家用电器远程控制与室内环境监测系统

合集下载

基于物联网环境的远程环境监测与控制系统

基于物联网环境的远程环境监测与控制系统

基于物联网环境的远程环境监测与控制系统随着物联网技术的不断发展和应用,远程环境监测与控制系统得以实现,为我们创造了更加智能化、便捷化的生活环境。

本文将就基于物联网环境的远程环境监测与控制系统展开讨论,并探讨其在实际应用中的重要性和优势。

一、背景介绍远程环境监测与控制系统基于物联网技术,通过物理传感器和网络通信技术,将环境中的数据采集、传输和处理相结合,实现对远程环境的实时监测和控制。

这种系统可以用于各个领域,例如农业、工业、交通、医疗等,为人们提供更加舒适、安全、高效的环境。

二、系统组成与原理基于物联网环境的远程环境监测与控制系统由传感器、物联网网关、云平台和终端设备组成。

传感器负责感知环境中的各种参数,如温度、湿度、光照强度等,然后将数据通过物联网网关传输到云平台。

云平台进行数据处理和存储,并提供数据可视化和分析服务。

最后,终端设备通过手机、电脑等进行远程控制。

三、系统的特点与优势1. 实时性:传感器持续对环境进行监测,并可实时将获取的数据传输到云平台,用户可以随时随地通过终端设备查看当前环境状态。

2. 精准性:传感器可以精确地感知环境中的各种数据,如温度、湿度等,保证监测结果的准确可靠。

3. 可视化:云平台对传感器获取的数据进行处理和分析,并提供数据可视化的功能,用户可以通过直观的图表、曲线等方式了解环境变化趋势。

4. 远程控制:用户通过终端设备可以远程控制环境中的设备,实现远程开关控制、调节温度、湿度等功能,提高了生活的便捷性和舒适度。

5. 报警功能:系统可以设定一些阈值,当环境参数超过或低于设定值时,系统会自动发送警报信息给用户,提醒其注意环境变化。

四、应用领域和案例分析1. 农业领域:基于物联网环境的远程环境监测与控制系统可应用于温室大棚,实时监测温度、湿度、二氧化碳浓度等参数,并实现对灌溉、通风、加热等设备的远程控制,不仅提高农作物的产量和质量,还减少了人力资源的浪费。

2. 工业领域:工业生产环境对温度、湿度等参数要求较高,基于物联网环境的远程环境监测与控制系统可以保障生产环境的合理稳定,减少因环境变化引起的质量问题。

智能家居系统介绍

智能家居系统介绍

智能家居系统介绍智能家居系统是一种基于物联网技术的智能化管理系统,通过将家庭设备、电器连接到互联网上,实现远程遥控、智能化定时、场景联动等功能。

本文将介绍智能家居系统的特点、优势以及应用领域等内容。

一、智能家居系统的特点智能家居系统具有以下几个特点:1.互联互通:不同的家用设备和电器通过互联网进行连接,形成了统一的管理平台。

用户可以通过智能手机、平板电脑等终端设备远程控制和监测家庭设备的状态。

2.智能化控制:智能家居系统通过智能算法和传感器技术,对家庭设备和电器进行智能化控制。

用户可以设置定时开关、节能模式,实现智能化管理和运营。

3.场景联动:智能家居系统可以根据用户的需求,实现设备之间的联动操作。

例如,当用户离家时,系统可以自动关闭灯光、空调等设备,实现智能化节能。

4.数据监测与分析:智能家居系统可以实时监测家庭设备和电器的运行状态,收集数据并进行分析,为用户提供数据参考和决策支持。

二、智能家居系统的优势智能家居系统相较于传统家居系统,具有以下几个优势:1.便捷性:通过智能家居系统,用户可以随时随地通过手机等终端设备远程控制家庭设备和电器,无需在家中进行操作。

