矩阵论(方保镕第五版)习题解答2.3
矩阵论简明教程习题答案

1 p1 = 4 , 0
1 p 2 = 0 4
=-1 所对应的方程组 (I+A)x=0 有解向量 1 p 3 = 0 0
令
7.
3 0 1 1 1 0 1 1 P=(p 1 , p 2, p 3 )= 4 0 0 , 则 P = 4 1 4 . 于是有 12 0 4 1 16 4 4 2100 4 2100 2100 1 2100 1 1 2100 0 3 2100 0 A 100 =P P 1 = . 3 100 100 100 1 2 1 4 2 1 4 4 2 2 (1) I A = ( 1) =D 3 ( ), I-A 有 2 阶子式
1 3 2 3 2 T ) . 3
2 1 2 2 1 2 4 ~ 0 0 0 2 4 2 4 4 0 0 0
当 =1 时, 对应的齐次线性方程组 (I-A)x=0 的系数矩阵
由此求出特征向量 p 2 =(-2, 1, 0) T , p 3 =(2, 0, 1) T . 单位化后得
是
d1 1, d 2 1,
d 3 ( 1)( 2)
1 A~J= 1 2
因为 A 可对角化,可分别求出特征值-1,2 所对应的三个线性无关 的特征向量: 当 =-1 时,解方程组 ( I A) x 0, 求得两个线性无关的特征向量
矩阵论习题课答案

习题课答案 一1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。
(a) 1||n A λ- (b) 1||A λ- (c) ||A λ (d) ||n A λ2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立.()a A 的所有顺序主子式为非负数 ()b A 的所有特征值为非负数()c A 的所有顺序主子式大于零()d A 的所有特征值互不相同3).设矩阵11111A ααββ⎛⎫⎪= ⎪ ⎪⎝⎭与000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似,则,αβ的值分别为( a )。
(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1二 填空题4)若四阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则1B E --= 24 。
5)设532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则100A =10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231⎛⎫+---- ⎪+---⋅-⎪ ⎪--⋅-⎝⎭三 计算题3.求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■4.设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得T Q BQ A =依题意有011003121003111003A -⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1T X =-,()21,1,0TX =-.特征向量为1122l X l X +.⑵23λ=,解特征方程(3)0E A X -=得()31,1,1TX =.特征向量为33l X . 以上123,,l l l R∈.把向量12,X X 正交并单位化得1(η=,2η⎛⎫= ⎝.把向量3X单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ ⎪ ⎪== ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 5解:A 的行列式因子为33()(2)D λλ=+, 21()()1D D λλ==.所以,不变因子为33()(2)d λλ=+, 21()()1d d λλ==,初等因子为3(2)λ+,因而A 的Jordan 标准形为21212J -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦8.设A 是n 阶特征值为零的若当块。
研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ??-??-+-??; (2)22220000000(1)00000λλλλλλ-?-??-??; (3)2222232321234353234421λλλλλλλλλλλλλλ??+--+-??+--+-+---??;(4)23014360220620101003312200λλλλλλλλλλλλλλ++?? -----??. 解:(1)对矩阵作初等变换23221311(1)10010000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-→-→?-++,则该矩阵为Smith 标准型为+)1(1λλλ;(2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ??--??-??;(3)对矩阵作初等变换故该矩阵的Smith 标准型为+--)1()1(112λλλ; (4)对矩阵作初等变换在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ-??-??. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ-----??;(2)1001000λαββλαλαββλα+-+?+??-+??;(3)100100015432λλλλ--?-??+??;(4)0012012012002000λλλλ+++??+??. 解:(1)该λ-矩阵的右上角的2阶子式为1,故而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ??++??--+--+??;(2)322322 2212122122λλλλλλλλλλ??-+--+??-+--??. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687------??;(2)452221111-----??;(3)3732524103---??--??;(4)111333222-----??;(5)***********????-????--??;(6)1234012300120001??. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ??-→??-+??,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-;(2)设该矩阵为A ,则310001000(1)E A λλ-→??-??,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ?? -→??-+??,故A 的初等因子为从而A 的Jordan 标准形为1000000i i -?? ; (4)设该矩阵为A ,则21000000E A λλλ??-→??,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000; (5)设该矩阵为A ,则210001000(1)E A λλλ??-→??+??,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001--??; (6)设该矩阵为A ,则1234012300120001E A λλλλλ-------??-=??--??-?? ,该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001. 5.设矩阵142034043A ??=--??,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη==-,100050005?? Λ=??,则1A P P -=Λ.,故4455144441453510354504535A P P -??-?=Λ=-. 6.设矩阵211212112A --=--??-??,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1 P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ--=-+→- ---,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ??=??.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x --= ?--??解之,得12100,111X X== ? ? ? ?-.其通解为1122k X k X +=1212k k k k ?? ?-??,其中21,k k 为任意常数.考虑方程组11212121211111122200021110002k k k k k k k k k -- -→-+----,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ??= ? ???.则相似变换矩阵123100[,,]010111P X X X ??==??-??.7.设矩阵102011010A ??=-??,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --??-+=--??.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++L ,则12121n n n n n A a A a A a A a I O ---+++++=L ,即123121()n n n n n A A a A a A a I a I ----++++=-L ,因为A 可逆,故(1)0nn a A =-≠,则9.设矩阵2113A -??=,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I -----++-=-==-.10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2n A 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-;(2)422575674-??----??;(3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a --?=??--??--??. 解:(1) 设311020111A -=??,则231110002002011100(2)I A λλλλλλ---=-→-----,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -=----??,则2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。
矩阵论课后题答案(研究生用书)改

