量子力学第三章讲解

合集下载

量子力学对称与守恒定律讲义

量子力学对称与守恒定律讲义
第三章/对称性与守恒定律
“为什么对称是重要的?“ --- 毛主席1974年5月向李政道请教的
第一个问题
对称与不对称(破缺)
在艺术(对联,画),数学(海螺,浪花), 自然(山峰,窗))均有精彩表现 完全对称的东西极少见!
不是静态的概念(适用一切自然现象) 物理学中对称性:现象或系统在某变换下不变 宏观->直观; 微观世界-> 不直观,但极重要
SU(2)是u,d夸克对称,破坏2--3% SU(3)SU(4)SU(5)SU(6) 同位旋破坏主要来自多重态不同分量质 量差印起的运动学效应
奇异数(Strangeness)和重 子数
1947年宇宙线实验(after pion),1954年
加速器实验发现一批奇异粒子(photos)
特性一:协同产生,独立衰变
即 H 0, H H
厄米算符p
i
与H对易,
是守恒量
2
分立变换下:
U 1HU H i.e.,UH HU ,all _ states
U与H对易,U是守恒量 时空对称性:场与粒子时空性质变换 内部对称性:与时空无关
Some symmtries and the associated conservation laws
群论与对称性
对称性变换必须满足群的性质 (Closure,Identity,Inverse,Associativity) 如空间转动群,SO(3),3 axis, 3 生成元 (与守恒荷一一对应) 重要的李群/李代数, O(N),SO(N),U(N),SU(N) 复合对称性 --》 复合守恒量, e.g., CP parity,G parity etc.
Translation in time Energy Translation in space Momentum

量子力学 第三章知识点

量子力学 第三章知识点
对于方势阱(如右图所示) : V ( x) = 求散射态下,反射系数和透射系数 当 E > 0 时,粒子处于散射态。能量本征方程为:
−V0 , 0 < x < a; 0, x < 0, x > a.
作者:张宏标(任课教师)
5
东北师范大学本科生物理专业量子力学课程讲稿 Lectures on Quantum Mechanics for undergraduates of physical major
C ∆1 = = A ∆
2
2i β k ( k − β ) sinh β a + 2iβ k cosh β a
2 2
(k
2
− β 2 ) sinh β a + 2i) sinh β a
R =
B = A
2
(k
2
+ β 2 ) sinh 2 β a + 4k 2 β 2
> 2 d 2 − = V0 ψ ( x) Eψ ( x) − 2 2m dx 2 2 > d −= ψ ( x) Eψ ( x) 2m dx 2
取k =
(0 < x < a) ( x < 0, x > a ) ( x < 0, x > a ) (0 < x < a)
其中 v 是粒子的经典速度。所以在上面的边界条件下, 入射几率流密度是 j = A 2 v I I 反射几率流密度是 j = B 2 v R R 透射几率流密度是 j = C 2 v T T
作者:张宏标(任课教师) 1
东北师范大学本科生物理专业量子力学课程讲稿 Lectures on Quantum Mechanics for undergraduates of physical major

量子力学讲义第三章讲义详解

量子力学讲义第三章讲义详解

第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。

ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。

为强调算符的特点,常常在算符的符号上方加一个“^”号。

但在不会引起误解的地方,也常把“^”略去。

二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。

例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。

2、算符相等若两个算符Â、ˆB对体系的任何波函数的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。

3、算符之和若两个算符Â、ˆB对体系的任何波函数有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。

ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= 是任意波函数。

一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。

5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。

若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。

若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。

例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。

量子力学-第三章3.8力学量期望值随时间的变化--守恒定律

量子力学-第三章3.8力学量期望值随时间的变化--守恒定律

商可表述为: dF dt
Fˆ dx
t
Fˆ dx t

t
dx
而薛定谔方程及其复数共轭方程为:
t
1 i


且 Hˆ 为厄米算符:
t
1 i
(Hˆ
)
于是: dF dt
1 i
(Hˆ )Fˆ dx
Fˆ dx t
1 i
Fˆ Hˆ dx
Fˆ t
dx
1 i
(Fˆ Hˆ
Hˆ Fˆ )dx