2.节能环保:智能家居系统可以通过定时开关、节能模式等功能,合理利用家庭设备和电器,达到节能和环保的目的。

3.安全性:智能家居系统配备安全传感器和监控设备,可以实时监测家庭安全状况。

例如,系统可以发出警报并通知用户当有火灾、气体泄漏等情况发生时。

4.舒适性:智能家居系统可以根据用户的需求,智能地调节室内温度、湿度等环境因素,提供更为舒适的生活体验。

三、智能家居系统的应用领域智能家居系统广泛应用于以下领域:1.家庭生活:智能家居系统可以对家庭设备和电器进行统一管理,提供便捷、节能和安全的家庭生活方式。

2.健康养老:智能家居系统可以通过监测和分析家庭成员的生活习惯和健康数据,提供个性化的健康养老服务。

3.商业办公:智能家居系统可以应用于商业办公场所,提供便捷的办公环境控制和设备管理功能。

房间空气调节器的远程控制与监控系统

房间空气调节器的远程控制与监控系统

房间空气调节器的远程控制与监控系统随着科技的进步和智能化水平的提高,人们对于生活环境的要求也越来越高。

特别是在居住环境中,我们希望能够随时随地地调节室内温度和空气质量,创造一个舒适健康的居住环境。

为了满足这种需求,房间空气调节器的远程控制与监控系统应运而生。

房间空气调节器的远程控制与监控系统可以通过智能手机、平板电脑或者电脑等设备与空调系统进行联网,实现远程控制和监控功能。

这意味着我们不再需要亲自到达空调控制面板旁边进行设置,只需要通过手机上的应用程序或者网页就能实现对空调的各种设置和调节。

这对于我们来说,无疑是一种极大的便利。

远程控制功能可以让我们在离开家之前就可以通过手机将空调打开或者关闭,调节室内温度。

当我们忘记将空调关闭时,可以远程关闭以节省能源。

另外,如果我们即将回家,也可以提前打开空调,以确保室内温度适宜。

此外,通过远程控制,我们还可以根据室内外温度的变化自动调整空调的温度,以保持室内的舒适度。

监控功能是房间空气调节器的远程控制与监控系统的另一个重要特点。

通过联网功能,我们可以实时监测房间内的温度、湿度和空气质量等参数。

如果室内温度过高或者过低,我们可以随时通过手机发送指令进行调节。

如果室内空气质量不好,系统也会及时报警,提示我们进行空气净化。

这样,我们可以更好地保护自己的健康。

此外,房间空气调节器的远程控制与监控系统还可以提供一些实用的功能,如定时开关机、设定不同的工作模式等。

我们可以根据自己的需要,通过手机预先设定空调的工作时间和温度范围,以便在我们到家之前就开启空调,创造一个舒适的环境。

此外,系统还可以记录我们的使用习惯和能耗情况,以便我们了解自己的能耗情况,并进行节能调整。

房间空气调节器的远程控制与监控系统的实现离不开物联网技术的支持。

物联网技术通过将设备和互联网连接起来,实现设备之间的数据传输和通信。

在房间空气调节器的远程控制与监控系统中,各种传感器和执行器将和物联网技术相结合,实现数据的采集和传输,以及远程控制的实现。

智能家居远程控制系统的设计与实现

智能家居远程控制系统的设计与实现

智能家居远程控制系统的设计与实现概述随着科技的发展,智能家居成为了现代生活中越来越重要的一部分。

智能家居远程控制系统可以让用户在任何地方通过互联网来控制家里的各种设备和功能,提高了居住的舒适度和便利性。

本文将介绍智能家居远程控制系统的设计与实现。

一、需求分析在开始设计之前,我们需要对智能家居系统的需求进行分析和调研。

常见的需求包括但不限于以下几个方面:1.远程设备控制:用户可以通过手机、电脑等设备来远程控制家里的电器设备,如打开灯光、调整温度等。

2.安全监控:用户可以通过摄像头来远程监控家里的情况,如查看家里是否有陌生人或者是否关掉燃气。

3.室内环境监测:系统可以检测室内温度、湿度、空气质量等,并将数据反馈给用户。

二、系统设计基于以上需求,我们可以设计出以下系统结构:1.前端控制设备:包括手机、电脑等设备,用户通过这些设备与系统进行交互。

