2020年四川省成都市新都区中考数学一诊试卷(含解析)
2020年成都市六区县中考数学一诊试卷 (含答案解析)

2020年成都市六区县中考数学一诊试卷一、选择题(本大题共10小题,共30.0分)1.数轴上,到−3对应点距离为5个单位长度的数是()A. −8或1B. 8C. −8或2D. 22.下图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.3.十三届全国人大一次会议3月5日上午9时在人民大会堂开幕,听取国务院总理李克强关于政府工作的报告.报告中指出:加大精准脱贫力度,今年再减少农村贫困人口1000万以上,完成易地扶贫搬迁2800000人.其中2800000用科学记数法表示为()A. 2.8×106B. 2.8×105C. 28×105D. 0.28×1074.下列运算正确的是()A. a+a2=a3B. (a2)3=a6C. (x−y)2=x2−y2D. a2a3=a65.已知直线m//n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A. 20°B. 30°C. 45°D. 50°6.已知反比例函数y=2k−3的图象经过(1,1),则k的值为()xA. −1B. 0C. 1D. 27.解分式方程xx−1−1=3(x−1)(x+2),去分母,得:x(x+2)−(x−1)(x+2)=3,解得,x=1.则下列结论:①x=1是原分式方程的解;②x=1不是原分式方程的解;③x=1是方程x(x+2)−(x−1)(x+2)=3的解;④原分式方程无解.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个8.有一组数据:1,2,3,6,这组数据的方差是()A. 2.5B. 3C. 3.5D. 49.如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于点D,交AC于点E,已知⊙O的半径为1,则AE2+CE2的值为()A. 1B. 2C. 3D. 410.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(−1,3),抛物线与x轴的一个交点为B(−3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a−b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当−3<x<−1时,有y2<y1.其中正确结论的个数是()A. 5B. 4C. 3D. 2二、填空题(本大题共9小题,共36.0分)11.代数式√x−4中x的取值范围是______.12.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是_________.13.点A(x1,y1),B(x2,y2)是反比例函数y=1x的图象上两点,若0<x1<x2,则y1、y2的大小关系是______ .14.如图,已知在△ABC中,AB=AC=5,BC=8,点D是边BC的中点,E是线段BA上一点(与点B.A不重合),直线DE交CA的延长线于F点,当FE=FA时,则tan∠AEF=______.15.比较大小:−√5−12______ −12(填“>”或“<”).16.一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为______ 分.班级人数平均分(1)班5285(2)班488017.若m,n是方程x2+2015x−1=0的两个实数根,则m2n+mn2−mn的值等于______ .18.如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(−4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=kx(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为.19.若点A(m,n)在一次函数y=3x+b的图像上,且3m−n>2,则b的取值范围为_________.三、解答题(本大题共9小题,共84.0分)20.(1)计算:√8−2−1+(1−√3)0−4cos45°.(2).解不等式组:{3−2×(x−1)>0x+32−1≤x,并写出符合不等式组的整数解.21.先化简,再求值:xx2−2x+1÷(x+1x2−1+1),其中x=√3+1.22.学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).训练后学生成绩统计表成绩/分6分7分8分9分10分人数/人1385n根据以上信息回答下列问题:(1)训练后学生成绩统计表中n=________,并补充完成下表:平均分中位数众数训练前7.5________ 8训练后________ 8________(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?(3)经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生.王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.23.某渔船向正东方向航行,上午8点在A处时发现渔船、小岛B和小岛C在同一条直线上,渔船以30海里/小时的速度继续向正东方向航行,上午10点到达位于小岛C的正南方向上的D处,此时小岛B在渔船的西偏北63°的方向上,如图,已知小岛C在小岛B的东偏北45°的方向上,求小岛B和小岛C之间的距离.(结果精确到1海里,参考数据:sin63°≈0.9,cos63°≈0.5,tan63°≈2.0,√2≈1.4)(k≠0)的图象交于点A(−2,a)和24.在平面直角坐标系xOy中,直线y=−x+2与反比例函数y=kx点B.(1)求反比例函数的表达式和点B的坐标;<−x+2的解集.(2)直接写出不等式kx25.如图,C、D为⊙O上两点,AB为直径,E在AB延长线上,且AD平分∠CAB,过D点的直线EF⊥AF,交AC的延长线于点F,连接BD.(1)求证:EF是⊙O的切线;(2)若EB:ED=1:√3,⊙O的半径为r,当r=4时,求FC的长.26.大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?27.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使∠CEF=90°,过点E作MN//AD,交AB于点M,交CD于点N,∠AEM=∠FEM.(2)如图2,若点E是OD上一点,点F是AB上一点,且使DEDO =AFAB=14,请判断△EFC形状,并说明理由(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CF,交AB于点F,当DEDO =mn时,请猜想AFAB的值(请直接写出结论)28.如图,直线AB经过x轴上一点A(3,0),且与抛物线y=ax2+1相交于B、C两点,点B的坐标为(1,2).(1)求抛物线和直线AB的解析式;(2)若点D是抛物线上一点,且D在直线BC下方,若S△BCD=3,求点D的坐标;(3)设抛物线顶点为M,问在抛物线上是否存在点P使△PMC是以MC为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案与解析】1.答案:C解析:此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是熟记数轴上两点之间的距离的求法.数轴上,到−3对应点距离为5个单位长度的数表示的点有可能在−3对应点的左边,也有可能在−3对应点的右边,据此求解即可.解:数轴上,到−3对应点距离为5个单位长度的数是:−3−5=−8或−3+5=2.故选C.2.答案:B解析:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.根据从上面看得到的图形是俯视图,据此可得答案.解:从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选B.3.答案:A解析:解:2800000用科学记数法表示为2.8×106,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:此题主要考查了合并同类项以及完全平方公式和幂的乘方运算、同底数幂的乘法运算等知识,正确应用相关法则是解题关键.直接利用合并同类项法则以及完全平方公式和幂的乘方运算法则、同底数幂的乘法运算法则计算得出答案.解:A、a+a2,无法计算,故此选项错误;B、(a2)3=a6,正确;C、(x−y)2=x2−2xy+y2,故此选项错误;D、a2a3=a5,故此选项错误;故选B.5.答案:D解析:解:∵直线m//n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.答案:D解析:本题考查了反比例函数图象上点的坐标特征:函数图象上的点的坐标满足函数解析式.将点的坐标代入反比例函数解析式即可解答.得,解:将点(1,1)代入y=2k−3x2k−3=1,解得:k=2,故选D.7.答案:C解析:此题考查了分式方程的解法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.根据解分式方程的方法步骤对每个小题作出判断即可得出结论.