⎞ ⎠
⎠
A
P
⎞ ⎠
⎠ ⎞
P
⎠
− 1
A
⎠
A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E
⎞
A
A A E
A
⎠
f A
A
A
A
A
A
E
A
E
E
A A
⎠
⎞
A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E
⎠
⎞
⎞ ⎠
f A E
E
⎞
A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F
矩阵论习题答案

矩阵论习题答案矩阵论习题答案在数学领域中,矩阵理论是一门重要的分支,它在各个学科领域都有广泛的应用。
矩阵论习题是学习矩阵理论的重要环节,通过解答这些习题,我们可以更好地理解和运用矩阵的性质和操作。
本文将为大家提供一些常见矩阵论习题的答案,希望能够对大家的学习有所帮助。
1. 习题:计算矩阵的转置。
答案:对于一个m×n的矩阵A,其转置矩阵记为A^T,其行和列互换。
即,如果A的第i行第j列元素为a_ij,则A^T的第i列第j行元素为a_ij。
可以通过编写程序或手动计算来得到转置矩阵。
2. 习题:计算矩阵的逆矩阵。
答案:对于一个可逆矩阵A,其逆矩阵记为A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。
可以通过高斯消元法或伴随矩阵法来计算逆矩阵。
3. 习题:计算矩阵的秩。
答案:矩阵的秩是指矩阵中线性无关的行(或列)的最大个数。
可以通过高斯消元法或矩阵的行(或列)简化形式来计算矩阵的秩。
4. 习题:计算矩阵的特征值和特征向量。
答案:对于一个n×n的矩阵A,其特征值和特征向量满足方程A·v = λ·v,其中λ为特征值,v为特征向量。
可以通过求解特征方程det(A - λ·I) = 0来计算特征值,然后将特征值代入方程(A - λ·I)·v = 0来计算特征向量。
5. 习题:计算矩阵的奇异值分解。
答案:对于一个m×n的矩阵A,其奇异值分解为A = U·Σ·V^T,其中U为m×m的正交矩阵,Σ为m×n的对角矩阵,V为n×n的正交矩阵。
可以通过奇异值分解算法来计算矩阵的奇异值分解。
6. 习题:计算矩阵的广义逆矩阵。
答案:对于一个m×n的矩阵A,其广义逆矩阵记为A^+,满足A·A^+·A = A,A^+·A·A^+ = A^+,(A·A^+)^T = A·A^+,(A^+·A)^T = A^+·A。
矩阵论(方保镕、周继东、李医民)习题1-3章

6. 解:(1)设 A 的实系数多项式 f A的全体为
f A a0 I a1 A am Am ai R, m正整数
1
显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间.
(ai bi ) ai bi 2
i1
i1
i1
于是可知 L,因此 L 不是 V 的子空间.
18.
解:
Span(
' 1
,
' 2
,
' 3
)
的基为
1'
,
' 2
,
' 3
的一个最大无关组,
' 1
,
' 2
,
' 3
在基1
,
2
,
3
下的坐标依次为
(1, -2, 3) T , (2 , 3 , 2) T , (4, 13, 0 ) T
故 C =(1 , 2 , 3 , 4 ) 1 ( 1 , 2 , 3 , 4 )
1 0 0 0 1 2 0 5 6
= 0100
0010
1 336 1 1 2 1
0001
1 013
2 056 1 336
= 1 1 2 1 .
1 013
⑵ 显然,向量α在基1 , 2 , 3 , 4 下的坐标为 X =(1 ,2 ,3,4 ) T ,
7
(2)取
A
1 0
0 0
,B
矩阵论(方保镕版 清华大学)课后自测题五答案