2.云服务器:用于处理用户发送的控制指令和接收设备反馈的数据。

3.智能设备:包括各种电器设备、摄像头等。

4.网络:连接前端控制设备、云服务器和智能设备的网络。

三、系统实现1.前端控制设备:我们可以通过开发手机应用程序或者网页来实现前端的控制设备。

用户可以通过这些应用或页面来发送控制指令给系统。

2.云服务器:我们可以使用云计算平台来实现云服务器的部署。

所有的用户请求都会发送到云服务器上,服务器接收到请求后会处理指令,并将指令发送给对应的智能设备。

3.智能设备:每个智能设备都需要具备接收指令和发送数据的能力。

常见的方式是通过Wi-Fi或者蓝牙来与云服务器进行通信。

4.网络:可以使用传统的局域网和宽带网络来搭建系统的网络环境。

四、系统运行流程1.用户通过前端控制设备发送控制指令给云服务器。

2.云服务器接收到指令后,解析指令并发送给对应的智能设备。

3.智能设备接收到指令后执行相应的操作,并将执行结果反馈给云服务器。

4.云服务器将执行结果发送给前端控制设备,用户可以通过设备来查看执行结果。

智能生活中的家庭环境监测与控制系统设计与实现

智能生活中的家庭环境监测与控制系统设计与实现

智能生活中的家庭环境监测与控制系统设计与实现随着科技的不断进步,智能生活已经成为现代家庭中不可或缺的一部分。

智能家居系统通过将各种家庭设备和传感器连接到一起,为我们提供了更便捷、舒适和安全的居住环境。

其中,家庭环境的监测与控制系统是智能家居系统的重要组成部分。

本文将讨论家庭环境监测与控制系统的设计与实现,介绍其核心功能和技术要点,以及相关的应用场景。

家庭环境监测与控制系统的设计与实现,旨在帮助居民实时了解家庭环境的状态,并根据需求进行环境的控制与调节。

这样的系统通常包括以下几个核心功能:温度监测与控制、湿度监测与控制、空气质量监测与控制以及照明控制。

通过这些功能,居民可以在家中享受到更加舒适和健康的居住环境。

首先,温度监测与控制是家庭环境监测与控制系统的基本功能之一。

通过安装温度传感器,实时监测室内温度的变化,并通过智能控制器实现温度的调节。

居民可以在手机App上设置理想的温度范围,系统将自动调节空调或暖气设备,保持室内温度在舒适的范围内。

此外,根据家庭成员的生活习惯与用电需求,系统还可以学习与预测室内温度的变化趋势,以提供更加智能与节能的温控体验。

其次,湿度监测与控制也是重要的功能之一。

湿度对于室内空气质量和居住舒适度有着很大的影响。

家庭环境监测与控制系统通过湿度传感器对室内湿度进行实时监测,并根据设定的湿度范围调节加湿器或除湿器,以维持室内湿度的合适水平。

特别是在潮湿的季节和地区,这一功能对于防止霉菌滋生和家居设备受潮具有重要意义。

此外,家庭环境监测与控制系统还可以监测空气质量,并根据监测结果进行控制与调节。

通过安装空气质量传感器,系统可以检测室内空气中的有害气体浓度、PM2.5等指标。

一旦检测到空气质量异常,系统将会发出警报并自动启动相关设备以提高室内空气质量。

例如,如果检测到有害气体浓度过高,系统可以自动打开排风设备或空气净化器,确保居住环境的安全与健康。

最后,照明控制是家庭环境监测与控制系统的常见功能之一。

室内环境监测控制系统

室内环境监测控制系统

室内环境监测控制系统本设计是一款智能家居的前端装置,用于监测室内环境。

本设计采集、处理室内温度、湿度、空气质量和可燃气体浓度,并通过无线发送器将处理后的数据上传。

采用Core2530核心板作为主控芯片和无线发送器,采用SHT11作为室内温、湿度探测器,MQ-135作为空气质量探测器,MQ-216作为可燃气体探测器,实现对室内温度、湿度、空气质量和可燃气体的实时测量,并且每隔30秒通过zigbee定时上传最近30秒、5分钟、1个小时、1天和一个月的平均数据,为智能家居系统提供可靠数据。