解:当x=1时,x−1=0,∴x=1不是原分式方程的解,故①错误,②正确;③x=1是方程x(x+2)−(x−1)(x+2)=3的解,故③正确;④当x=1时,x−1=0,∴x=1不是原分式方程的解,原分式方程无解,故正确.其中,正确的结论有②③④共3个.故选C.8.答案:C解析:本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x−,则方差s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.先求平均数,再代入公式s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],计算即可.解:x−=(1+2+3+6)÷4=3,s2=14[(1−3)2+(2−3)2+(3−3)2+(6−3)2]=3.5.故选:C.9.答案:B解析:【试题解析】本题考查的是三角形的外接圆与外心,垂径定理,勾股定理,三角形外角性质,熟练掌握这些知识是解题的关键.连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EBA=∠BAC,由圆周角定理得∠BAC=1 2∠BOC=12×90∘=45∘,得到△BEC是直角三角形,根据勾股定理计算即可.解:连接BE,∵OD⊥AB,∴AD=DB,∴DE垂直平分AB,∴EA=EB,∴∠EBA=∠BAC.∵∠BAC=12∠BOC=12×90∘=45∘,∴∠EBA=45∘.∴∠BEC=∠EBA+∠BAC=45∘+45∘=90∘.∴△BEC是直角三角形,在直角△BEC中,BE2+CE2=BC2,∵BC2=2OC2=2,∴BE2+CE2=2,即AE2+CE2=2.故选B.10.答案:A解析:本题是二次函数综合题,考查了二次函数图象与系数的关系、抛物线的对称性和从函数观点看方程和不等式,解答关键是数形结合.根据抛物线的图象特征和对称性可得①②④;将方程ax2+bx+c=3转化为函数图象求交点问题可得③;通过数形结合可得⑤.解:由抛物线对称轴为直线x=−b2a=−1,b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(−1,3),则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=−1,与x轴的一个交点(−3,0),由对称性得抛物线与x轴的另一个交点为(1,0),则④正确;∵A(−1,3),B(−3,0),直线y2=mx+n与抛物线交于A,B两点∴当−3<x<−1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.11.答案:x≥4解析:解:由题意,得x−4≥0,解得x≥4.故答案为:x≥4.根据被开方数是非负数,可得答案.此题考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.答案:6解析:解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6.故答案为:6.由菱形ABCD中,∠ABC=60°,易证得△ABC是等边三角形,继而求得对角线AC的长.此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABC是等边三角形是关键.13.答案:y1>y2解析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据0<x 1<x 2判断两点是否在函数图象的同一个分支上,再由函数的增减性即可解答.本题比较简单,考查的是反比例函数的性质,解答此题的关键是熟练掌握反比例函数的增减性. 解:∵反比例函数y =1x 中,k =1>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵0<x 1<x 2,∴A 、B 两点均在第三象限, ∵x 1<x 2, ∴y 1>y 2. 故答案为y 1>y 2. 14.答案:247解析:解:作BM ⊥CF 于M ,连接AD .∵AB =AC ,BD =DC ,∴AD ⊥BC ,∴∠ADC =90°,AD =√52−42=3,∵12⋅BC ⋅AD =12⋅AC ⋅BM ,∴BM =245,∴AM =√52−(245)2=75,∵FE =EA ,∴∠FEA =∠FAE ,∴tan∠FEA =tan∠FAE =BM AM =247.故答案为247.作BM ⊥CF 于M ,连接AD.承办方求出BM 、AM 即可解决问题;本题考查解直角三角形、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.15.答案:<解析:解:∵√5−1>1,∴√5−12>12,∴−√5−12<−12; 故答案为:<.先比较出√5−1与1的大小关系,再比较出√5−12与12的大小关系,最后根据两个负数比较大小,绝对值大的反而小,即可得出答案.此题考查了实数的大小比较,解题的关键是根据两个负数比较大小,绝对值大的反而小. 16.答案:82.6解析:此题考查了加权平均数,熟练掌握加权平均数的定义是解本题的关键.根据加权平均数的定义计算即可得到结果.解:根据题意得:5252+48×85+4852+48×80=44.2+38.4=82.6(分),则这两班平均成绩为82.6分,故答案为:82.6 17.答案:2016解析:本题考查了根与系数关系的应用,能熟记根与系数关系的内容是解此题的关键,若x 1、x 2是一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0)的两个根,则x 1+x 2=−b a ,x 1⋅x 2=c a . 根据根与系数的关系得出m +n =−2015,mn =−1,变形后代入求出即可.解:∵m ,n 是方程x 2+2015x −1=0的两个实数根,∴m +n =−2015,mn =−1,∴m 2n +mn 2−mn=mn(m+n)−mn=−1×(−2015)−(−1)=2016,故答案为:2016.18.答案:−3√3解析:本题主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义,熟练掌握反比例函数的几何意义是解题的关键.连接AC,由B的坐标得到等边三角形AOB的边长,得到A的坐标,AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC 为直角,由△ADE与△DCO面积相等,且△AEC面积等于△AED与△ADC面积之和,△AOC面积等于△DCO面积与△ADC面积之和,得到△AEC与△AOC面积相等,进而确定出AE的长,可得出E为AB 中点,E的坐标,将E的坐标代入反比例解析式中求出k的值,即可确定出反比例函数解析式.解:连接AC,∵点B的坐标为(4,0),△AOB为等边三角形,∴AO=OC=4,点A的坐标为(2,−2√3),∴∠OCA=∠OAC,∵∠AOB=60°,∴∠ACO=30°,∠B=60°,∴∠BAC=90°,由A(2,−2√3),C(−4,0),易得到AC=4√3,×AE×∵S△ADE=S△DCO,S△AEC=S△ADE+S△ADC,S△AOC=S△DCO+S△ADC,∴S△AEC=S△AOC=12×CO×2√3,AC=12即 12⋅AE ⋅4√3=12×4×2√3,∴AE =2,∴E 点为AB 的中点,E(3,−√3),把E 点(3,−√3)代入y =k x 中得:k =−3√3.故答案为−3√3. 19.答案:b <−2解析:【试题解析】本题考查了一次函数图象上点的坐标特征.由点A 的坐标结合一次函数图象上点的坐标特征,可得出3m +b =n ,再由3m −n >2,得出b <−2,即可求解.解:∵点A(m,n)在一次函数y =3x +b 的图象上,∴3m +b =n ,∴3m −n =−b ,∵3m −n >2,∴−b >2,即b <−2.故答案为b <−2.20.答案:解:(1)原式=2√2−12+1−4×√22, =2√2+12−2√2,=12.(2){3−2(x −1)>0①x +3−1≤x②解不等式①可得:x<52,解不等式②可得:x≥1,则该不等式组的解集为1≤x<52,该不等式组的整数解为1,2.解析:本题考查的是负指数幂,零指数幂,特殊三角函数值,一元一次不等式组的特殊解有关知识.(1)首先对该式进行变形,然后再进行计算即可解答案;(2)首先解出该不等式组的解集,然后再求整数解即可.21.答案:解:xx2−2x+1÷(x+1x2−1+1)=x(x−1)2÷x+1+x2−1x2−1=x(x−1)2⋅(x+1)(x−1)x(x+1)=1x−1,当x=√3+1时,原式=√3+1−1=√33.解析:根据分式的加法和除法可以化简题目中的式子,然后将x的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.答案:解:(1)n=3.补充如下:(2)500×(5+320×100%−2+120×100%)=125(人);(3)由题意,可列表如下:男1男2男3女1女2男1(男1,男2)(男1,男3)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,女1)(男3,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,女1)∴共有20种情况,所抽取的两位同学恰好是一男一女的情况有12种,∴P(所抽取的两位同学恰好是一男一女)=1220=35.