则 Pˆ 2(x, t) CPˆ (x, t) C2(x, t)
而 Pˆ (x, t) (x, t)

Pˆ 2(x, t) Pˆ (x, t) (x, t)
于是: C2 1,即C 1
所以 Pˆ 的本征值 C 1。
即: Pˆ 1 (x, t) 1 (x, t) ; Pˆ 2 (x, t) 2 (x, t) 称 Pˆ 的本征函数中本征值为 1的 1 为有偶宇称态,本征值为 1 的 2 为有奇宇称态。
1. dF 和 dF dt dt 在经典力学中,任一力学量 F 在任何时刻都有确定值,因而
F对时间的微商: dF lim F(t t) F(t) 有确定的意义。在量
dt t0
t
子力学中则不然,除了在 Fˆ 的本征态中 F 有确定值(这时无需考
虑 F随 t 的变化)外,在一般态中, F 并没有确定值,它可以以
即: dF dt
Fˆ t
1 i
[Fˆ ,
Hˆ ]
(1)
此即为海森伯运动方程。其中右边第一项是由于 Fˆ 显含时间而引 起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F不随 t 变化这一项也存在。

量子力学 第三章3.6算符与力学量的关系

量子力学 第三章3.6算符与力学量的关系

定 已归一)
ˆ F C d Fdx
2
ˆ 证明: F dx

C d


ˆ [( C ' ' d' )F ( C d )]dx
' ˆ = C ' C [ ' F dx ] dd
n
C 其中: n n dx ; C dx ;
C
n
2
2
2 n
C d 1 ;
2
C n 为在 ( x ) 态中测 F 得 n 的几率;
C d 为在 ( x ) 态中测 F 得 d 在范围内的
几率;
平均值公式: F
代表的力学量的 F 关系如何?这需引进新的假设,适 合于一般情况,且不能与假定2相抵触,应包含它。
ˆ (1)F的 n 平方可积 ˆ 若 F 是满足一定条件 (2)F的 级数收敛 的厄米算符, ˆ n 且它的正交归一的本征函数系 1 (x)、 2 ( x) … n ( x ) …
即:C ( x ) ( x )dx
(同理可得二、三维的结果)
可见: 力学量在一般的状态中没有确定值, 而有许多可能值, 这些可能值就是表示这个力学量算符的本征值的集合, 且每 个可能值都以确定的几率出现。
三、平均值公式 在 ( x ) 所描写的状态中,F 在 ( x )态的统计平均 值(由几率求平均值)为
ˆ F n C n ( x )F ( x )dx
2 n
dx 1 ) (假定
ˆ ( x )dx 代入完全性 证明: ( x )F

量子力学第三章

量子力学第三章
第三章 定态方程的初步应用
3.1求一维无限深势阱中的粒子处于第一激发态时概率密度最大值 的位置。
解 一维无限深势阱中粒子的波函数是 对第一激发态,,故 令 得五个极值可疑点:
和4 又因为 将代入上式得,故概率密度最大值位于和处。
3.2若粒子的波函数形式为,求粒子的概率分布,问粒子所处的状 态是否定态?
解 (1)
(2)
3.5在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态
波函数具有确定的宇称。
解 一维运动的薛定谔方程为
(1)
式中
(2)
依题意,在坐标反射变换时
再注意到当时是不变量,因此 (3)
即在坐标反射变换下,哈密顿算符具有不变性。 设坐标反射变换而得的态用表示,这时薛定谔方程为 (4)
有一个交点,故只有一个束缚态。 当 ,即
时两曲线有两交交点和,故有两个束缚态。
(5)式中常数由归一化条件求得:
最后得到波函数为
3.9设粒子处于半壁无限高的势场中 中运动,设粒子能量,求束缚态能量所满足的方程及至少存在一个束缚 态的条件。
解(1) 一维定态薛定谔方程为 将所给势能代入上式得 即 令 它们皆为实数,于是得到
它们的解分别为 但,否则时,不满足波函数有限性的要求,于是
因此在势阱中粒子满足如下薛定谔方程