目录1. 概述 (2)1.1. 设计背景 (2)1.2. 国内外发展趋势 (2)1.3. 设计要求 (3)2. 系统架构 (4)3. 方案选型 (5)3.1. 无线模块 (5)3.2. MCU (6)3.3. 温、湿度传感器 (6)3.4. 空气质量传感器 (6)3.5. 可燃气体传感器 (6)4. 硬件设计 (7)4.1. 温湿度传感器 (7)4.2. 空气质量传感器 (7)4.3. 可燃气体传感器 (7)4.4. MCU与无线通信 (8)4.5. 存储模块 (9)5. 软件设计 (9)5.1. 主程序流程 (9)5.2. SHT11驱动 (12)5.3. ADC采集气体及校准 (14)5.4. 存储器AT24C32读写 (17)6. 系统制作与调试测试 (17)6.1. 系统PCB设计 (17)6.2. 实物制作 (17)6.3. 系统调试 (18)7. 总结 (19)附录 (20)附录一:硬件原理图 (20)附录四:重要代码段 (20)概述1.1.设计背景智能家居的概念起源很早,它是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、传感器检测技术、自动控制技术、音视频技术将生活家居的有关设施集成,构建更加安全、便利、舒适和环保的家居管理系统[1]。

智能家居虽已成为陈词滥调,但作为真正与百姓生活紧密联系的行业,仍有巨大前景。

智能家居中的环境监测与控制系统设计方法

智能家居中的环境监测与控制系统设计方法智能家居的快速发展给人们带来了更加便捷、舒适的生活体验。

在智能家居中,环境监测与控制系统起着重要的作用,它可以通过各种传感器和控制设备实时监测和调节室内环境的温度、湿度、光照、空气质量等参数。

本文将介绍智能家居中环境监测与控制系统的设计方法。

首先,环境监测与控制系统的设计需要确定监测的参数。

在智能家居中,常见的监测参数包括温度、湿度、光照、空气质量等。

这些参数直接影响着居住环境的舒适度和健康性,因此合理地选择监测参数是设计环境监测与控制系统的基础。

根据实际需求和预算,可以选择不同的传感器来实现对各个参数的监测。

其次,环境监测与控制系统还需要确定控制的方式。

智能家居中常用的控制方式有自动控制和手动控制两种。

自动控制是通过系统根据环境参数的变化自动调节相应的设备,比如根据温度变化自动开关空调。

手动控制则是由用户通过手机、平板等设备手动控制各种设备的状态,通过APP或者物联网设备进行远程控制。

根据实际需求,可以选择适合的控制方式,并对系统进行相应的设计与实现。

在选择传感器和控制方式之后,还需要搭建相应的通信网络。

通信网络是智能家居中各个设备之间进行数据传输和控制指令发送的基础。

常用的通信方式有有线通信和无线通信两种。

有线通信方式包括以太网、电力线通信等,它们稳定可靠性能好,但安装相对复杂。

无线通信方式包括Wi-Fi、蓝牙、ZigBee等,它们安装简便、覆盖广泛。

根据实际需求,可以选择合适的通信方式,并进行相应的网络搭建和设备连接。

此外,环境监测与控制系统设计中还需要考虑用户界面的设计。

用户界面是用户与智能家居系统进行交互的窗口,它直接影响着用户对系统的使用体验。

用户界面可以通过手机、平板、电视等设备来展示和操作,也可以通过语音识别和手势识别等技术实现智能交互。

设计用户界面应该简洁直观,方便用户进行操作和监测环境参数,并提供相应的控制选项。

另外,值得注意的是,环境监测与控制系统设计需要兼顾安全和隐私保护。

智能家居远程监控系统设计与实现

智能家居远程监控系统设计与实现首先,智能家居远程监控系统的设计需要明确系统的功能需求。

通常包括以下几个方面:1.远程监控与控制功能:通过手机或电脑等终端设备,用户可以远程查看家中的实时监控画面,并对家庭设备进行远程控制操作,比如开关灯、调节温度等。