解析:此题考查了列表法或树状图法求概率以及条形统计图的知识,也考查了平方数,中位数,众数等,用到的知识点为:概率=所求情况数与总情况数之比.(1)通过观察条形图,训练学生总人数为:4+6+7+2+1=20(人),∴n=20−(1+3+8+5)=3(人).训练后的平均分为6+3×7+8×8+9×5+10×320=8.3,训练前的中位数为(8+8)/2=7.5,训练后的众数为8,故答案为3;8.3;7.5;8;(2)(3)见答案.23.答案:解:由题意得,AD=30×2=60海里,过B作BE⊥CD于E,∵∠CBE=45°,∴∠C=45°,∵∠AD=90°,∴∠A=∠C=45°,∴CD=AD=60,∵BE ⊥CD ,AD ⊥CD ,∴BE//AD ,∴∠DBE =∠ADB =63°,∴DE =BE ⋅tan63°=2BE ,∴BE +2BE =CD =60,∴BE =20,∴BC =√2BE =60√2≈84海里,答:小岛B 和小岛C 之间的距离约为84海里.解析:根据题意求得AD =30×2=60海里,过B 作BE ⊥CD 于E ,得到CD =AD =60,根据平行线的性质得到∠DBE =∠ADB =63°,根据三角函数的定义得到DE =BE ⋅tan63°=2BE ,于是得到结论.本题考查的是解直角三角形的应用−方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.24.答案:解:(1)把A(−2,a)代入y =−x +2中,得:2+2=a ,即a =4把A(−2,4)代入y =k x 中,得k =−8,即y =−8x ,联立方程组{y =−x +2y =−8x , 解得:{x =−2y =4或{x =4y =−2, 则B(4,−2);(2)如图:k x <−x +2的解集x <−2或0<x <4.解析:此题主要考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式;熟练掌握待定系数法求直线解析式是解决问题的关键.(1)由点A在直线y=−x+2上,即可求出a的值,从而可得点A的坐标,根据点A在反比例函数y=kx 的图象上,即可求出反比例函数的解析式,然后将一次函数与反比例函数联立方程组,解方程组即可求出点B的坐标;(2)根据一次函数y=−x+2与反比例函数y=−8的交点坐标即可得不等式的解集.x25.答案:(1)证明:如图,连接OD,则OD=OA,∴∠,2=∠3,∵AD平分∠CAB,∴∠1=∠2,∴∠1=∠3,∴OD//AF,又∵EF⊥AF,∴OD⊥EF,∵OD是⊙O的直径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠3+∠ODB=90°,由(1)可知,∠ODB+∠EDB=90°,∴∠EDB=∠3=∠2,∵∠E=∠E,∴△EDB∽△EAD,∴EBED =EDEA,∵EBED =√3,∴EDEA =√3,∴EA=√3ED=√3×√3EB=3EB,∴EB=r=4,在Rt△ODE中,,∴∠E=30°,连接BC,则BC⊥AF,∴BC//EF,∴∠ABC=∠E=30°,在Rt△ACB中,AC=12AB=4,在Rt△AFE中,AF=12AE=6,∴FC=AF−AC=6−4=2.解析:本题考查了圆周角定理,切线的判定和性质,角平分线定义,平行线的判定和性质以及直角三角形的性质等知识,掌握和灵活运用圆周角定理是解题关键.(1)连接OD,只要证明OD⊥EF即可证明EF是⊙O的切线;(2)首先证明△EDB∽△EAD,得到EB=4,然后利用解直角三角形证明∠E=30°,再根据直角三角形的性质即可求出FC的长.26.答案:解:(1)设商品的定价为x元,由题意,得(x−20)[100−2(x−30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元.(2)①y=(x−20)[100−2(x−30)],即y=−2x2+200x−3200;②∵a=−2<0,∴当x=−b2a =−2002×(−2)=50时,y取最大值;又x≤40,且当x<50时y随x的增大而增大,则在x=40时,y取最大值,即y最大值=1600,答:售价为40元/件时,此时利润最大,最大利润为1600元.解析:本题主要考查一元二次方程的应用、二次函数的应用,理解题意找到题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.(1)设商品的定价为x元,根据总利润=单件利润×销售量,列出关于x的一元二次方程求解可得;(2)①根据(1)中相等关系即可得函数解析式;②根据二次函数的性质即可得最大值.27.答案:(1)证明:如图1中,∵在正方形ABCD中,BD是对角线,∴AD=CD,DE=DE,∠ADE=∠CDE=45°,∴△ADE≌△CDE(SAS.)∴∠EAD=∠ECD,又∵MN//AD,∴∠EAD=∠AEM,∴∠AEM=∠ECD,∵MN⊥CD,∴∠ENC=90°,又∵∠CEF=90°,∴∠FEM+∠CEN=∠CEN+∠ECD=90°,∴∠FEM=∠ECD,∴∠AEM=∠FEM.(2)解:结论:△EFC是等腰直角三角形.理由如下:如图2中,过点E作MN//AD,交AB于点M,交CD于点N.∴MN⊥AB,MN⊥CD,∵点O是BD的中点,∴BD=2OD.∵DEDO =14,∴DEDB =18,∴BEBD =78,∵MN//AD,∴△BME∽△BAD,∴BMBA =BEBD=78,∴AMBA =18,∴AB=8AM.∵AFAB =14,∴AB=4AF.∴AF=2AM.∴AM =FM .∴△FEM≌△AEM(S.A.S.),∴EF =EA.∠FEM =∠AEM .仿(1)可证EA =EC ,∠AEM =∠EAD =∠ECD ,∴EF =EC ,∠FEM =∠ECD ,∵∠ECD +∠CEN =90°,∴∠FEM +∠CEN =90°,∴∠FEC =180°−(∠FEM +∠CEN)=180°−90°=90°,∴△EFC 是等腰直角三角形.(3)解:如图3中,当DE DB =m n 时,AF AB =2m n ,理由同(1);解析:(1)由正方形的性质得出∠ABD =45°,∠BAD =∠ABC =∠BCD =∠ADC =90°,AE =CE ,由HL 证明Rt △AME≌Rt △ENC ,得出∠AEM =∠ECN ,再由角的互余关系即可得出结论;(2)结论:△EFC 是等腰直角三角形.理由如下:如图2中,过点E 作MN//AD ,交AB 于点M ,交CD 于点N ,想办法证明EA =EF =EC ,∠CEF =90°即可得出结论;(3)同(1)即可得出答案.本题是综合题目,考查了正方形的性质、全等三角形的判定与性质、平行线分线段成比例定理、等腰直角三角形的判定、线段垂直平分线的性质、等腰三角形的判定与性质等知识;本题综合性强,有一定难度.28.答案:解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b 2=k +b ,解得:{k =−1b =3, 故直线AB 的表达式为:y =−x +3…②,同理将点B 的坐标代入抛物线表达式并解得:抛物线的表达式为:y=x2+1…②;(2)联立①②并解得:x=1或−2,故点C(−2,5),如图1,过点D作y轴的平行线交BC于点H,设点D(x,x2+1),则点H(x,−x+3),则S△BCD=3=12×DH×(x B−x C)=12(−x+3−x2−1)×(1+2),解得:x=0或−1,故点D(−1,2)或(0,1);(3)如图2,点M的坐标为:(0,1),点C(−2,5),则直线CM函数表达式中的k值为:−2,①当∠PCM=90°时,则直线CP的函数表达式为:y=12x+m,将点C的坐标代入上式并解得:m=6,故直线PC的表达式为:y=12x+6…③,联立②③并解得:x=−2或52(舍去−2),故点P的坐标为:(52,294);②当∠CMP(P′)=90°时,同理可得:点P(P′)(12,54 ),综上,点P的坐标为:(52,294)或(12,54).解析:(1)将点A、B的坐标代入一次函数表达,即可求解;(2)则S△BCD=3=12×DH×(x B−x C)即可求解;(3)分∠PCM=90°、∠CMP(P′)=90°两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、直角三角形的性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。
四川省成都市2019-2020学年中考数学一模考试卷含解析

