第三章量子力学

合集下载

量子力学讲义第三章讲义

量子力学讲义第三章讲义

第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。

ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。

为强调算符的特点,常常在算符的符号上方加一个“^”号。

但在不会引起误解的地方,也常把“^”略去。

二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。

例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。

2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。

3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。

ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。

一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。

5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。

若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。

若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。

例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。

原子物理3

原子物理3

19世纪末的三大发现 揭开了近代物理的序幕
1895年的X射线 1896年放射性元素 1897年的电子的发现
早期量子论 量子力学
相对论量子力学
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论
德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系
狄拉克把量子力学与狭义 相对论相结合
四、德布罗意波和量子态
v 质量为 m 的粒子以速度 匀速运动时,具有能
量 E 和动量 p ;从波动性方面来看,它具有波长
和频率 ,这些量之间的关系遵从下述公式:
E mc2 h
p mv h

具有静止质量 m0 的实物粒子以速度 v 运动,
则和该粒子相联系的平面单色波的波长为:
的精密度的极限。还表明
px 0 x 位置不确定
x 0 px 动量不确定
pyqy 2
pzqz 2
pxqx 2
这就是著名的海森伯测不准关系式
二、测不准关系式的理解 1、 用经典物理学量——动量、坐标来描写微 观粒子行为时将会受到一定的限制 。 2、 可以用来判别对于实物粒子其行为究竟应 该用经典力学来描写还是用量子力学来描写。
电子的动量是不确定的,应该用量子力学来处理。
例3 电视显象管中电子的加速度电压为10kV,电子 枪的枪口的直径为0.01cm。试求电子射出电子枪后 的横向速度的不确定量。
解: 电子横向位置的不确定量 x 0.01cm
vx 2mx 0.58m s
v 2eU 6 107 m/s m
pdp m
E vp
Et vpt pq
2
mv

第三章-量子力学中的力学量(下)

第三章-量子力学中的力学量(下)
2 2 2 2 2 2 2 2 A h k A h k A 4h k A 4h k A 0× + × + × + × − + × − 2 2µ 4 2µ 4 2µ 4 2µ 4 5h2k2 平均动能 = = 2 2 2 2 2 8µ (2× A/ 4) + ( A/ 4) + ( A/ 4) + (− A/ 4) + (− A/ 4)
1= ∫ψ ψdV = ∑∑c c ∫ψ ψ dV =∑∑c c δ =∑cn
* * n m * n m * n m nm n m n m n
2
第5(6)节 算符与力学量的关系 5(6
ˆ 量子力学基本假定:力学量 对应厄米算符 对应厄米算符, 量子力学基本假定:力学量F对应厄米算符 算符F的本征函数构成 描述时, 完全系。当系统由归一化 归一化波函数 完全系。当系统由归一化波函数 ψ = ∑ cnψ n 描述时,测量力学
角动量算符本征函数
* Y lm (θ , ϕ )Y l ' m ' (θ , ϕ )d Ω ≡ ∫ 2π
波函数 ψ
r p
r (r ) =
1 e ( 2πh )3 / 2
r r ip⋅ r h
波函数 Ylm (θ , ϕ ) = N lm Pl|m| (cosθ )e imϕ
* d ϕ ∫ sin θ d θ Y lm (θ , ϕ )Y l 'm ' (θ , ϕ ) = δ ll 'δ mm ' ∫ 0 0
的结果必定是对应算符的本征值, 量F的结果必定是对应算符的本征值,测量到本征值 f n 的几率 的结果必定是对应算符的本征值 是 cn 2。 ˆ 如果测量F的结果为 如果测量 的结果为 fn, 波函数塌缩为ψ = ∑cnψn →ψn (Fψ n = f nψ n ) 。

量子力学 第三章

量子力学 第三章

−ρ / 2
[s(s −1) − l(l + 1)]b0 ρ
令 ν'=ν-1 第一个求和改为
s−2
+ ∑[(ν + s)(ν + s − 1) − l(l + 1)]bν ρν +s−2
ν =1

∑ bν ρ ν
s+ν −1
:
+ ∑[β − (ν + s)]bν ρν +s−1 = 0
ν =0


b ≠ 0 0 s ≥ 1
对应一个本征值有一个以上的本征函数的情况成为简并。 对应一个本征值有一个以上的本征函数的情况成为简并。 对 应同一个本征值的相互独立的本征函数的数目称为简并度。 应同一个本征值的相互独立的本征函数的数目称为简并度。
个取值。 ˆ 对给定的 l , m 有 ( 2l + 1) 个取值。 L2 的本征值是 ( 2l + 1) 度 简并的。 简并的。
∑[(ν + s)(ν + s −1) − l(l +1)]bν ρ ν
=0
+ ∑[β − (ν + s)]bν ρν +s−1 = 0
ν =0