2.安全监控功能:系统可以实时监测家庭安保设备,如门窗磁感应器、人体红外传感器等,发生异常即时向用户发送报警推送。

3.环境监测功能:系统可以实时监测室内环境变化,例如温度、湿度等,并将数据发送到用户手机上,实时了解家庭环境情况。

4.能源管理功能:系统可以监测家庭能源使用情况,例如电力、水量等,提供实时数据和报表分析,帮助用户节约能源。

5.健康监护功能:系统可以监测家庭成员的健康数据,例如心率、血压等,并根据数据提供相应的健康建议。

设计智能家居远程监控系统的核心是通过传感器采集各种数据,并将数据传输到后台服务器。

传感器的选择需要根据不同的功能需求进行定制。

例如,温湿度传感器用于获取室内环境数据,门窗磁感应器用于检测家庭安全;另外,还需要选择适合的网络通信协议,如Wi-Fi或蓝牙等。

在系统的实现过程中,可以采用以下几个步骤:1.硬件部署:根据系统的功能需求,确定需要安装的传感器和执行器设备的位置和数量。

安装监控摄像头时需要考虑画面覆盖范围和角度选择,以及设备的固定方式。

2.网络连接:将智能家居设备与用户手机或电脑等终端设备通过无线网络连接起来,确保数据的及时传输。

3.数据采集与处理:通过传感器采集环境数据,并将数据传输到后台服务器进行处理和存储。

对于视频监控系统,需要实时传输视频流,并进行存储和管理。

4.数据展示与控制:用户可以通过手机或电脑等终端设备实时查看监控画面,并对设备进行控制操作。

同时,也可以通过手机应用程序查看历史数据和生成报表。

5.报警与消息推送:当监测到异常情况时,系统可以通过手机应用程序向用户发送报警消息,提醒用户注意安全。

6.数据分析与优化:对采集到的数据进行分析和比对,提供用户家庭环境的优化建议,帮助用户更好地管理和控制家居环境。

智能家居中的环境监测与控制系统设计

智能家居中的环境监测与控制系统设计一、引言随着科技的不断发展,智能家居已经成为了现代家庭的重要组成部分。

它通过应用各种现代技术,实现了对家居环境的智能化监测和控制。

其中,环境监测与控制系统是智能家居中的核心部分,本文将详细探讨智能家居环境监测与控制系统的设计。

二、环境监测系统设计智能家居中的环境监测系统旨在实时监测家居环境的各项参数,并将这些参数传输给智能控制中心。

环境监测系统主要包括以下几个方面的设计:1.传感器选取为了实现对家居环境的全面监测,需要选取一系列传感器来测量各项参数。

例如,温湿度传感器可以实时测量室内的温度和湿度;光照度传感器可以监测室内光照强度;气体传感器可以检测室内空气中的有害气体浓度等等。

通过合适的传感器选取,可以实现对家居环境的全方位监测。

2.数据采集与传输传感器采集到的数据需要经过处理后传输给智能控制中心。

为了确保数据的稳定传输,可以采用无线传输技术,如Wi-Fi或蓝牙等。

此外,还可以选择云端存储技术,将数据保存在云端服务器上,实现远程访问和管理。

3.数据处理与分析传感器采集到的数据经过传输后,需要经过处理与分析,得出对环境状态的准确评估。

采用合适的算法和模型,可以从海量的数据中提取出有用的信息,比如预测室内温度的变化趋势、判断室内空气是否健康等。

三、环境控制系统设计环境控制系统是智能家居中实施对家居环境控制的重要部分。

它通过接收来自环境监测系统的数据,并做出相应的控制策略,实现对家居环境的精细化调控。

环境控制系统的设计包括以下几个方面:1.智能控制算法通过分析环境监测系统传来的数据,智能控制算法可以根据设定的控制策略,自动调节家居环境。

例如,根据温湿度传感器测量到的室内温度和湿度,智能控制算法可以自动调节空调和加湿器的工作状态,保持舒适的室内环境。

2.联动控制环境控制系统可以与其他智能设备进行联动控制,实现更加智能化的控制效果。

例如,当光照度传感器检测到室内光照过强时,可以联动控制窗帘自动关闭;当气体传感器检测到室内空气中有害气体浓度超标时,可以联动打开空气净化器等。

室内环境质量监测与控制系统设计与实现

室内环境质量监测与控制系统设计与实现随着现代社会的快速发展,人们生活的大部分时间都是在室内度过的。

因此,人们对室内环境的品质和舒适度的需求也越来越高。

室内环境质量监测与控制系统的设计与实现,变得尤为重要。

本文将从传感器选择、系统结构设计和实施控制策略三个方面,探讨室内环境质量监测与控制系统的设计与实现。

首先,对于室内环境质量监测与控制系统的设计与实现来说,传感器的选择是非常关键的。