四川省成都市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差2.已知关于x 的不等式ax <b 的解为x >-2,则下列关于x 的不等式中,解为x <2的是( ) A .ax+2<-b+2 B .–ax-1<b-1 C .ax >b D .1x a b<- 3.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF ,在»EF上取动点G ,国点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A .正比例函数y=kx (k 为常数,k≠0,x >0)B .一次函数y=kx+b (k ,b 为常数,kb≠0,x >0)C .反比例函数y=k x(k 为常数,k≠0,x >0) D .二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0,x >0)4.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .5.关于x 的不等式21x a --…的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-6.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×1027.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=45,反比例函数y=48x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.30 B.40 C.60 D.808.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π9.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°10.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.1311.下列标志中,可以看作是轴对称图形的是()A.B.C.D.12.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:a2b−8ab+16b=_____.14.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程(列出方程,不要求解方程).15.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=23,则CE的长为_______Ð的大小16.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则B为________.17.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.18.点A(-2,1)在第_______象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?20.(6分)画出二次函数y=(x﹣1)2的图象.21.(6分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=25.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.22.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P 从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.23.(8分)解方程:3x2﹣2x﹣2=1.24.(10分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?25.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.26.(12分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.27.(12分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.2.B【解析】∵关于x 的不等式ax <b 的解为x >-2,∴a<0,且2b a =-,即2b a =-, ∴(1)解不等式ax+2<-b+2可得:ax<-b ,2b x a >-=,即x>2; (2)解不等式–ax-1<b-1可得:-ax<b ,2b x a <-=,即x<2; (3)解不等式ax>b 可得:2b x a<=-,即x<-2; (4)解不等式1x a b <-可得:12a x b >-=,即12x >; ∴解集为x<2的是B 选项中的不等式.故选B.3.C【解析】【分析】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,由AE 与BF 为圆的切线,利用切线的性质得到AE 与EO 垂直,BF 与OF 垂直,由AE=BF ,OE=OF ,利用HL 得到直角三角形AOE 与直角BOF 全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项.【详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线,∴OE ⊥AE ,OF ⊥FB ,∴∠AEO=∠BFO=90°,在Rt △AEO 和Rt △BFO 中,∵{AE BF OE OF==, ∴Rt △AEO ≌Rt △BFO (HL ),∴∠A=∠B ,∴△QAB 为等腰三角形,又∵O 为AB 的中点,即AO=BO ,∴QO ⊥AB ,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO ,∴△QOF ∽△QBO ,∴∠B=∠QOF ,同理可以得到∠A=∠QOE ,∴∠QOF=∠QOE ,根据切线长定理得:OD 平分∠EOG ,OC 平分∠GOF ,∴∠DOC=12∠EOF=∠A=∠B , 又∵∠GCO=∠FCO ,∴△DOC ∽△OBC ,同理可以得到△DOC ∽△DAO ,∴△DAO ∽△OBC , ∴AD AO OB BC=, ∴AD•BC=AO•OB=14AB 2,即xy=14AB 2为定值, 设k=14AB 2,得到y=k x , 则y 与x 满足的函数关系式为反比例函数y=k x (k 为常数,k≠0,x >0). 故选C .【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.4.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B .考点:由三视图判断几何体.5.D【解析】【分析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-, 所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.C【解析】【分析】科学记数法就是将一个数字表示成a×10的n 次幂的形式,其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.【详解】数据8 600用科学记数法表示为8.6×103 故选C .【点睛】用科学记数法表示一个数的方法是(1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).7.B【解析】【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=12S菱形OBCA,结合菱形的面积公式即可得出结论.【详解】过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45,∴AM=OA•sin∠AOB=45a,22OA AM35a,∴点A的坐标为(35a,45a).∵点A在反比例函数y=48x的图象上,∴35a•45a=1225a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=12S菱形OBCA=12OB•AM=2.故选B.【点睛】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA.8.B【解析】【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【详解】连接OA 、OC ,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC 的长为:=4π.故选B .【点睛】 本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=. 9.A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解. 解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a ∥b ,∴∠3=∠4=110°,故选A .点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.10.D【解析】【分析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB .【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.11.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.12.C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.b(a﹣4)1【解析】【分析】先提公因式,再用完全平方公式进行因式分解.【详解】解:a 1b-8ab+16b=b (a 1-8a+16)=b (a-4)1. 【点睛】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键. 14.π(x+5)1=4πx 1. 【解析】 【分析】根据等量关系“大圆的面积=4×小圆的面积”可以列出方程. 