矿物的化学成分
矿石成分1

850矿物矿物是地壳中化学元素在各种地质作用下所形成的,具有必然化学成分和物理性质的天然单质或化合物,矿物是组成岩石和矿石的底子单元。
矿物可以是由几种元素组成的化合物,如磁铁矿〔Fe3O4〕、方解石〔CaCO3〕;也可以是由一种元素组成的单质,如金刚石〔C〕、自然金〔Au〕。
自然界中矿物存在的状态有三种:固态〔石英、正长石、云母〕;液态〔水、自然汞〕;气态〔二氧化碳、硫化氢〕。
自然界中的矿物很多,已发现的有三千多种,绝大大都是固态无机物,液态、气态和固态有机物〔琥珀〕仅数十种。
最常见的矿物有五、六十种。
构成岩石的矿物,叫做造岩矿物,如方解石是组成石灰岩的主要矿物。
能被人们操纵的有益矿物称为造矿矿物,如磁铁矿、黄铁矿等。
造矿矿物是组成矿石的主要成分。
851矿物的鉴定方法分两个步调,第一步是地质工作者按照矿物的外形和物理性质进行肉眼鉴定,其主要依据是:852 石英成分SiO2常呈六方柱状晶体,硬度7〔大于小刀〕。
无色透明的石英称为“水晶〞。
呈肾状、钟乳状的隐晶质石英称为石髓。
呈结核状的称为燧石。
具有各种色彩的二氧化硅变胶体呈平行带状的称为玛瑙。
石英是地壳上分布最广泛的矿物之一,占地壳重量的12.6%,是重要的造岩矿物。
石英的用途广泛,压电石英〔质地透明、无裂隙、无双晶者〕可制谐振器、滤波器,应用于雷达、导航、遥控、遥测、电子、电讯设备等。
其他可作光学仪器、玻璃、研磨材料、精密仪器轴承、研磨材料等。
853正长石成分K[AlSi3O8]晶体常呈短柱状、厚板状。
双晶较发育。
常为肉红色、浅黄红色、浅黄白色,玻璃光泽,硬度6,两组板面完全解理,解理交角90°,故名正长石。
在自然条件下,易风化成高岭石。
正长石是陶瓷及玻璃工业的重要原料,还可以制造钾肥。
854斜长石 Na[AlSi3O8]和Ca[Al2Si2O8],斜长石是由钠长石和钙长石所组成的混合物,二者可按任意比例混合,按照不同比例可分为酸性斜长石、中性斜长石和基性斜长石。
矿物的物理性质和化学性质

矿物的物理性质和化学性质矿物是地球内部成分在自然界中形成的固体物质,具有一定的物理性质和化学性质。
本文将介绍矿物的物理性质和化学性质,并探讨其在地质学和矿物学中的重要性。
一、矿物的物理性质1. 密度矿物的密度是指矿物质量与体积之间的比值,通常用克/立方厘米(g/cm³)表示。
矿物的密度与其成分和结构有关,不同矿物的密度差异较大。
例如,金刚石的密度为3.52g/cm³,而方解石的密度为2.71g/cm³。
2. 硬度矿物的硬度是指矿物表面抵抗划伤的能力。
莫氏硬度尺是衡量矿物硬度的常用工具,将矿物按照其硬度分为10个等级,从1级到10级。
例如,石膏的硬度为2,而钻石的硬度为10。
3. 断口矿物的断口是指矿石断裂后的表面形貌。
常见的断口有贝壳状断口、贝壳状断口和贝壳状断口等。
不同矿物的断口形态可以提供有关矿物内部结构的信息。
4. 光泽矿物的光泽是指矿物在光线照射下反射光的特性。
常见的光泽有金属光泽、玻璃光泽、树脂光泽等,不同矿物的光泽类型可以帮助对其进行初步鉴定。
5. 色彩矿物的颜色是指其表面呈现的颜色特征,可以通过肉眼观察。
然而,颜色可能会受到杂质的影响,因此不能仅凭颜色来确定矿物的种类。
二、矿物的化学性质1. 化学成分矿物的化学成分是指矿物中各种化学元素的含量和组合方式。
不同矿物具有不同的化学成分,这些成分直接决定了矿物的性质和特征。
例如,方解石的化学成分为CaCO3,而石英的化学成分为SiO2。