通过合适的传感器可以检测室内的温度、湿度、光照强度、空气质量等关键参数,从而对室内环境进行准确评估和监测。

常用的室内环境传感器包括温湿度传感器、光照传感器、二氧化碳传感器等。

在选择传感器时,需要考虑传感器的精度、响应时间、可靠性和成本等因素。

此外,根据监测需求,还可以选择多个传感器进行组合,以获取更全面、准确的室内环境数据。

其次,室内环境质量监测与控制系统的设计要考虑系统结构和功能。

首先,需要确定整个系统的架构,包括传感器的布置位置、通信方式、数据处理和存储等。

传感器的布置位置应该能够覆盖整个室内空间,并尽量避免遮挡物的影响。

在数据处理方面,可以利用现代信息技术,如云计算和物联网技术,将传感器数据传输到数据处理中心进行分析和存储。

数据处理中心可以利用机器学习算法,对室内环境数据进行实时分析和预测,以识别潜在的问题并采取相应的控制措施。

另外,室内环境质量监测与控制系统还应该具备一些基本功能,如实时监测、报警和远程控制。

实时监测功能可以通过监测系统定期获取数据,并及时反馈给用户。

报警功能可以根据设定的阈值条件,当监测到室内环境达到或超过设定的阈值时,发出警报,提醒用户注意环境质量问题。

远程控制功能可以让用户通过移动设备或电脑远程控制室内环境设备,例如调节温度、湿度和光照等,以提高居住舒适度。

最后,室内环境质量监测与控制系统的实现需要考虑控制策略的制定和实施。

根据室内环境质量数据分析的结果,可以制定相应的控制策略。

例如,当温度过高时,可以通过调整空调的工作模式来降低温度;当湿度过高时,可以启动除湿机进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本课题主要完成以51单片机为控制核心的家用电器远程控制与室内环境监测系统的设计,主要功能包括检测室内温度,湿度,天然气浓度等环境信息交给单片机并将信息通过互联网发送给远程的服务器。

同时用户还可以通过手机上的浏览器查看室内的环境信息并可以操作控制空调、加湿器、电饭煲等家用电器。

主要设计内容包括温度,湿度等传感器电路的设计;空调,电饭煲等电器控制电路的设计;Wi-Fi接口电路设计;服务器端web后台程序的设计。

关键词:远程控制,单片机,环境监测AbstractThis topic mainly complete 51 single chip microcomputer as control core of household appliances remote control and monitoring system of the indoor environment design, the main functions include testing indoor temperature, humidity, gas concentration, such as environmental information to the microcontroller and the information sent to the remote server via the Internet.At the same time users can also through the mobile phone browser view of indoor environmental information and can control air conditioning operation, humidifier, electric cooker etc. Household appliances.Main design content including temperature, humidity sensor circuit design;Air conditioners, rice cookers and other electrical control circuit design;Wi-Fi interface circuit design;The design of the web server daemon.Key word:Remote control, single-chip microcomputer, the environmental monitoring第1章引言1.1背景意义21世纪是一个信息化的时代,各种电信新技术(通信技术、计算机技术、控制技术、传感器技术)的迅猛发展与提高,促进家庭实现生活现代化,居住环境舒适化、安全化。