【详解】解:设小圆的半径为x 米,则大圆的半径为(x+5)米, 根据题意得:π(x+5)1=4πx 1, 故答案为π(x+5)1=4πx 1. 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.15.【解析】分析:由菱形的性质证出△ABD 是等边三角形,得出BD=AB=6,132OB BD ==,由勾股定理得出OC OA ==,即可得出答案. 详解:∵四边形ABCD 是菱形,∴AB=AD=6,AC ⊥BD ,OB=OD ,OA=OC , ∵60BAD ∠=︒, ∴△ABD 是等边三角形, ∴BD=AB=6, ∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,OE =∴当E 在点O 左边时CE OC =+=当点E 在点O 右边时CE OC =-=∴CE =故答案为53或3.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解. 16.40° 【解析】 【分析】根据旋转的性质可得出AB =AD 、∠BAD =100°,再根据等腰三角形的性质可求出∠B 的度数,此题得解. 【详解】根据旋转的性质,可得:AB =AD ,∠BAD =100°, ∴∠B =∠ADB =12×(180°−100°)=40°. 故填:40°. 【点睛】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B 的度数是解题的关键. 17.1 【解析】 【分析】过点C 作CH ∥AB 交DE 的延长线于点H ,则1028DF t t ---==,证明DFG HCG ∆∆∽,可求出CH ,再证明ADE CHE ∆∆∽,由比例线段可求出t 的值. 【详解】如下图,过点C 作CH ∥AB 交DE 的延长线于点H , 则21028BD t AE t DF t t ---=,=,==,∵DF ∥CH , ∴DFG HCG ∆∆∽, ∴12DF FC HC GC ==, ∴2162CH DF t ==-, 同理ADE CHE ∆∆∽,∴AD AE CH CE=,∴102162102t tt t-=--,解得t=1,t=253(舍去),故答案为:1.【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.18.二【解析】【分析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得1523255x yx y-=⎧⎨+=⎩,解得6045xy=⎧⎨=⎩,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得()()504020878032005m mm m⎧+-≤⎪⎨>-⎪⎩,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.20.见解析【解析】【分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x …﹣1 0 1 2 3 …y … 4 1 0 1 4 …如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.21.(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OCOA=,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k bb=+⎧⎨-=⎩,解得252kb⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中OA BCAOC DBCOC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=41°.22.(1)5;(2)()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)167t =时,半径PF =127;t =16,半径PF =12.【解析】 【分析】(1)由矩形性质知BC=AD=5,根据BE :CE=3:2知BE=3,利用勾股定理可得AE=5; (2)由PF ∥BE 知AP AF AB AE=,据此求得AF=54t ,再分0≤t≤4和t >4两种情况分别求出EF 即可得;(3)由以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时PF=PG ,再分t=0或t=4、0<t <4、t >4这三种情况分别求解可得 【详解】(1)∵四边形ABCD 为矩形, ∴BC =AD =5, ∵BE ∶CE =3∶2, 则BE =3,CE =2, ∴AE ===5.(2)如图1,当点P 在线段AB 上运动时,即0≤t≤4, ∵PF ∥BE , ∴=,即=, ∴AF =t ,则EF =AE -AF =5-t ,即y =5-t(0≤t≤4); 如图2,当点P 在射线AB 上运动时,即t >4,此时,EF =AF -AE =t -5,即y =t -5(t >4);综上,()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时,PF =FG ,分以下三种情况: ①当t =0或t =4时,显然符合条件的⊙F 不存在; ②当0<t <4时,如解图1,作FG ⊥BC 于点G , 则FG =BP =4-t , ∵PF ∥BC , ∴△APF ∽△ABE , ∴=,即=, ∴PF =t ,由4-t =t 可得t =, 则此时⊙F 的半径PF =;③当t >4时,如解图2,同理可得FG =t -4,PF =t , 由t -4=t 可得t =16, 则此时⊙F 的半径PF =12. 【点睛】本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质. 23.121717x x +-==【解析】 【分析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案. 【详解】解:x =22-2-43-223±⨯⨯⨯()() =173±即121717x ,x +-==∴原方程的解为121717x ,x +-==. 【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.24.(1);(2)20分钟.【解析】 【详解】(1)材料加热时,设y=ax+15(a≠0), 由题意得60=5a+15, 解得a=9,则材料加热时,y 与x 的函数关系式为y=9x+15(0≤x≤5). 停止加热时,设y=(k≠0), 由题意得60=, 解得k=300,则停止加热进行操作时y 与x 的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟. 答:从开始加热到停止操作,共经历了20分钟.25. (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度. 【解析】 【分析】(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.26.(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m 为非负整数,∴m=3 或m=1,当m=3 时,原方程为x2-2x-3=3,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=3,解得x1x2=,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.27.(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元. (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用。
2024年四川省成都市新都区中考数学一诊试卷(含解析)

2024年四川省成都市新都区中考数学一诊试卷一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.(4分)﹣2024的绝对值是( )A.2024B.﹣2024C.D.2.(4分)提高交通安全意识是每一位青少年的“必修课”,以下有关交通安全的标识图,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.(4分)据统计,仅2024年大年初一这一天,我国全社会跨区域人员流动量约为1.9亿人次.将1.9亿用科学记数法表示为( )A.19×108B.1.9×109C.0.19×1010D.1.9×1084.(4分)下列各式计算正确的是( )A.(x+y)2=x2+y2B.(2x2)3=6x6C.4x3÷2x=2x2D.x2﹣4y2=(x+4y)(x﹣4y)5.(4分)在平面直角坐标系中,点P(﹣2,﹣4)关于x轴对称的点的坐标是( )A.(2,4)B.(0,﹣4)C.(﹣2,4)D.(2,﹣4)6.(4分)2024年,中国将迎来一系列重要的周年纪念活动,某校开展了主题为“牢记历史•吾辈自强”的演讲比赛,九年级8名同学参加该演讲比赛的成绩分别为76,78,80,85,80,74,78,80.则这组数据的众数和中位数分别为( )A.80,79B.80,78C.78,79D.80,807.(4分)如图,点E是▱ABCD的边AD上一点,且AE:DE=1:2,连接CE并延长,交BA的延长线于点F.