(1)
其中
(2)
假设粒子处于态,与无关,因而

于是(1式变成
它的解为
代入(3)式得
(4)
为满足有限性要求,,否则处无限大,于是
(5)
又在处,这是因为边界是理想反射壁,粒子不能透出势阱外,于是

即 注意到(2)式,便得到球形势阱中粒子的能级 可见能级是量子化的,与一维无限深势阱的结果相似。

第三章 量子力学中的力学量

第三章 量子力学中的力学量

1 2πh
eipx/ h
hk E= ≥0 2m
ˆ H p H Lz与 ˆ,ˆ与 ˆ
2 2
k可 续 值 故 是 续 。 连 取 , E 连 的
能 二 简 。 级 度 并
为啥具有相同的本征态?
(5)坐标算符的本征值和本征函数 )
ˆ xϕ x′ ( x) = x′ϕ x′ ( x) x′取一切实数 ϕ x′ ( x) = δ ( x − x′)
,
n = 1,2,3L l = 0,1, L n - 1 m = 0,±1 L ± l ,
二、量子力学的基本原理四
在 意 ψ中 ψ = ∑anϕn 任 态 ,
n
测量力学量A,可得到各种可能取值,可能取 值必为某一本征值。
ˆ在 征 谱 取 的 率 | a |2 。 A 本 值 中 A 几 为 n n
2 2 ˆ2 ˆ = Lz = − h ∂ H 2I 2I ∂ϕ2
z
h2 ∂2 − ψ = Eψ 2 2I ∂ϕ
1 imϕ ψm(ϕ) = e 2π m2h2 Em = ≥0 2I
m = 0 ±1 ± 2 L ,, ,
要求: 要求:会求解
(3)求 量 分 px的 征 。 动 x 量ˆ 本 态
∂ −ih ψ = px'ψ ∂x
ˆz = x py − y px = −ih(x ∂ − y ∂ ) ˆ ˆ L ∂y ∂x
1 ∂ ∂2 ∂ 1 ˆ2 L = − h2 sin θ + 2 2 ∂θ sin θ ∂ϕ sin θ ∂θ
从而有
ˆ = ihsin ϕ ∂ +cotθ cosϕ ∂ Lx ∂θ ∂ϕ ˆ = −ihcosϕ ∂ −cotθ sin ϕ ∂ Ly ∂θ ∂ϕ ˆz = −ih ∂ L ∂ϕ