自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x .令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V =因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见 4)dim (21=+V V .由维数定理145)dim(dim dim )dim(212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a . (2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-Xλλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x -,)(3x x x -=221)(x x +=,33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,101001011010011C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1)⎰⎰⎪⎪⎭⎫⎝⎛=-10101dt dtde A dt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A 21.五、解: (1),9,1,3,3121====∞m T XX XX X3,4,3===∞∞XX XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解: (1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A , 令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2) ⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11T T B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==--+1221311251211301111001)(11T T CC C C ,所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A . (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.。
研究生 矩阵论 课后答案

|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 必要性.若
( i ), j )= a ji , (
( j ), i )= aij ( i ), j )=-( i , ( j )),
是反对称变换,即(
则 a ji aij ,也就是 AT A . 充分性.设 AT A ,对任 , V n ,有
1 ,其中 1 15. 证 : 存 在 正 交 阵 Q , 使 Q AQ n
m 1 i 0(i 1,, n) .取 m i 0, 令B Q 1 Q ,则虽然 m n
B 是正定
8. 证:设 V n 的标准正交基为 1 ,, n ,又
在该基下的矩阵为
A,则 A H A ,从而 A 是正规矩阵,故存在酉矩阵 P,使 P H AP A(对
角阵).再构造 V n 的另一组基 e1 ,, en ,使满足
(e1 , e2 ,, en ) ( 1 , 2 ,, n ) P
1
x1 ( 1 ,, n ) , xn y1 ( 1 ,, n ) , yn
x1 ( ) ( 1 ,, n ) A xn y1 ( ) ( 1 ,, n ) A yn
的特征向量,u m 为相应的特征值, 因此 B 的 n 个线性无关的向量都是
A 的线性无关的向量. 从而,B 与 A 的特征向量完全一致.同理,C 与 A 的特征向量也完全一致,从而 C 与 B 的特征向量完全一致.并且,
设 C , 则有 v m C m A B m u m ,但 , 所以v m u m ,但 所以 v u .这样, B 与 C 有完全一致的特征向量和相 v与u 都是正实数, 应的特征值,因此 B 与 C 可用同样的矩阵 P,使 P 1 BP与P 1CP 是同样 的对角矩阵,即
所以 B 半正定;而当 A 的列向量组线性无关时,当 X 0, 则Y 0 ,此 时, X T BX Y T Y 0 ,即 B 正定.
13. 证: (1)必要性.设 A 半正定,则对任正数 m, mI A 是正定 的,因此 mI A 的主子式全大于零.如果 A 有一个 K 阶主子式 M 0 , 那么在 mI A 中取相应的主子式 N,则有
M T (M T ) 1 BM 1 M T PT IPM ( PM )T I ( PM ), 即 B ( PM )T I ( PM ),
这里 ( PM ) 为非奇异矩阵,所以 M T AM 是正定的. 又由 A P T IP ,P 非奇异,可知
A1 ( PT IP) 1 P 1 I ( PT ) 1 P 1 I ( P 1 )T
,即 为 0 或为纯虚数.
7. 证:设 AX X ,则 A2 X 2 X ,因为 A 2 A ,且 X ,所以
2 0 ,即 0 或 1 .再由 A 为实对称知,存在正交矩阵 Q ,使
Q 1 AQ diag1,,1,0,,0 .
m 1 B Q 1 Q ,则有 m n
1 Q 1 A . m B Q n