2. 反应性矿物的反应性是指矿物与其他物质发生化学反应的能力。
例如,含铁矿物在受热条件下可以发生氧化反应,产生石锰矿等。
3. 溶解性矿物的溶解性是指矿物在不同溶剂中的溶解程度。
某些矿物可以在水中溶解而形成溶液,而其他矿物则不能溶解。
溶解性也是鉴定矿物的重要性质之一。
4. 酸碱性矿物的酸碱性是指矿物在酸性或碱性环境中的反应性。
有些矿物可以与酸、碱反应,产生溶液或沉淀等。
这种反应性可以帮助矿物学家确定矿物的种类。
安山岩矿石化学成份

安山岩矿石化学成份
安山岩(Andesite)是一种常见的火成岩,其化学成分相对复杂,通常包含以下主要矿物和化学元素:
主要矿物成分:
1. 钙长石(Plagioclase Feldspar):钠长石和钙长石,包括斜长石和安长石。
2. 斜长石(Orthoclase Feldspar):也被称为正长石,是钾长石的一种。
3. 斜长脉石(Clinopyroxene):如辉石和角闪石。
4. 黑云母(Biotite):属于云母矿物。
化学元素成分(典型值,以质量分数表示):
1. 硅(SiO2):约58-63%
2. 铝(Al2O3):约13-18%
3. 钙(CaO):约3-8%
4. 钠(Na2O):约2-5%
5. 钾(K2O):约2-5%
6. 镁(MgO):约1-5%
7. 铁(FeO、Fe2O3):约1-8%
8. 钛(TiO2):约0.5-2.5%
请注意,安山岩的具体化学成分可能会因不同的岩石类型和地质环境而有所变化。
实际的安山岩样本化学成分可以通过岩石分析实验进行准确测定。
3第三讲矿物的化学成分和分类

如石英SiO2、方解石Ca[CO3]、白云母K{Al2
[(Si3Al)O10 ](OH)2},铁闪锌矿(Zn,Fe)S。 (2) 对复化合物,阳离子按碱性由强至弱、价态从低 到高的顺序排列。 如白云石CaMg[CO3]2、磁铁矿FeFe2O4。
(3) 附加阴离子通常写在阴离子或络阴离子之后。
非化学计量——成分标型:
含金石英脉中黄铁矿(FeS2), Fe/(S+As)>0.500,——形成深度小; Fe/(S+As)<0.500,——成矿深度大 (Н о в г о р о д о в а ,М .И .等,1980)。—— 判断剥蚀程度。
五、胶体矿物的化学成分特点
1、胶体与胶体矿物 一种或多种粒径介于1-100nm之间的物质微粒(分散质) 分散在另一种物质(分散媒)中形成的不均匀细分散体系,称 为胶体。分散媒多于分散质的胶体称胶溶体;反之称胶凝体。 胶体矿物一般是以水为分散媒、以固相为分散质的水胶凝 体,属非晶质或隐晶质矿物。如蛋白石(SiO2 . nH2O)。 胶体矿物经过长时间,转变为隐晶质的,或继续转变为显 晶质的,叫做胶体的老化。 2、胶体矿物的特殊性质 (1) 胶体矿物的比表面积极大,表面张力也极大,其形态 多为球形或半球形。 (2)分散质和分散媒的量比不固定,可发生老化。 (3)易吸附其他物质。
蛭石 ( Mg,C a) 0.34.5(H 2O)n { Mg3 (SiO1 0)( OH )2 }
层间 水 Interla yer water
H2 O
层间 域
110℃
层间 域缩 小 可再 吸附
写入
胶体水为特殊的吸附水,需写入化学式。
说明
1)单矿物的化学全分析数据中,H2O-称为负水,通 常意指不参加晶格的吸附水,当样品烘干到110度之 前即全部逸出:而正水H2O+系指参加晶格的结构水或 结晶水,其失水温度通常高于110度 2)有些参加晶格的的层间水、沸石水及部分结晶水 在低于110度也可逸出晶格,故分析时应以特殊方法 处理样品中的水。