量子力学 第三章 表象理论

量子力学  第三章  表象理论

第三章表象理论本章提要:本章讨论态矢和算符的具体表示形式。

首先,重点讨论了本征矢和本征函数、态矢量和波函数之间的关系,指出了函数依赖于表象。

之后,引入投影算符,讨论了不同表象下的态矢展开,尤其是位置和动量表象,并顺带解决了观测值问题。

接着,用投影算符统一了态矢内积与函数内积。

最后,简单介绍了一些矩阵力学的内容。

1.表象:完备基的选择不唯一。

因此可以选用不同的完备基把态矢量展开。

除了态矢量,算符在不同表象下的具体表示也不同。

因此,我们把态矢量和算符的具体表示方式统称为表象 ①使用力学量表象:我们还知道每个力学量对应的(厄米)算符的本征矢都构成一组完备基。

若选用算符G 的(已经标准正交化(离散谱)或规格正交化(连续谱))的本征矢作为态空间的基,就称为使用G 表象的描述②波函数:把态矢展开式中各项的系数(“坐标”)定义为G 表象下的波函数③本征函数与本征矢的关系:设本征方程ψ=ψλQˆ又可写作()()G Q G Q ψψ=ˆ 则两边乘G 有()()ψ===ψ=ψ=ψQ G Q G Q G Q Q G QG ˆˆˆψψ 因此:本征函数()ψ=G G ψ就是Q ˆ的本征态ψ在表象G ˆ下的“坐标”(波函数) 如果离散谱:()ψ=i i G ψ就是Q ˆ的本征态ψ在表象G ˆ的iG 方向上的“坐标” ④结论:算符和态矢量的抽象符号表示不依赖于表象,具体形式依赖于表象选择但本征函数和波函数相当于“坐标”,依赖于态矢(向量)和表象(基)*注意:第二章在展开态矢量、写算符和本征函数时使用都是位置表象(也称坐标表象)2.投影算符:我们将使用这个算符统一函数与矢量的内积符号(1)投影算符:令()()连续谱离散谱dG G Gi i Pi⎰∑==ˆ,称为投影算符(2)算符约定:求和或积分遍历算符G 的标准(或规格)完备正交基矢量(3)本征方程:ψ=ψ=ψI Pˆˆ,表明投影算符就是单位算符 (4)单位算符代换公式:()()连续谱离散谱dQ G G i i I i⎰∑==ˆ3.不同表象下的态矢量展开和波函数:①离散谱:∑=ii iF Fψψ,ψψi i F =为Fˆ表象下的波函数 {}i ψ可表示为一列矩阵,第i 行元素就是ψψi i F =观测值恰为i Q 的概率:用Qˆ表象展开∑=ii i Q Q ψψ,22Pr ψψi i Q ob ==概率归一等价于波函数归一∑==ii 12ψψψ算符Qˆ的观测平均值:ψψψQ Q Q ii i ˆˆ2==∑②连续谱:⎰==dG G GIψψψˆ,ψψG =称为Gˆ表象下的波函数观测值落在dQ Q Q +~范围内的概率:用Qˆ表象展开⎰=dQ Q Qψψ,dQ Q dQ ob 22Pr ψψ==,满足概率归一⎰=12dQ ψ算符Qˆ的观测平均值:()()ψψψQ dQ Q Q Q ˆ,ˆ2==⎰③本征函数和态矢量的内积统一:设f f =,g Q g =,有()g f gdQ f dQ g Q f Q dQ g Q f g I f g f ,ˆ**=====⎰⎰⎰结论:量子态g f 在同一表象Q 下投影得波函数g f ,,则()g f g f ,=算符对本征函数作用:()()ϕψϕψϕψϕψϕψQ Q QQ Qˆˆˆ,ˆˆ,==== 示例:()ϕψϕψϕψϕψϕψϕψp dx pdx x p dx p x x p I pˆ,ˆˆˆˆˆˆ**=====⎰⎰⎰④位置表象与动量表象:4.力学量的测量值问题:①当待测系统处于算符本征态:此时ψ=ψQ Qˆ,对系统中所有粒子的测量结果都是本征态ψ对应的本征值i Q ,显然i Q 的统计平均值还是i Q ,iQ Q =ˆ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。

ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。

为强调算符的特点,常常在算符的符号上方加一个“^”号。

但在不会引起误解的地方,也常把“^”略去。

二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。

例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。

2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。

3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。

ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。

一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。

5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。

若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。

若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。

例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。

ˆˆ0ˆˆ0y y z z xp p x xp p x -=⎧⎨-=⎩,ˆˆ0ˆˆ0x x z z yp p y yp p y -=⎧⎨-=⎩,ˆˆ0ˆˆ0x x y y zpp z zp p z -=⎧⎪⎨-=⎪⎩ˆˆˆˆ0x y y x pp p p -=,ˆˆˆˆ0y z z y p p p p -=,ˆˆˆˆ0z x x z p p p p -= ˆˆˆˆ0xyyx -=,ˆˆˆˆ0y z z y p p p p -=,ˆˆˆˆ0z x x z p p p p -= 写成通式(概括起来):ˆˆx pp x i αββααβδ-= (1) ˆˆˆˆ0xx x x αββα-= ˆˆˆˆ0pp p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。