把第一个求和号中ν= 0 项单独写出,则上式改为: 把第一个求和号中ν= 项单独写出,则上式改为:
u αf (ρ )e R= = r ρ =e
−ρ / 2 =0
四、讨论: 讨论:
ˆ ˆ a. Ylm 是 L z , L2 得共同本征函数 .
ˆ L2 Ylm = l(l + 1)h 2 Ylm
ˆ = −ih ∂ 作用于 Ylm 上,有: 而让 L z ∂ϕ ∂ m ˆ L z Ylm (θ, ϕ) = − ih [(−1) m N lm Pl (cos θ)e imϕ ] ∂ϕ

量子力学_第三章3.8力学量期望值随时间的变化__守恒定律

量子力学_第三章3.8力学量期望值随时间的变化__守恒定律
2 dinger 方程不仅可以直接描写 ( r , t ) 的变化,而且还能间 Schr o
dinger 方程 o 接地描写各力学量的变化。当然,我们也可以由 Schr
推出一个力学量随时间变化的一般方程,即量子力学运动方程或 海森堡运动方程,由它可以更直接的描述力学量的变化,并可得 出一些重要结论。
ˆ 的本征值 C 1 。 所以 P
ˆ (x, t) (x, t) ; P ˆ (x, t) (x, t) 即: P 1 1 2 2
ˆ 的本征函数中本征值为 1 的 为有偶宇称态,本征值为 1 称P 1
的 2 为有奇宇称态。
ˆ 在空间反演不变时的宇称守恒: c. H
ˆ F 1 ˆH ˆ H ˆF ˆ ) dx dx ( F t i

ˆ 1 d F F ˆ,H ˆ] 即: [F dt t i
(1)
ˆ 显含时间而引 此即为海森伯运动方程。 其中右边第一项是由于 F
起的,即使 不随 t 变化这一项也存在;第二项是由于 随 t 变 化而引起的,即使 F 不随 t 变化这一项也存在。
2 2 ˆ L 2 ˆ 2 , H] ˆ [L ˆ2 , ˆ2 , ˆ 2 , U(r)] 0 [L (r )] [L ] [L 2r 2 r r 2r 2 ˆ ,H ˆ ] 0; ˆ2 ,L ˆ ] 0 , [L ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0, ˆ ,H ˆ ] [L ˆ2 , L ˆ ]0 [L [ L [L z x z
y
x
y
ˆ ˆ2 L L 0, x t t dL d L2 所以: 0; x dt dt
ˆ L y
ˆ L z =0 t t dL y dL z 0; 0 0; dt dt

量子力学第三章

量子力学第三章
2
(dS = rdrd ) θ
(2)氢原子的磁矩为
M = ∫ dM = ∫
π ∞
0 0


ehm
µ
πψnlm r2 sinθ drd θ
2
=− =−
=−
π ∞ ehm 2 ⋅ 2π ∫ ∫ ψnlm r 2 sinθ drd θ 0 0 2µ
ehm 2π π ∞ 2 ψnlm r2 sinθ drd dϕ θ 2µ ∫0 ∫0 ∫0
1
3 π a0
e−r / a0 ,求:
(1)r 的平均值;
e2 (2)势能 − 的平均值; r
(3)最可几半径;
(4)动能的平均值;
(5)动量的几率分布函数。 解:(1) r = rψ2π ∞ −2r / a0 2 re r sinθ drdθ dϕ 3 πa0 ∫0 ∫0 ∫0

=
1 2πh


−∞
i α − 1α x − h Px 2 e e dx π
2 2
=
1 2πh
α ∞ −2α x −h Px ∫−∞ e e dx π
1
2 2
i
= = = 1
1 2πh 1 2πh 2πh
α e π ∫−∞

ip p2 1 − α 2 ( x+ 2 )2 − 2 2 2 α h 2α h
4 −2r / a0 2 e r dr 3 a0
ω(r) =
dω(r) 4 2 = 3 (2 − r )re−2r / a0 dr a0 a0

