角三角形的两条直角边长分别为2和,求斜边c的长.20.求证:两组对角分别相等的四边形是平行四边形.21.先化简,再求值.已知:a=,求2﹣的值.22.如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.23.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AE=CG;(2)AE⊥CG.24.已知在△ABC中,∠A、∠B、∠C的对边分别是a,b,c,满足a2+b2+c2+338=10a+24b+26c,试判断三角形ABC的形状.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD 上的动点,EG的延长线与BC的延长线交于点E,边结CE、DE(1)求证:四边形CEDF是平行四边形;(2)当AE=cm时,四边形CEDF是菱形.成都XX学校2018-2019学年八年级下期中数学试卷参考答案与试题解析一、选择题(每小题4分,共32分)1.下列运算正确的是()A.B. C.D.【考点】平方根.【分析】根据实数的算术平方根和平方运算法则计算,注意一个数的平方必是非负数.【解答】解:A、=2,故本选项错误;B、=5,故本选项错误;C、(﹣)2=7,故本选项正确;D、没有意义,故本选项错误.故选C.2.在实数范围内,若有意义,则x的取值范围是()A.x≤﹣1 B.x<﹣1 C.x>﹣1 D.x≥﹣1【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1+x>0,解得:x>﹣1.故选:C.3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直【考点】平行四边形的判定.【分析】根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形)进行判断即可.【解答】解:A、两组对角分别相等的四边形是平行四边形,故本选项错误;B、∵OA=OC、OB=OD,∴四边形ABCD是平行四边形,故本选项正确;C、两组对边分别相等的四边形是平行四边形,故本选项错误;D、对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.4.若(x+1)2+=0,则(x+y)2012的值为()A.1 B.﹣1 C.2012 D.﹣2012【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+1=0,2﹣y=0,解得x=﹣1,y=2,所以,(x+y)2012=(﹣1+2)2012=1.故A.5.在平行四边形ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,则∠D=()A.36° B.108°C.72°D.60°【考点】平行四边形的性质.【分析】直接利用平行四边形的邻角互补以及对角相等求出∠D的度数.【解答】解:如图所示:∵在▱ABCD中,∠A:∠B=2:3,∴设∠A=2x,则∠B=3x,∠B=∠D,根据题意可得:5x=180°,解得:x=36°,故∠A=72°,∠B=108°,则∠D=108°.故选:B.6.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.ab2 B.2ab C.ab D.a2b【考点】算术平方根.【分析】利用积的算术平方根的性质可得=×,进而用含a、b的式子表示即可.【解答】解:∵=a,=b,∴=×=ab.故选C.7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【考点】菱形的性质;等边三角形的判定与性质;正方形的性质.【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.8.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B.C.7 D.【考点】一元二次方程的应用;勾股定理.【分析】可设直角三角形一直角边为x,则另一直角边为7﹣x,由面积为6作为相等关系列方程求得x的值,进而求得斜边的长.【解答】解:设直角三角形一直角边为x,则另一直角边为7﹣x,根据题意得x(7﹣x)=6,解得x=3或x=4,所以斜边长为.故选A.二、填空题(每小题4分,共计32分)9.化简:=.【考点】算术平方根.【分析】根据二次根式的性质:=×(a≥0,b≥0)解答.【解答】解:==2,故答案为:2.10.当x=2时,=1.【考点】分式的值.【分析】直接利用x的值代入原式求出答案.【解答】解:∵x=2,∴=1.故答案为:1.11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为3.【考点】平行四边形的判定;三角形中位线定理.【分析】根据三角形中位线的性质定理,可以推出DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE,根据平行四边形的判定定理,即可推出有三个平行四边形.【解答】解:∵D,E,F分别为△ABC三边的中点∴DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE∴四边形ADEF、DECF、DFEB分别为平行四边形故答案为3.12.如图,在平行四边形ABCD中,AC平分∠DAB,AB=4,则平行四边形ABCD的周长为16.【考点】平行四边形的性质.【分析】首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【解答】解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵四边形ABCD为平行四边形,∴∠B=∠D,在△ADC和△ABC中,,∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=4,▱ABCD的周长为:4×4=16,故答案为:16.13.最简二次根式与是同类二次根式,则a=5.【考点】同类二次根式.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a=15,解得:a=5.