第二章 矿物-矿物的化学性质、分类

2.胶体及其吸附作用
1)胶体:一种或几种物质的微细质点(粒径0.001-0.1um)分散在另一种 物质之中所形成的不均匀分散体系。 包括分散相(分散质、胶体颗粒)和分散介质(分散媒)。 自然界胶体主要形成于表生作用,难溶矿物破碎成微细颗粒( 0.0010.1um)时,分散在水中形成胶体溶液。 2)胶体矿物的形成 胶体颗粒带有电荷,与带不同电荷的胶体颗粒或离子发生相互作用时,胶 体颗粒便相互中和而失去电荷凝聚下沉与分散介质分离,逐渐凝固而形成胶 体矿物。如带负电荷的SiO2胶体颗粒与带正电荷的Fe(OH)3胶体颗粒相遇 时,凝聚成含SiO2的褐铁矿, SiO2含量不固定,因此,胶体矿物的化学组 成常常不固定,成分可以发生变化。 3)胶体吸附作用 除胶体矿物形成时本身的含量变化大,另外胶体颗粒还能吸附分散介质中 的离子,使其矿物成分不稳定而发生变化。如硬锰矿(mMnO2· MnO· 2O) nH 中常混入少量K2O、BaO、CaO、ZnO等组分,原因是带负电荷的MnO2胶 体颗粒能够从水溶液中吸附K+、Ba+、Ca+、Zn+等阳离子。
第三节 矿物的化学性质
矿物的形态和物理性质是其化学成分和内部构造在一定地质 条件下的综合反映,因此研究矿物的化学成分和内部构造对于 鉴定矿物、利用矿物和分析矿物的形成条件极其重要。 一、矿物的化学成分 矿物形成于地壳中,组成元素来自于地壳及其深处,是地壳中 元素永不停止的迁移运动中的相对静止状态的聚集形式,包括 单质和化合物。矿物的化学成分并不是绝对固定的,它可以在 一定范围内发生变化。引起矿物化学成分变化的原因有以下几 种: 二、矿物化学成分变化 1.固溶体:两种或两种以上彼此不能化合的组分,相互混溶成 均匀的固态物质,如日常所见的合金。按其组成方式分为: 1)交替固溶体:类质同像; 2)侵入固溶体:一种组分侵入于另一种组分结晶构造的间隙 之中,其中一部分就是以机械混入物形式出现的杂质。
矿物的分类与特征

矿物的分类与特征矿物是地壳中自然形成的固体物质,具有一定的化学成分和晶体结构。
它们在地球岩石圈中占据着重要的地位,对于地球科学的研究和资源开发具有重要意义。
矿物的分类与特征不仅是地质学和矿物学的重要内容,也关乎我们对地球的认识与理解。
本文将介绍矿物的分类与特征,并探讨其在地壳演化过程中所起的作用。
一、矿物分类矿物可以根据其组成元素进行分类。
常见的矿物元素有金属元素、非金属元素和半金属元素。
金属矿物是指以金属元素为主要成分的矿物,如铁矿石、铜矿石等。
非金属矿物是指以非金属元素为主要成分的矿物,如石膏、石墨等。
半金属矿物则含有一部分金属元素,一部分非金属元素,如硫铅矿石等。
此外,矿物还可以按照其晶体结构进行分类。
晶体结构是矿物的内部排列方式,决定了矿物的物理性质和化学性质。
根据晶体结构的不同,矿物可以分为六晶系,分别是立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系和六斜晶系。
二、矿物特征1. 化学成分:矿物的化学成分是确定其分类和特征的重要依据。
矿物的主要成分可以通过化学分析来确定,这样可以了解其组成元素及其含量。
矿物的化学成分决定了其性质和用途,不同的化学成分使不同的矿物具有各自独特的特征和功能。