这些高科技已经影响到人们生活的方方面面,在改变人们的生活习惯的同时,大大提高了人们的生活质量,家居智能化正是在这种形势下应运而生的。

智能家居控制系统的功能主要包括通信、设备自动控制、安全监控三个方面。

智能家居控制系统可以定义为一个过程或者一个系统。

与普通家居相比,智能家居不仅具有传统的居住功能,提供舒适安全、高品位且宜人的家庭生活空间。

还将原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家庭与外部保持信息交换畅通,优化人们的生活方式,帮助人们有效安排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。

智能家居控制系统可以提供家电控制、照明控制、室内外环境监控、窗帘自控、防盗报警等各种功能。

随着新技术和自动化的发展,传感器的使用数量越来越大,功能也越来越强,各种传感器都已经标准化、模块化,这给智能家居控制系统的设计提供极大方便。

1.2研究内容本课题主要完成以51单片机为控制核心的智能家居系统的设计,主要功能包括检测室内温度,湿度,天然气浓度等环境信息交给单片机并将信息通过互联网发送给用户的手机。

同时用户还可以通过手机操作控制空调、加湿器、电饭煲等家用电器。

主要设计内容如下:(1)温度,湿度等传感器电路的设计(2)空调,电饭煲等电器控制电路的设计。

(4)Wi-Fi接口电路设计(5)手机端APP的设计第2章总体设计2.1 整体介绍系统的总体设计方案如下:通过单片机对温度、湿度、天然气浓度等环境信息进行采集处理并通过Wi-Fi模块传送到远程的web服务器,手机端通过浏览器向服务器读取数据获取环境信息。

对应电器的控制则是通过手机端通过浏览器发送控制指令到服务器,然后再经由服务器向已经连接到互联网的单片机传输指令从而使得单片机控制相应的继电器进行对电器的控制。

2.2系统设计方案根据设计要求,系统提供了包括了核心控制模块,Wi-Fi模块,传感器数据采集模块,继电器控制模块,服务器数据网站等等。

系统的整体框图如图1所示。

图1系统整体框图第3章硬件设计3.1 最小系统模块本设计选用STC89C52单片机作为环境信息采集以及电器控制的主控芯片,其最小系统如图2所示。

图2单片机最小系统STC89C52芯片共40引脚,1~8脚是通用I/O接口(p1.0~p1.7),9脚rst 复位键,10、11脚RXD串口输入、TXD串口输出,12~19脚:p3接口 (12,13脚 INT0中断0、INT1中断1,14,15:计数脉冲T0 T1 16,17:WR写控制RD读控制输出端) ,18,19脚:晶振谐振器,20脚接地线,21~28 p2接口高8位地址总线29: psen 片外rom选通端,单片机对片外rom操作时 29脚(psen)输出低电平30:ALE/PROG 地址锁存器31:EA rom取指令控制器,电源+5V。

3.2湿度传感器模块湿度采集选用了TH100HUM湿度传感器,其特点如下:(1)在与微处理器连接时仅需要一条口线即可实现微处理器与TH100HUM 的双向通讯。

(2)测湿范围 0%~100%,固有测湿分辨率0.5%。

(3)支持多点组网功能,多个TH100HUM可以并联在唯一的三线上,最多只能并联8个,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定,实现多点测温。

(4)工作电源: 3~5V/DC。

(5)在使用中不需要任何外围元件。

(6)测量结果以9~12位数字量方式串行传送。

图3TH100HUM湿度传感器图4 湿度传感器接口电路3.3温度传感器模块温度采集选用了DS18B20温度传感器,其特点如下:(1)在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)测温范围-55℃~+125℃,固有测温分辨率0.5℃。