故答案为:5.14.连结矩形四边中点所得四边形是菱形.【考点】矩形的性质.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形,故答案为:菱形.15.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为 4.8cm.【考点】勾股定理.【分析】设斜边上的高为hcm,由勾股定理求出斜边长,再由直角三角形面积的计算方法即可得出斜边上的高.【解答】解:设斜边上的高为hcm,由勾股定理得:=10cm,直角三角形的面积=×10×h=×6×8,解得:h=4.8.故答案为:4.8cm.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.三、解答题(共计86分)17.计算:(1)(2).【考点】分母有理化;二次根式的乘除法.【分析】(1)先分子和分母都乘以,即可求出答案;(2)先分子和分母都乘以,再求出即可.【解答】解:(1)原式==;(2)===.18.计算:2×﹣3.【考点】二次根式的乘除法.【分析】直接化简二次根式,进而利用二次根式乘法运算法则求出答案.【解答】解:2×﹣3=4×﹣3=3﹣3=0.19.如果直角三角形的两条直角边长分别为2和,求斜边c的长.【考点】二次根式的应用;勾股定理.【分析】知道三角形两直角边,根据勾股定理可以得到斜边c.【解答】解:由题意,得c===,∴斜边c长为.20.求证:两组对角分别相等的四边形是平行四边形.【考点】平行四边形的判定;平行线的判定;多边形内角与外角.【分析】根据已知和四边形的内角和定理求出∠A+∠B=180°,推出AD∥BC,同理求出AB∥CD,根据平行四边形的判定推出即可.【解答】已知:四边形ABCD,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形,证明:∵∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,∴∠A+∠B=180°,∴AD∥BC,同理AB∥CD,∴四边形ABCD是平行四边形.21.先化简,再求值.已知:a=,求2﹣的值.【考点】二次根式的化简求值.【分析】根据a的值可以对所求式子进行化简,从而可以解答本题.【解答】解:∵a=,∴2﹣=2﹣=2﹣(2﹣a)=2﹣2+a=a=.22.如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.【考点】平行四边形的性质;全等三角形的判定与性质;平行四边形的判定与性质.【分析】根据平行四边形的对边平行且相等,得AB=CD,AB∥CD,再根据平行线的性质,得∠BAE=∠DCF,∠AEB=∠CFD,由AAS证明△ABE≌△CDF,根据全等三角形的对应边相等,得BE=DF,从而得出四边形BFDE是平行四边形,根据两直线平行内错角相等证得∠1=∠2.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.又∵BE∥DF,∵∠BEF+∠AEB=180°,∠EFD+∠DFC=180°,∴∠AEB=∠CFD.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BFDE是平行四边形.∴DE∥BF.∴∠1=∠2.23.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AE=CG;(2)AE⊥CG.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,所以AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;(2)再利用互余关系可以证明AE⊥CG.【解答】证明:(1)∵四边形ABCD、DEFG都是正方形,∴AD=CD,GD=ED,∵∠CDG=90°+∠ADG,∠ADE=90°+∠ADG∴∠CDG=∠ADE=90°,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),AE=CG;(2)设AE与DG相交于M,AE与CG相交于N,在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∴∠GNM=∠MDE=90°,∴AE⊥CG.24.已知在△ABC中,∠A、∠B、∠C的对边分别是a,b,c,满足a2+b2+c2+338=10a+24b+26c,试判断三角形ABC的形状.【考点】因式分解的应用.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:a2+b2﹣c2+338=10a+24b+26c,a2﹣10a+25+b2﹣24b+144﹣c2﹣26c+169=0,原式可化为(a﹣5)2+(b﹣12)2﹣(c﹣13)2=0,即a=5,b=12,c=13(a,b,c都是正的),而52+122=132符合勾股定理的逆定理,故该三角形是直角三角形.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD 上的动点,EG的延长线与BC的延长线交于点E,边结CE、DE(1)求证:四边形CEDF是平行四边形;(2)当AE=2cm时,四边形CEDF是菱形.【考点】菱形的判定;平行四边形的判定与性质.【分析】(1)只要证明△CFG≌△DEG,可得CF=DE,CF∥DE,即可推出四边形CEDF是平行四边形;(2)当EF⊥CD时,四边形CEDF是菱形,在Rt△DEG中,由∠EGD=90°,DG=CD=cm,∠EDG=∠B=60°,推出∠DEG=30°,推出DE=2DG=3cm,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CFG=∠DEG,在△CFG和△DEG中,,∴△CFG≌△DEG,∴CF=DE,∵CF∥DE,∴四边形CEDF是平行四边形.(2)解:∵四边形CEDF是平行四边形,∴当EF⊥CD时,四边形CEDF是菱形,在Rt△DEG中,∵∠EGD=90°,DG=CD=cm,∠EDG=∠B=60°,∴∠DEG=30°,∴DE=2DG=3cm,∵AD=BC=5cm,∴AE=AD﹣DE=2cm.故答案为2.。