2. 晶体结构:矿物的晶体结构是由其元素组成的晶格形成的。
晶体结构直接影响着矿物的物理性质和化学性质。
不同的晶体结构使得不同的矿物具有不同的硬度、光泽、颜色和密度等特征,这些特征有助于我们识别和区分不同的矿物。
3. 外部形态:每种矿物都有其独特的外部形态。
矿物的外部形态是由其晶体和晶面的生长方式决定的,包括晶体的形状、表面特征和断口特征等。
通过观察矿物的外部形态,我们可以初步判断其可能的矿物种类,并进一步确认其物种。
4. 物理性质:矿物的物理性质包括硬度、光泽、颜色、密度、磁性等。
这些性质对于矿物的鉴定和分类非常重要。
例如,矿物的硬度可以通过莫氏硬度刮痕实验来确定,光泽可以通过观察其表面反射光线的方式来判断。
化学鉴定教案二——了解矿物的化学成分和检测方法

化学鉴定教案二——了解矿物的化学成分和检测方法矿物是地球上含有某一或某些元素的自然物质,在矿产资源开发和利用过程中至关重要。
了解矿物的化学成分和检测方法对于地质勘探、选矿、冶炼等方面都有着重要的意义。
本文将介绍化学鉴定教案二中所涉及的矿物化学成分和检测方法。
一、矿物的化学成分矿物的化学成分是指矿物所含的元素以及这些元素在矿物中的化学结合方式。
矿物的化学成分对其物理、化学和矿物学特性均有影响,是矿物学最基本的方面。
1.矿物所含元素矿物所含元素是指矿物中的元素种类及其相对含量。
矿物中含有的元素种类可能非常多,但是其相对含量却往往是少数几个元素起主导作用。
例如,石英(SiO2)是包含硅元素最多的矿物之一,其它元素的含量很低。
2.元素的化学结合方式元素的化学结合方式是指元素与其他元素在矿物中所形成的化学键和晶格结构。
不同元素之间的化学键和晶格结构会影响矿物的物理、化学和矿物学特性。
例如,石英中硅元素形成了四面体结构,并且硅氧键的键能很高,在高温下仍然稳定。
这使得石英成为许多产业的重要原材料。
二、矿物的检测方法1.矿物形态检测矿物形态是指矿物在外部所显示的形状、大小、颜色、光泽等特征。
通过观察矿物的形态可以判断其是否为某一种矿物,例如,石英通常呈现透明或灰白色,并且具有玻璃状光泽,可以轻松辨认。
2.矿物物理特性检测矿物的物理特性是指矿物在外部环境下的导电、磁性、密度、硬度和光学等特征。
这些特性可以通过实验来检测。
例如,针对石英这种硬度相当高的矿物,我们可以用研磨机和粉末库来检测其硬度。
3.矿物化学成分检测矿物的化学成分是指矿物中所含的元素及其化学结合方式。
通过化学分析可以得出化学成分的定量和定性信息。
一般采用的化学分析方法有火焰光度法、电感耦合等离子体发射光谱法、拉曼光谱法等多种。
4.矿物结构检测矿物的结构是指矿物微观结构中的晶格结构和晶体形态。
现代化学检测技术,如X射线衍射、电子显微镜等,可帮助研究人员确定矿物的结构和晶体形态。
结晶学与矿物学-矿物的化学成分

§3 胶体矿物及其化学成分特点
一、胶体矿物的概念
1.胶体(colloid)
一种或多种物质的微粒(粒径一般1~100nm)
分散在另一种物质之中而形成的不均匀的细分散系。
前者称分散相(分散质),后者称分散媒(分散剂)。
注意: 1)胶体系2相或多相物质的混合物。 2)分散相和分散媒均可是固体、液体或气体。 3)胶体: ➊ 胶溶体:分散媒远多于分散相 ➋ 胶凝体:分散媒远少于分散相
独立的矿物种,而常常作为微量的类质同像混入物
赋存于主要由其他元素所组成的矿物中。
三、离子类型
1.惰性气体型离子
(inert-gas type ions)
2.铜型离子