dω(r ) = 0, r1 = 0, ⇒ dr
r2 = ∞,
r3 = a0
当 r1 = 0, r2 = ∞时, (r) = 0 为几率最小位置 ω

量子力学第三章

量子力学第三章
第三章 定态方程的初步应用
3.1求一维无限深势阱中的粒子处于第一激发态时概率密度最大值 的位置。
解 一维无限深势阱中粒子的波函数是 对第一激发态,,故 令 得五个极值可疑点:
和4 又因为 将代入上式得,故概率密度最大值位于和处。
3.2若粒子的波函数形式为,求粒子的概率分布,问粒子所处的状 态是否定态?
解 (1)
(2)
3.5在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态
波函数具有确定的宇称。
解 一维运动的薛定谔方程为
(1)
式中
(2)
依题意,在坐标反射变换时
再注意到当时是不变量,因此 (3)
即在坐标反射变换下,哈密顿算符具有不变性。 设坐标反射变换而得的态用表示,这时薛定谔方程为 (4)
有一个交点,故只有一个束缚态。 当 ,即
时两曲线有两交交点和,故有两个束缚态。
(5)式中常数由归一化条件求得:
最后得到波函数为
3.9设粒子处于半壁无限高的势场中 中运动,设粒子能量,求束缚态能量所满足的方程及至少存在一个束缚 态的条件。
解(1) 一维定态薛定谔方程为 将所给势能代入上式得 即 令 它们皆为实数,于是得到
它们的解分别为 但,否则时,不满足波函数有限性的要求,于是
因此在势阱中粒子满足如下薛定谔方程


(1)
其中
(2)
假设粒子处于态,与无关,因而

于是(1式变成
它的解为
代入(3)式得
(4)
为满足有限性要求,,否则处无限大,于是
(5)
又在处,这是因为边界是理想反射壁,粒子不能透出势阱外,于是

即 注意到(2)式,便得到球形势阱中粒子的能级 可见能级是量子化的,与一维无限深势阱的结果相似。

第三章 量子力学中的力学量

第三章 量子力学中的力学量

1 2πh
eipx/ h
hk E= ≥0 2m
ˆ H p H Lz与 ˆ,ˆ与 ˆ
2 2
k可 续 值 故 是 续 。 连 取 , E 连 的
能 二 简 。 级 度 并
为啥具有相同的本征态?
(5)坐标算符的本征值和本征函数 )
ˆ xϕ x′ ( x) = x′ϕ x′ ( x) x′取一切实数 ϕ x′ ( x) = δ ( x − x′)
,
n = 1,2,3L l = 0,1, L n - 1 m = 0,±1 L ± l ,
二、量子力学的基本原理四
在 意 ψ中 ψ = ∑anϕn 任 态 ,
n
测量力学量A,可得到各种可能取值,可能取 值必为某一本征值。
ˆ在 征 谱 取 的 率 | a |2 。 A 本 值 中 A 几 为 n n
2 2 ˆ2 ˆ = Lz = − h ∂ H 2I 2I ∂ϕ2
z
h2 ∂2 − ψ = Eψ 2 2I ∂ϕ
1 imϕ ψm(ϕ) = e 2π m2h2 Em = ≥0 2I
m = 0 ±1 ± 2 L ,, ,
要求: 要求:会求解
(3)求 量 分 px的 征 。 动 x 量ˆ 本 态
∂ −ih ψ = px'ψ ∂x
ˆz = x py − y px = −ih(x ∂ − y ∂ ) ˆ ˆ L ∂y ∂x
1 ∂ ∂2 ∂ 1 ˆ2 L = − h2 sin θ + 2 2 ∂θ sin θ ∂ϕ sin θ ∂θ
从而有
ˆ = ihsin ϕ ∂ +cotθ cosϕ ∂ Lx ∂θ ∂ϕ ˆ = −ihcosϕ ∂ −cotθ sin ϕ ∂ Ly ∂θ ∂ϕ ˆz = −ih ∂ L ∂ϕ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 量子力学导论
一、学习要点
1.德布罗意假设:
(1)内容: ων ==h E , n k k h p λ
πλ2,=== (2)实验验证:戴维孙—革末试验
电子 λ
≈(nm ) 2.测不准关系:2 ≥
∆⋅∆x p x , 2 ≥∆⋅∆E t ; 3.波函数及其统计解释、标准条件、归一化条件
薛定谔方程、定态薛定谔方程、定态波函数、定态
4.量子力学对氢原子的处理
第三章自测
1.选择题
(1)为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:
A.电子的波动性和粒子性
B.电子的波动性
C.电子的粒子性
D.所有粒子具有二相性
(2)德布罗意假设可归结为下列关系式: A .E=h υ, p=λh
; B.E=ω ,P=κ ; C. E=h υ ,p =λ
; D. E=ω ,p=λ
(4)基于德布罗意假设得出的公式
λ=nm 的适用条件是: A.自由电子,非相对论近似; B.一切实物粒子,非相对论近似;
C.被电场束缚的电子,相对论结果; D 带电的任何粒子,非相对论近似
(5)如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):
A .10-34; B.10-27; C.10-24; D.10-30
2.简答题
(1)波恩对波函数作出什么样的解释?(长春光机所1999)
(2)请回答测不准关系的主要内容和物理实质.(长春光机所1998)。

相关文档
最新文档