注意:当Â与ˆB对易,ˆB 与Ĉ对易,不能推知Â与Ĉ对易与否。

6、对易括号(对易式)为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号:ˆˆˆˆˆˆ[,]AB AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式:ˆ[,]x pi αβαβδ= 不难证明对易括号满足下列代数恒等式:1) ˆˆˆˆ[,][,]AB B A =- 2) ˆˆˆˆˆˆˆ[,][,][,]AB C A B A C +=+ 3) ˆˆˆˆˆˆˆˆˆ[,][,][,]ABC B A C A B C =+ ,ˆˆˆˆˆˆˆˆˆ[,][,][,]AB C A B C A C B =+,]ˆ,ˆ[]ˆ,ˆ[B A k B k A = 4) ˆˆˆˆˆˆˆˆˆ[,[,]][,[,]][,[,]]0AB C B C A C A B ++= ——称为 Jacobi 恒等式。

角动量的对易式:(1)在直角坐标系中角动量算符的对易关系角动量算符ˆˆˆˆˆx x y y z zl r p i r l e l e l e =⨯=-⨯∇=++ ˆl 在直角坐标中的三个分量可表示为ˆˆˆ()xz y l yp zp i y z z y∂∂=-=--∂∂ ˆˆˆ()y x z l zp xp i z x x z ∂∂=-=--∂∂ ˆˆˆ()zy x l xp yp i x y y x∂∂=-=--∂∂ ˆˆˆ[,]x y z l l i l =,ˆˆˆ[,]y z x l l i l =,ˆˆˆ[,]z x y l l i l = (要求会证明)⇒ˆˆˆl l i l ⨯=ˆˆˆl l i l ⨯= 是角动量算符的定义式。

ˆˆˆ[,]l l i l αβαβγγε=式中εαβγ称淡Levi-Civita 符号,是一个三阶反对称张量,定义如下:1231αβγβαγαγβεεεε=-=-⎧⎨=⎩其中,,,x y z αβ=或1,2,3证明:ˆ[,]x l i x αβαβγγε=或 ˆ[,]l x i x αβαβγγε= ,,,x y z αβ=ˆˆˆ[,]pl i p αβαβγγε= 或 ˆˆˆ[,]l pi p αβαβγγε= 2ˆˆ[,]0l l α=(2)在球坐标系中角动量算符的对易关系ˆ(sin cos )xl i ctg ϕθϕθϕ∂∂=+∂∂ ˆ(cos sin )yl i ctg ϕθϕθϕ∂∂=--∂∂ ˆzl i ϕ∂=-∂ 22211ˆ[(sin )]sin sin l θθθθθϕ∂∂∂=-+∂∂∂2ˆˆˆˆ,,x y z l l l l 和只与θ,ϕ 有关,与r 无关,而且ˆz l 只与ϕ 有关。

2222222z y x ∂∂+∂∂+∂∂=∇ 2222222sin 1)(sin sin 1)(1ϕθθθθθ∂∂+∂∂∂∂+∂∂∂∂=r r r r r r 或 222222ˆˆr pl r ∇=--22222ˆˆr p l r=--其中),1(ˆr r i pr +∂∂= )(1ˆ2222r r rr p r ∂∂∂∂-= ,r pˆ可称为径向动量算符。

(3)角动量升降阶算符 (I) 定义ˆˆˆx y l l il +=+,ˆˆˆx y l l il -=-显然有如下性质ˆl ++ˆl -=, ˆˆl l +-+=这两个算符不是厄密算符。