(chalcophile type ions)
3.过渡型离子
(siderophile type ions)
§2 矿物的化学成分
一、矿物的化学成分类型
Chap.11
矿物的化学成分
研究意义:
➊ 矿物的化学成分是区别不同矿物 的重要依据;
➋ 矿物化学成分的变化特点常作为 反映矿物形成条件的标志;
➌ 矿物化学成分是人类利用矿物资源 的一个重要方面。
§1 地壳中化学元素的丰度
一、元素克拉克值
克拉克值(clarke):各种化学元素在地壳中的
平均含量(即元素在地壳中的丰度)之百分数。
非化学计量矿物(nonstoichiometric minerals):
某些含变价元素的矿物,因形成过程中常处于
不同的氧化还原条件下,其价态会发生变化。 由于受化合物电中性的制约,其内部必然存在
某种晶格缺陷,致使其化学组成偏离理想化合比,
不再遵循定比定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、胶体矿物的化学成分特点
1、胶体与胶体矿物 一种或多种粒径介于1-100nm之间的物质微粒(分散相
或分散质)分散在另一种物质(分散媒或分散剂)中形成的不 均匀细分散体系,称为胶体。
分散相和分散媒均可以是固体、液体或气体
胶溶体:分散媒多物:一般是以水为分散媒、以固相为分散相的水胶 凝体,属非晶质或隐晶质矿物。如蛋白石(SiO2 . nH2O)。
二、元素的离子类型
天然矿物,除少数(约30种)元素以单质存在外,绝大多 数是由两种或两种以上化学元素组成的化合物。在化合物 中,阴、阳离子间的结合,主要受其外层电子的构型所制 约。通常根据离子的外层电子的构型,将其分为三种类型:
惰性气体型离子:外层电子8或2(与惰性气体原子相同) 铜型离子:外层电子18或18+2(与Cu+相似) 过渡型离子:外层电子9~17,有未满的d电子。
注意:元素的离子类型与矿物种的关系不是绝对的,在极端 外部条件下,也可改变,如:Cu+在氧化环境下也可形成氧 化物:赤铜矿Cu2O
三、矿物的化学计量性与非化学计量性
自然界中,只有少数矿物的化学成分是相当固定的,其 化学组成遵守物理化学分配定律——定比定律和倍比定律, 各组分间具严格的化合比,如水晶,即几乎由纯SiO2组成。
元素的离子类型与矿物种类的关系:
惰性气体型离子:易失去电子,与氧形成离子键, 形成氧化物、含氧盐矿物和卤化物,故称为亲氧元 素或亲石元素;
铜型离子:电离势高,不易失去电子,与硫形成共 价键,形成硫化物,故称为亲硫元素或亲铜元素;
过渡型离子:性质介于上述两类离子之间,可形成 氧化物、含氧盐,也可形成硫化物,取决于元素在 周期表中的位置(靠近惰性气体型离子还是靠近铜型 离子),也取决于外部氧化-还原条件。
克拉克值对矿物化学成分的影响:
克拉克值高的元素组成的矿物种含量也高,地壳上的 矿物种主要是由前述8种元素组成的硅酸盐(占地壳 总质量的3/4)和氧化物(占地壳总质量的1/5) ;
但是,地壳上的矿物种除了受克拉克值影响外,还要 受到元素的地球化学性质的影响,有的元素含量低, 但它能够形成独立矿物种, 而有的元素尽管含量多 ,却不能够形成独立矿物种。这就涉及到元素是趋于 “聚集”或“分散”的地球化学性质。
元素在地壳中的平均含量的百分数,叫克拉克 值,可分为:质量克拉克值,原子克拉克值。
地壳中元素丰度极不均匀,最多的氧(O)与最 少的氡(Rn)含量相差1018倍。