若AE=4,AF=6,则▱ABCD的周长为( )A.21B.34C.48D.608.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②该抛物线一定过原点;③b2﹣4ac>0;④a﹣b+c<0;⑤b>0.其中结论正确的个数有( )个.A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:3a3﹣12a= .10.(4分)如图,直线:y=2x+4与直线l2:y=kx+b相交于点P(1,m),则方程组的解为 .11.(4分)一个箱子装有除颜色外都相同的3个蓝球,3个灰球和一定数量的粉球.从中随机抽取1个球,被抽到粉球的概率是,那么箱内粉球有 个.12.(4分)如图,经过原点的直线交反比例函数的图象于A,B两点,过点A作AC⊥x轴于点C,连接BC,当S△ABC=2时,k的值为 .13.(4分)如图,在Rt△ABC中,∠BAC=90°,按以下步骤作图:①分别以点A和点C 为圆心,大于的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD=2,则△ACD的面积为 .三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)先化简,再求值:,其中a=﹣1.15.(8分)为提升同学们的综合素质,丰富课余生活,某校举行了“爱新都”为主题的视频制作评比活动.某兴趣小组同学积极参与,计划制作有代表性景点的城市宣传短片,现抽样调查了部分学生,从A锦门民国小镇,B桂湖公园,C宝光寺,D新繁东湖,E泥巴沱公园五个景点中,选出最具有新都代表性的地方,并将调查情况绘制成如图两幅不完整统计图.根据统计图中的信息解答下列问题:(1)本次被调查的学生有 人,扇形统计图中表示A的扇形圆心角α的度数等于 度,并把条形图补充完整;(2)该校学生共计1500人,请估算出该校认为最具有新都代表性的是宝光寺的学生人数;(3)该兴趣小组准备从校内四位“优秀共青团员”(两男两女)中,挑选两人作为宣传片中的讲解员,请利用列表或画树状图的方法,求所选两人恰好是1名男生和1名女生的概率.16.(8分)某校学生利用课余时间,使用卷尺和测角仪测量某公园古城门的高度.如图所示,他们先在公园广场点M处架设测角仪,测得古城门最高点A的仰角为22°,然后前进20m到达点N处,测得点A的仰角为45°;已知测角仪的高度为1.4m.求古城门最高点A距离地面的高度.(结果精确到0.1m;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)17.(10分)如图,已知矩形ABCD和矩形AEFG共用顶点A,点E在线段BD上,连接EG,DG,且.(1)求证:∠ABE=∠ADG;(2)若,,,求EG的长.18.(10分)在平面直角坐标系xOy中,直线与反比例函数的图象交于A (3,m),B两点.(1)求直线AB的函数表达式及点B的坐标;(2)如图1,过点A的直线分别与x轴,反比例函数的图象(x<0)交于点M,N,且,连接BM,求△ABM的面积;(3)如图2,点D在另一条反比例函数的图象上,点C在x轴正半轴上,连接DC交该反比例函数图象于点E,且DE=2EC,再连接AD,BC,若此时四边形ABCD 恰好为平行四边形,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)满足的整数x有 个.20.(4分)x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,则x1+x2﹣3x1x2= .21.(4分)将抛物线C1:y=x2向左平移a(a>0)个单位长度后,再向下平移b个单位长度,得到新的抛物线C2,若A(﹣a﹣2,y1),B(﹣a+1,y2),C(﹣a+3,y3)为抛物线C2图象上的三点,则y1、y2、y3的大小关系 .(请用“<”表示)22.(4分)如图1,以矩形ABCD的宽BC为边在其内部作正方形BCFE,若,则称矩形ABCD为“黄金矩形”,=称为“黄金比率”,如图2,以矩形ABCD 的宽BC为边在其内部作两个正方形BCHG,GHFE,若,则称矩形ABCD为“白银矩形”,=称为“白银比率”,则该比率为 ;如图3,A4纸的长与宽的比值近似可以看作,若沿某条直线裁剪一次,使得A4纸剩下部分为一个“白银矩形”,则该“白银矩形”的面积是 .23.(4分)如图,在矩形ABCD中,BC=2AB,点M,N为直线AD上的两个动点,且∠MBN =30°,将线段BM关于BN翻折得线段BM′,连接CM′.当线段CM′的长度最小时,∠MM'C的度数为 度.24.(10分)为了美化校园,某校准备在校园广场中心安装一个圆形喷水池,喷水池中央设置一柱形喷水装置OA高2米,点A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.O位于圆形喷水池中心的水面处,按照如图所示建立直角坐标系,该设计水流与OA的水平距离为1米时,喷出的水柱可以达到最大高度3米.(1)求出该抛物线的函数表达式;(2)为了使喷出的水流不至于溅落在圆形喷水池外,需要在水流落回水面处的外侧预留1米距离,则该圆形喷水池的半径至少设计为多少米合理?25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c,经过点M(2,3),与y轴交于点A(0,﹣1),直线BC与抛物线交于异于点A的B,C两点.(1)求抛物线的函数表达式;(2)若三角形BOM是以OM为底的等腰三角形,试求出此时点B的横坐标;(3)若BA⊥CA,探究直线BC是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(10分)如图1,在四边形ABFE中,∠F=90°,点C为线段EF上一点,使得AC⊥BC,AC=2BC=4,此时BF=CF,连接BE,BE⊥AE,且AE=BE.(1)求CE的长度;(2)如图2,点D为线段AC上一动点(点D不与A,C重合),连接BD,以BD为斜边向右侧作等腰直角三角形BGD.①当DG∥AB时,试求AD的长度;②如图3,点H为AB的中点,连接HG,试问HG是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.2024年四川省成都市新都区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.【分析】根据绝对值的意义解答即可.【解答】解:﹣2024的绝对值是2024.故选:A.【点评】本题主要考查了绝对值的意义,解题的关键是熟练掌握.2.【分析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图形既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;D.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1.9亿=190000000=1.9×108,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.【分析】计算出各个选项中式子的正确结果,即可判断哪个选项符合题意.【解答】解:(x+y)2=x2+2xy+y2,故选项A错误,不符合题意;(2x2)3=8x6,故选项B错误,不符合题意;4x3÷2x=2x2,故选项C正确,符合题意;x2﹣4y2=(x+2y)(x﹣2y),故选项D错误,不符合题意;故选:C.【点评】本题考查整式的混合运算、因式分解,熟练掌握运算法则是解答本题的关键.5.【分析】根据关于x轴对称的点的坐标特点解答即可.【解答】解:点P(﹣2,﹣4)关于x轴对称的点的坐标是(﹣2,4).故选:C.【点评】本题考查的是关于x轴对称的点的坐标,熟知关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题的关键.6.【分析】将数据重新排列,再根据众数和中位数的定义求解即可.【解答】解:将这组数据重新排列为74,76,78,78,80,80,80,85,所以这组数据的众数为80,中位数为=79,故选:A.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.7.【分析】由平行四边形的性质推出CD∥AB,DC=AB,AD=BC,得到△FAE∽△CDE,推出FA:CD=AE:DE=1:2,求出CD=12,由AE=4,AE:DE=1:2求出DE=8,得到AD=AE+ED=12,即可求出▱ABCD的周长=2(AD+CD)=48.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,DC=AB,AD=BC,∴△FAE∽△CDE,∴FA:CD=AE:DE=1:2,∵FA=6,∴CD=12,∵AE=4,AE:DE=1:2,∴DE=8,∴AD=AE+ED=12,∴▱ABCD的周长=2(AD+CD)=2×(12+12)=48.故选:C.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,得到FA:CD=AE:DE=1:2,求出CD的长.8.【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据由函数图象可知,与x轴有两个交点;④根据当x=﹣1时,y的函数值的位置进行判断;⑤根据开口方向和对称轴的位置解答即可.