当 A 为半正定时, 由于 i 0(i 1,2,, n) , 故 m 为正整数时, 可取 m i 为算术根,于是由上知,对任正整数 m,均有实方阵 B,使 B m A .
的,且有 B m QQ 1 A .下面再证惟一性. 又设 A B m C m , B 与 C 都是实正定的, A 与 B 都相似于对角矩阵, 因此它们都有 n 个线性无关的特征向量.任取 B 的一个特征向量 X 和
6
Z 相应的特征值 u ,即 B u , , 则A B m u m ,亦即 也是 A
5
即0 m
X T AX XTX
,就有 X T (mI A) X P ,这与 mI A 的正定性矛盾,
所以 A 必须是半正定的. (2)因为 A 是负定的,即对非零列向量 X,有 X T AX 0 ,所以必 要且只要 X T ( A) X 0 ,即-A 是正定矩阵,记 A 的 K 阶主子式为 A ( k ) , 则相应的-A 的 K 阶主子式 (1) k A ( k ) ,由 (1) k A ( k ) 0 知当 k 为偶数时,
P 1 BP P 1CP
从而 B=C,惟一性得证.
16. 证:因为 A 非奇异,所以 AAT 是正定的,则由上题可知,存 在正定矩阵 B1 ,使 AAT B12 , 令 B11 A Q1 , AB11 Q2 ,则有 A B1Q1 ,
A Q2 B1 ,且 Q1Q1T ( B11 A)(B11 A)T B11 AAT ( B11 )T B11 B12 B11 I ,所以 Q 1
N m k C1m k 1 C k 1m M
因 M 0 ,故可找到 m 0 ,使 N 0 ,这与 mI A 是正定的相矛盾, 所以 A 的主子式必须全大于等于零. 充分性.设 A 的主子式全大于等于零, 那么对任意的正数 m, mI A 一定是正定的,这是因为 mI A 的主子式可表成
1 ,且 0 , P AP i n
1
故有
A I P 1 A I P P 1 ( A I ) P
3
1 1 1 = det n 1
习题 2.3
1. 证:因为 A H A, B H B ,又
( AB) H AB B H AH AB
即 BA=AB .
2. 证:设 A 为任一复方阵,令
A BC
①
其中 B 为 Hermite 矩阵,C 为反 Hermite 矩阵,于是,可得
AH B H C H B C
且显见等号成立的充要条件为 i 0(i 1,2,, n) ,即 A 0 . ( 2 )由线性代数知,存在非奇异矩阵 M ,对角矩阵 D ,使
B M T M M T IM , A M T DM 同时成立.再由第(1)小题知
A B MT I D M MT M MTM B
A ( k ) 0 ;当 k 为奇数时, A ( k ) 0 .
1 , 14. 证:因为 A 实对称, 故有正交阵 Q, 使 Q AQ n
1
从 而 A QQ 1 . 由 于 m 为 奇 数 , 特 征 值 i 均 为 实 数 , 故 令
当 A B B 时的充要条件为
I D 1 D 0 A 0
.
10. 证:设 A,B 是二个 n 阶实对称矩阵,且两者相似.当 A 为 正定矩阵时,A 的特征值全为正实数,但相似矩阵有相同的特征值, 故 B 的特征值也全为正实数,从而 B 为正定矩阵.
11. 证: (1)因为 A,B 正定,所以对任非零 n 维向量 X,有
mI k M m k C1 m k 1 C k 1 m M
其中 M 是 A 的一个主子式, 因而 Ci (i 1,2,, k 1) 是 M 的 i 阶主子式 之和,也就是 A 的一些 i 阶主子式之和,所以 Ci 0(i 1,2,, k 1) ,以 及 mI k M 0 . 如果 A 不是半正定的,那么有一个非零实向量 X,使 X T AX 0 ,
P 和 P T 都是满秩的,于是 rank PT AP rankA,即 rankB rankA
.
2
6. 证 : 因 为 AX X , X T AT X T , X T A X T ,
X T AX X T X , X T X X T X ,由于 X ,所以 X T X 0 ,故
由①与②联立得 B
A AH A AH . ,C 2 2
3. 证:设 V n 的标准正交基为 1 , 2 ,, n ,
A (aij ) nxn ,则有
在该基下的矩阵为
( i ) a1i 1 a2i 2 ani n ,
( j ) a1 j 1 a2 j 2 anj n ,
是正交阵.同样可证 Q 2 为正交阵. 下 证 惟 一 性 . 设 A B1Q1 C1 P1 , C1 为 正 定 阵 , P1 为 正 交 阵 , 则
2 2 T ( B1Q1 )(B1Q1 )T (C1 P 1 )(C1 P 1 ) ,即有 B1 C1 ,由上题知 B1 C1 , 从而又得
4
令 C (P 1 )T ,则 C T P 1 ,C 亦为非奇异矩阵,所以
A1 C T IC
即 A 1 可分解成 C T C ,由充要条件知 A 1 正定.
12. 证:
B 实对称显然.对任 n 元列向量 X 均有
X T BX X T AT AX ( AX )T ( AX ), 令AX Y ,则有 X T BX Y T Y 0
由于在标准正交基下, 两向量的内积就等于它们的坐标向量的内 积,故有 ( 即
y1 y1 ( ),β) ( x1 ,, xn ) AT ( x1 ,, xn ) A ( , yn yn
(β))
则有
(e1 , e2 ,, en )
(e1 , e2 ,, en )
( 1 , 2 ,, n ) P
( 1 , 2 ,, n ) AP (e1 , e2 ,, en ) P 1 AP
即
在基 e1 , e2 ,, en 下的矩阵为对角阵 .
9. 证 : (1)因为 A 半正定,所以存在正交矩阵 P,使