(3)支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定,实现多点测温。

(4)工作电源: 3~5V/DC。

(5)在使用中不需要任何外围元件。

(6)测量结果以9~12位数字量方式串行传送。

图5 DS18B20温度传感器图6 DS18B20接口电路3.4 天然气检测模块MQ-4气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(SnO2)。

当传感器所处环境中存在可燃气体时,传感器的电导率随空气中可燃气体浓度的增加而增大。

使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。

MQ-4气体传感器对甲烷的灵敏度高,对丙烷、丁烷也有较好的灵敏度。

这种传感器可检测多种可燃性气体,特别是天然气,是一款适合多种应用的低成本传感器。

特点(1)在较宽的浓度范围内对可燃气体有良好的灵敏度(2)对甲烷的灵敏度较高(3)长寿命、低成本(4)简单的驱动电路即可图7 MQ-4天然气检测模块图8 MQ-4接口电路3.5 继电器模块继电器作为一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。

故在电路中起着自动调节、安全保护、转换电路等作用。

本次设计中选用了3个继电器来控制3个对应的电器。

本设计选用8脚的欧姆龙继电器来对电器进行控制,继电器如下图所示。

图9 欧姆龙继电器图10 电器控制接口电路3.6Wi-Fi模块因为RS-232串口通信的距离就只有15M,远远不能满足智能家居的布线、组网要求,考虑到成本与技术问题,本设计中选用了串口转Wi-Fi模块ESP8266,将单片机中的数据通过网络发送到服务器进行处理。

该模块具体的特性如下:(1)802.11 b/g/n(2)Wi-Fi Direct (P2P)、 soft-AP(3)内置TCP/IP协议栈(4)内置TR开关、 balun、 LNA、功率放⼤器和匹配⺴络(5)内置PLL、稳压器和电源管理组件(6)802.11b模式下+19.5dBm的输出功率(7)⽀持天线分集(8)断电泄露电流⼩于10uA(9)内置低功率32位CPU:可以兼作应⽤处理器(10)SDIO 2.0、 SPI、 UART(11)STBC、 1x1 MIMO、 2x1 MIMO(12)A-MPDU 、 A-MSDU的聚合和 0.4μs的保护间隔(13)2ms之内唤醒、连接并传递数据包(14)待机状态消耗功率⼩于1.0mW (DTIM3)图11ESP8266模块图12 Wi-Fi模块接口电路第4章软件系统设计4.1单片机程序设计单片机端程序主要负责对传感器数据的采集以及对控制信息的处理,并完成向Wi-Fi模块发送数据实现网络连接的任务。

其程序流程图如下:图13 单片机程序流程图6数据中心网站设计6.1网站总体构架数据中心网站包括web服务器的搭建与配置,http接口程序设计以及web 页面的开发设计。

根据设计的需要,该网站主要包括欢迎界面,用户登录及注册页面,系统功能界面等部分组成。

网站的总体框架图如下:图14网站总体框架6.2 WEB服务器和数据库本设计的web服务器选用Apache服务器,并配合MySQL数据库进行开发设计。

Apache是一款很受欢迎的web服务器,它在国内外很多web开发上得到了应用。

其运行平台非常全面,现在几乎所有的常用计算机系统都可以使用,这一点使得其广为流行。

它具有简单可靠的特性,并且内部包含有PHP等网站设计语言的解释器,方便开发设计,API接口简单易用。

MySQL作为一种关系型数据库管理系统,在 WEB应用方面是最好的应用软件之一。

这种数据库并非直接将所有的数据都直接的放到数据库里边,而是将所要存储的不同的数据保存在不同的数据表里面,这就使得存取速度大大提高,且方便快捷。

在对这种数据库进行增删读写等操作的时候,均可以使用SQL语句,它是一种用来访问数据库的标准化语言。

相关文档
最新文档