【解答】解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另一个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵由函数图象可知,与x轴有两个交点,b2﹣4ac>0;则此小题结论正确;④由函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;⑤∵开口向下,∴a<0,对称轴为直线x=﹣2,∴b<0,则此小题结论错误;故选:B.【点评】本题考查了抛物线与x轴的交点,二次函数与不等式的关系,二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】首先利用待定系数法求出m的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【解答】解:∵直线y=2x+4经过点P(1,m),∴m=2+4=6,∴P(1,6),∴方程组的解为.故答案为:.【点评】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点的坐标就是两函数组成的二元一次去方程组的解.11.【分析】设箱内粉球有x个,根据概率公式列出方程,解方程即可.【解答】解:设箱内粉球有x个,由题意得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,即箱内粉球有6个,故答案为:6.【点评】此题考查了概率公式:概率=所求情况数与总情况数之比,熟记概率公式是解题的关键.12.【分析】根据反比例函数图象的对称性可得出A,B两点关于点O对称,进而得出△AOC 与△BOC的面积相等,据此可解决问题.【解答】解:因为反比例函数是中心对称图形,且坐标原点是对称中心,所以点A和点B关于点O对称,则OA=OB.又因为S△ABC=2,所以.因为AC⊥x轴,所以,则x A y A=2,所以k=x A y A=2.故答案为:2.【点评】本题考查反比例函数与一次函数图象交点问题,熟知反比例函数图象的对称性是解题的关键.13.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABC即可解决问题.【解答】解:由作法得MN垂直平分AC,∴DA=DC∴∠DAC=∠C,∴∠ADB=∠DAC+∠C=2∠C,∵AB=BD,∴∠BAD=∠ADB=2∠C,∵∠BAC=90°,∴∠BAD+∠C=90°,即2∠C+∠C=90°,∴∠C=30°,∴AC=AB=2.∴△ACD的面积=S△ABC=××2×2=,故答案为:.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.【分析】(1)根据特殊角的三角函数值、二次根式的性质、零指数幂计算;(2)根据分式的减法法则、除法法则把原式化简,把a的值代入计算,得到答案.【解答】解:(1)原式=3×﹣﹣×+1=﹣2﹣1+1=﹣;(2)原式=÷(+)=÷=•=,当a=﹣1时,原式===.【点评】本题考查的是实数的运算、分式的化简求值,掌握实数的运算法则、分式的混合运算法则是解题的关键》15.【分析】(1)用条形统计图中B的人数除以扇形统计图中B的百分比可得本次被调查的学生人数;用360°乘以本次调查中选择A景点的人数所占的百分比,可得扇形统计图中表示A的扇形圆心角α的度数;求出选择D景点的人数,补全条形统计图即可.(2)根据用样本估计总体,用1500乘以样本中选择C的学生人数所占的百分比,即可得出答案.(3)画树状图得出所有等可能的结果数以及所选两人恰好是1名男生和1名女生的结果数,再利用概率公式可得出答案.【解答】解:(1)本次被调查的学生有18÷22.5%=80(人).扇形统计图中表示A的扇形圆心角α的度数等于360°×=72°.故答案为:80;72.选择D景点的人数为80﹣16﹣18﹣20﹣8=18(人).补全条形统计图如图所示.(2)1500×=375(人).∴该校认为最具有新都代表性的是宝光寺的学生人数约375人.(3)将2名男生分别记为甲,乙,2名女生分别记为丙,丁,画树状图如下:共有12种等可能的结果,其中所选两人恰好是1名男生和1名女生的结果有:甲丙,甲丁,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙,共8种,∴所选两人恰好是1名男生和1名女生的概率为=.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.16.【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE 是矩形,于是得到BC=MN=20m,DE=CN=BM=1.4m,求得CE=AE,设AE=CE=x,得到BE=20+x,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC,交BC延长线于点E,交MP于点F,则BMNC,四边形BMDE是矩形,∴BC=MN=16m,ED=BM,设AE=xm,在Rt△ACE中,∠ACE=45°,∴AE=CE=xm,∵BC=20m,∴BE=x+20,在Rt△ABE中,∠ABE=22°,∴tan22°=,∴0.40=,解得:x≈13.33,∴ED=BM=1.4m,∴AF=13.33+1.4=14.73≈14.7(m).答:古城门最高点A距离地面的高度约为14.7m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,能借助仰角构造直角三角形并解直角三角形是解决问题的关键.17.【分析】(3)利用同角的余角相等可得∠BAE=∠DAG,结合条件即可证明△ABE∽△ADG,以此即可得证;(2)易得∠ADB=∠CBD,结合(1)中结论并根据等角加等角相等得∠EDG=90°,再由勾股定理求得BD的长,于是得出BE的长,由△ABE∽△ADG可求出DG的长,最后再利用勾股定理即可求解.【解答】(1)证明:∵四边形ABCD和四边形AEFG均为矩形,∴∠BAD=∠EAG=90°,即∠BAE+∠DAE=∠DAG+∠DAE=90°,∴∠BAE=∠DAG,又∵,∴△ABE∽△ADG,∴∠ABE=∠ADG.(2)解:∵四边形ABCD为矩形,∴AD∥BC,∠ABC=∠ABE+∠CBD=90°,∴∠ADB=∠CBD,∵∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠CBD=90°,即∠EDG=90°,在Rt△ABD中,AB=,AD=,∴==,∴BE=BD=,DE=,由(1)知,△ABE∽△ADG,∴,∠ABE=∠ADG,∴,∴DG=,在Rt△DEG中,EG===.【点评】本题主要考查相似三角形的判定与性质、矩形的性质、勾股定理,解题关键:(1)由同角的余角相等得到∠BAE=∠DAG;(2)根据角之间的关系推理证明∠EDG=90°.18.【分析】(1)将A(3,m)代入直线y=﹣x+b与反比例函数y=,可得答案;(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,根据平行线分线段成比例得,可得N(﹣4,﹣3),从而得出直线AM的解析式为y=x+1,M(﹣1,0),再计算S△ABM=S△AHM﹣S△BHM即可;(3)利用平行四边形的性质可得AB∥CD,设直线CD的解析式为y=﹣x+t,可得C(t,0),则D(t﹣3,2),过D作DG⊥x轴于G,过点E作EF⊥x轴于F,则DG∥EF,可得△CEF∽CDG,利用相似三角形的性质得,可得出EF=,OF=t﹣1,则E(t﹣1,),根据反比例函数图象上点的坐标特征可得t=,即可解决问题.【解答】解:(1)将A(3,m)代入反比例函数y=得,m=4,∴A(3,4),将点A(3,4)代入y=﹣x+b得,b=6,∴直线AB的函数表达式为y=﹣x+6,联立直线y=﹣x+6与反比例函数y=得,,解得,∴点B的坐标为(6,2);(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,设AB与x轴交于H,∴MP∥NQ,∴,∵A(3,4),∴AP=4,∴PQ=3,∴N(﹣4,﹣3),设线AM的解析式为y=k′x+b′,∴,解得,∴直线AM的解析式为y=x+1,令y=0,则x=﹣1,∴M(﹣1,0),∵直线AB的函数表达式为y=﹣x+6,令y=0,则x=9,∴H(9,0),∴S△ABM=S△AHM﹣S△BHM=×4×(1+9)﹣×2×(1+9)=10;(3)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴设直线CD的解析式为y=﹣x+t,令y=0,则x=t,∴C(t,0),∵A(3,4),B(6,2),∴D(t﹣3,2),∵DE=2EC,∴,过D作DG⊥x轴于G,过点E作EF⊥x轴于F,∴DG∥EF,∴△CEF∽CDG,∴,∴,,∴EF=,OF=t﹣1,∴E(t﹣1,),∵D,E都在另一条反比例函数(k>0)的图象上,∴k=(t﹣1)=2(t﹣3),∴t=,∴k=×(×﹣1)=2.【点评】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,反比例函数图象与一次函数图象的交点问题,平行四边形的性质,相似三角形的判定与性质等知识,作辅助线构造相似三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】求出﹣,的取值范围,进而可得出答案.