地壳中最常见的元素为: O,Si,Al,Fe,Ca,Na,K,Mg 这8种,占地壳总质量的 99%。
常见8种元素的克拉克值
元 素 质量克拉克值(%) 原子克拉克值 (%) 体积百分比 (%)
(3)胶体矿物随着时间的推移或热力学因素的改变,胶粒会 自发地凝聚,并发生脱水,颗粒逐渐增大而成为隐晶质, 最终可转变为显晶质矿物,这一过程称为胶体的老化或 陈化。由胶体矿物老化形成的隐晶质或显晶质矿物称为 变胶体矿物
胶体的特殊性质决定了胶体矿物的化学成分具有可变性 和复杂性的特 点。(1)胶体矿物的分散相与分散媒的量比 不固定,即其含水量是可变的。(2)胶体微粒表面具有很 强的吸附性,致使胶体矿物可吸附介质中的其他成分而改变 成分,其吸附量有时相当可观,甚至可富集形成有工业价值 的矿床。
2、胶体矿物的特殊性质 (1)胶体微粒非常小,具有极大的比表面积和很高的表面
能,因此胶体矿物不稳定,具有吸附其他物质和自发 地转化为结晶质的趋势,从而降低其表面能,达到稳 定状态
(2)胶粒表面的电荷未达到饱和,带电的胶体微粒能够选择 性的吸附周围介质中与胶体所带电荷相反的其他离子, 此即胶体的吸附性。
非化学计量——成分标型:
含金石英脉中黄铁矿(FeS2), Fe/(S+As)>0.500,——形成深度小; Fe/(S+As)<0.500,——成矿深度大。
判断剥 蚀程度
质同像替代和非化学计量性是引起矿物成分 在一定范围内变化的主要原因,其他因素还有阳 离子的可交换性、胶体的吸附作用、矿物中含水 量的变化,及以显微包裹体形式存在的机械混入 物等
O
46.60
Si
27.72
Al
8.13
Fe
5.00
Ca
3.63
Na
2.83
K
2.59
Mg
2.09
62.55 21.22 6.47 1.92 1.94 2.64 1.42 1.84
93.77 0.86 0.47 0.43 1.03 1.32 1.83 0.29
可以形象地比喻:整个地壳是由O离子作最紧密堆积,阳离 子充填在空隙中。
例如:蛋白石,由许多许多的非常细的SiO2胶粒及水 组成。单个SiO2胶粒可能有晶体结构,但太小了; 许多胶粒组合是杂乱的,因此,整体不显晶态特征 而是非晶态或超显微隐晶态。
天然矿物并非理想化学纯的物质。由于外界环境的复杂 性,致使其化学组成在一定范围内变化
(1)化学计量矿物 在各晶格位置上的组分之间遵守定比定律、具严格化 合比的矿物。 例:水晶SiO2、铁闪锌矿(Zn,Fe)S、 橄榄石(Mg,Fe)2[SiO4]。 (2)非化学计量矿物 化学组成偏离理想化合比,不再遵循定比定律的矿物 。 —— 矿物标型 例:磁黄铁矿 Fe1-xS(有部分Fe3+ 存在)。
第十二章 矿物的化学成分
地壳中化学元素的丰度 元素的离子类型 矿物的化学计量性与非化学计量性 胶体矿物的化学成分特点 矿物中的水 矿物的化学式及其计算
一、地壳中化学元素的丰度
矿物的化学成分是确定一个矿物的基本依据之一, 化学元素是形成矿物的物质基础。地壳中化学元 素的丰度与矿物的化学组成有着密切的关系。
克拉克值对矿物化学成分的影响:
聚集元素:Au(金)、Ag(银)、Bi(铋)、 Sb(锑)等,尽管克拉克值很低,但它们的地 球化学性质是趋于聚集的,所以能够形成独立 的矿物种,甚至富集成矿;
分散元素:Ru(钌)、Cs(铯)、Ga(镓)、 In(铟)等,尽管克拉克值较高,但它们的地 球化学性质是趋于分散的,所以不能够形成独 立的矿物种,往往以微量元素混入物(如类质 同像形式)赋存于其他矿物种中。