(II) 对易关系ˆˆ[,]z l l ±ˆl ±=±, 2ˆˆ[,]0l l ±=,22ˆˆˆˆˆz z l l l l l +-=-+,22ˆˆˆˆˆz z l l l l l -+=--7、逆算符(1). 定义: 设Âψ=φ, 能够唯一的解出ψ, 则可定义算符Â之逆Â-1为: 1ˆAφψ-= (2).性质I: 若算符Â之逆Â-1存在,则11ˆˆˆˆAA A A I --==, 1ˆˆ[,]0AA -= (3).性质II: 若Â,ˆB均存在逆算符, 则 111ˆˆˆˆ()ABB A ---= 8、算符函数设给定一函数F (x ),其各阶导数均存在,其幂级数展开收敛()0(0)()!n nn F F x x n ∞==∑则可定义算符Â的函数F (Â)为:()(0)ˆˆ()!n nn F F A A n ∞==∑ 补充:定义一个量子体系的任意两个波函数(态) ψ与ϕ的“标积” *(,)d ψϕτψϕ=⎰d τ⎰是指对体系的全部空间坐标进行积分,d τ是坐标空间体积元。

例如对于一维粒子:d dx τ∞-∞=⎰⎰对于三维粒子:d dxdydz τ+∞-∞=⎰⎰⎰⎰可以证明*11221122**11221122(,)0(,)(,)(,)(,)(,)(,)(,)(,)c c c c c c c c ψψψϕϕψψϕϕψϕψϕψψϕψϕψϕ≥⎧⎪=⎪⎨+=+⎪⎪+=+⎩9、转置算符算符Â的转置算符ˆA定义为 **ˆˆd A d A τψϕτϕψ=⎰⎰即 **ˆˆ(,)(,)AA ψϕϕψ= 式中ψ和ϕ是两个任意波函数。

例如:x x∂∂=-∂∂(证明) ˆˆx x pp =- 可以证明:ˆˆˆˆ()ABBA = 10、复共轭算符算符Â的复共轭算符Â*就是把Â表达式中的所有量换成其复共轭。

但应注意,算符Â的表达式与表象有关。

11、厄米共轭算符算符Â之厄米共轭算符Â+定义为:**ˆˆ()d Ad A τψϕτψϕ+=⎰⎰或 ˆˆ(,)(,)A A ψϕψϕ+= 厄密共轭算符亦可写成:*ˆˆAA += 可以证明: ˆˆˆˆ()AB B A +++= ˆˆˆˆˆˆ()ABCCB A ++++=12、厄米算符 (自共轭算符)(1). 定义: 满足下列关系的算符称为厄米算符.**ˆˆ()d A d Aτψϕτψϕ=⎰⎰ˆˆ(,)(,)A A ψϕψϕ= 或 ˆˆAA += (2). 性质性质 I :两个厄密算符之和仍是厄密算符。

性质 II :两个厄密算符之积一般不是厄密算符, 除非二算符对易。

三、算符的本征方程如果算符Â作用于函数ψ的结果,等于某一常数λ乘以ψ,即ˆAψλψ= (2) 那么称λ为算符Â的本征值,ψ为算符Â的属于本征值λ的本征函数。

方程(2)称为算符Â的本征方程。

§3.2 动量算符和角动量算符一、动量算符∇-=i pˆ 1、动量算符的厄密性(证明)2、动量算符本征方程)()(ˆr p r p pp ψψ=,即()()p p i r p r ψψ-∇= 采用分离变量法,令:()()()()p r x y z ψψψψ=代入动量本征方程()()p p i r p r ψψ-∇= ⇒()()()()p r x y z ψψψψ=()()()x y z p p p x y z ψψψ=123x y z iiip xp yp zc ec ec e=ip rce⋅= (1)p 可取任意实数值,即动量算符的本征值p 组成连续谱,相应的本征函数为(1)式所表示的)(r pψ,这正是自由粒子的de Broglie 波的空间部分波函数。

(2).归一化系数的确定 ①、归一化为 δ 函数 取2/3)2(-= πc ,则)(r pψ归一化为δ函数,*()()()p p r r d p p ψψτδ∞'-∞'=-⎰(2) r p ipe r⋅=2/3)2(1)(πψ (3) 一维情况:x p i p x x erπψ21)(=②、箱归一化——P70-72(略去不讲)箱归一化方法仅对平面波适用,而归一化为δ函数方法对任何连续谱都适用。

相关文档
最新文档