【解答】解:∵﹣2<﹣<﹣1,2<<3,∴满足<x<的整数x有﹣1,0,1,2共4个,故答案为:4.【点评】本题考查了估算无理数的大小,解题的关键是确定﹣,的取值范围.20.【分析】先把方程整理为一元二次方程的一般形式,再求出x1+x2与x1•x2的值,代入代数式进行计算即可.【解答】解:一元二次方程x(3x﹣1)﹣1=0可化为3x2﹣x﹣1=0,∵x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,∴x1+x2=,x1•x2=﹣,∴x1+x2﹣3x1x2=﹣3×(﹣)=+1=.故答案为:.【点评】本题考查的是一元二次方程根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=是解题的关键.21.【分析】求出A,B,C三个点离抛物线对称轴的远近,结合抛物线的开口方向即可解决问题.【解答】解:由题知,平移后的抛物线函数解析式为:y=(x+a)2﹣b,则此抛物线的对称轴为直线x=﹣a,且开口向上,所以抛物线上的点离对称轴越近,其纵坐标越小.因为﹣a﹣(﹣a﹣2)=2,﹣a+1﹣(﹣a)=1,﹣a+3﹣(﹣a)=3,且1<2<3,所以y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.22.【分析】根据“白银矩形”的定义,列出方程即可求出“白银比率”,再利用求出的“白银比率”即可解决问题.【解答】解:令BC=x,由得,,解得AE=(舍负),所以AB=2x+AE=,则“白银比率”为:.如图所示,,x=,经检验x=是原方程的解,且符合题意.所以该“白银矩形”的面积为:.故答案为:,.【点评】本题考查矩形的性质及黄金分割,理解题中所给定义是解题的关键.23.【分析】将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,得到△ABM≌△EBM′,再由当CM⊥EF时,CM'有最小值,可得△EBG与△M′CG均为30°、60°、90°直角三角形,再证明△ABM为等腰直角三角形,△MBM是等边三角形,进而得到∠EM'B=∠AMB=60°,最后当CM′⊥EF于H时,CM′有最小值,由此可以求出∠MM'C =∠EM'C﹣∠EM'M=90°﹣15°=75°.【解答】解:将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,设EM交BC于G点,如下图所示:在矩形ABCD中,∠A=∠ABC=90°,AD=BC,根据折叠可知,∠MBM'=60°,BM=BM',∴∠ABM=∠ABE﹣∠MBE=60°﹣∠MBE,∠EBM'=∠MBM'﹣∠MBE=60°﹣∠MBE,∴∠ABM=∠EBM′,∵BA=BE,BM=BM′,∴△ABM≌△EBM′(SAS),∵AM=EM′,∠E=∠A=90°,∵∠EBG=90°﹣60°=30°,∴∠BGM'=∠EBG+∠BEG=90°+30°=120°,∴∠EGC=120°,∴∠CGM'=∠EGB=180°﹣120°=60°,∴点M在EF上,∵垂线段最短,∴当CM′⊥EF时,CM′有最小值,∴△EBG与△M′CG均为30°、60°、90°直角三角形,设EG=x,BC=2y,则BG=2EG=2x,CG=BC﹣BG=2y﹣2x,,∴,∵BC=2AB,,∴EM′=AB,∵AM=EM′,∴AB=AM,∴△ABM为等腰直角三角形,∴∠EM′B=∠AMB=45°,∵∠MBM'=60°,BM=M′B,∴△MBM是等边三角形,∴∠BM'M=60°,∴∠EM'M=∠BM'M﹣∠EM'B=60°﹣45°=15°,∴∠MM'C=∠EM'C﹣∠EM'M=90°﹣15°=75°,故答案为:75.【点评】本题考查了三角形全等的判定方法、矩形的性质、旋转的性质、轴对称的性质,等边三角形的判定和性质,属于四边形的综合题,难度较大,熟练掌握各图形的性质是解题的关键.24.【分析】(1)易得抛物线的顶点坐标为(1,3),用顶点式设出抛物线解析式,把点A 的坐标代入可得抛物线二次项系数的值,即可求得抛物线的解析式;(2)水流落回水面,即抛物线与x轴相交,那么纵坐标为0求得符合题意的x的值,再加上预留的一米即为该圆形喷水池的半径最少的米数.【解答】解:(1)由题意得:抛物线的顶点坐标为(1,3).∴设抛物线的解析式为:y=a(x﹣1)2+3(a≠0).∵抛物线经过点(0,2),∴a+3=2.解得:a=﹣1.∴该抛物线的函数表达式为:y=﹣(x﹣1)2+3;(2)∵水流落回水面,∴抛物线与x轴相交.∴﹣(x﹣1)2+3=0.(x﹣1)2=3,x﹣1=,x﹣1=﹣.∴x1=+1,x2=1﹣(不合题意,舍去).∴该圆形喷水池的半径至少设计为:+1+1=(+2)米.答:该圆形喷水池的半径至少设计为(+2)米.【点评】本题考查二次函数的应用.根据题意设出符合题意的函数解析式是解决本题的关键.用到的知识点为:若二次函数有顶点坐标,设二次函数的解析式为:y=a(x﹣h)2+k(a≠0)计算比较简便.25.【分析】(1)由待定系数法即可求解;(2)求出OM中垂线表达式中的k值为﹣,得到直线OM中垂线的表达式,即可求解;(3)证明tan∠ACN=tan∠BAM,得到,整理得:mn=﹣1,进而求解.【解答】解:(1)将点A、M的坐标代入函数表达式得:,解得:,则抛物线的表达式为:y=x2﹣1;(2)由点O、M的坐标得,直线OM的表达式为:y=x,则OM中垂线表达式中的k值为﹣,OM的中点坐标为:(1,),则直线OM中垂线的表达式为:y=﹣(x﹣1)+,联立上式和抛物线的表达式得:x2﹣1=﹣(x﹣1)+,解得:x=,即点B的横坐标为:;(3)直线BC过定点(0,0),理由:过点A作x轴的平行线交过点B和y轴的平行线于点M,交过点C和y轴的平行线于点N,设点B(m,m2﹣1)、C(n,n2﹣1),∵BA⊥CA,∴∠BAM+∠CAN=90°,∵∠ACN+∠CAN=90°,∴∠ACN=∠BAM,∴tan∠ACN=tan∠BAM,即,即,整理得:mn=﹣1,由点B、C的坐标得,直线BC的表达式为:y=(m+n)(x﹣m)+m2﹣1=(m+n)x﹣mn ﹣1=(m+n)x,当x=0时,y=(m+n)x=0,即直线BC过定点(0,0).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、中垂线的性质,数据处理是本题的难点,题目有一定的综合性,难度适中.26.【分析】(1)取AB的中点为H,连接EH、HC,证明△BCF是等腰直角三角形,∠BCF =45°,得BF=CF=,再证明△AEB是等腰直角三角形,得∠ABE=45°,然后证明∠BAC=∠BEF,即可解决问题;(2)①过点D作DM⊥EF于点M,DK⊥AB于点K,证明△CMD是等腰直角三角形,得CD=DM,再证明△DBC∽△GBF,得∠BCD=∠BFG=90°,==,进而证明△BKD是等腰直角三角形,得DK=BK,然后证明DK=AB,求出DK=,即可解决问题;②过点H作HP⊥EF于点P,连接EH,由①得点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,即N与①中的D重合,由等腰直角三角形的性质得AE=,再由锐角三角函数定义得sin∠ENA=,设∠BEF=∠BAC=α,则∠HEF=α+45°,然后证明∠HEF=∠EAN,即可得出结论.【解答】解:(1)如图1,取AB的中点为H,连接EH、HC,设AC交BE于点N,∵AC=2BC=4,∴BC=2,∵∠F=90°,BF=CF,∴△BCF是等腰直角三角形,∠BCF=45°,∴BF=CF=BC=×2=,∵AC⊥BC,∴∠ACB=90°,∴∠ACE=180°﹣∠ACB﹣∠BCF=180°﹣90°﹣45°=45°,∵BE⊥AE,AE=BE,∴△AEB是等腰直角三角形,∴∠ABE=45°,∴∠ABN=∠NCE,∵∠ANB=∠CNE,∴∠BAC=∠BEF,∴tan∠BAC=tan∠BEF,∵tan∠BAC===,∴tan∠BEF==,∴EF=2BF=2,∴CE=EF﹣CF=2﹣=;(2)①如图2,过点D作DM⊥EF于点M,DK⊥AB于点K,则∠DMG=90°,由(1)得:∠ACE=45°,∴△CMD是等腰直角三角形,∴CD=DM,∵△BCF、△BGD都是等腰直角三角形,∴DG=BG,∠BGD=90°,∠DBG=∠CBF=45°,==,∴∠DBG﹣∠CBG=∠CBF﹣∠CBG,即∠DBC=∠GBF,=,∴△DBC∽△GBF,∴∠BCD=∠BFG=90°,==,∴CD=FG,∴DM=FG,∵∠BFE=90°,∴点G在EF上,∵DG∥AB,∠BGD=90°,∴∠GBA=90°,∵∠ABE=45°,∠DBG=45°,∴D在BE上,∵tan∠BAC=,∴=,∴AK=2DK,∴AD===DK,∵DK⊥AB,∠ABE=45°,∴△BKD是等腰直角三角形,∴DK=BK,∵AK=2DK,AB=AK+BK,∴DK=AB,在Rt△ABC中,由勾股定理得:AB===2,∴DK=AB=×2=,∴AD=DK=×=;②HG存在最小值,理由如下:如图3,过点H作HP⊥EF于点P,连接EH,由①得:点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,则N与①中的D重合,由①得:AN=,∵△AEB是等腰直角三角形,∴AE=AB=×2=,∵点H为AB的中点,∴EH=AB=×2=,∠BEH=45°,∴sin∠ENA===,设∠BEF=∠BAC=α,则∠HEF=α+45°,∵∠EAN=∠ABE+∠BAC=45°+α,∴∠HEF=∠EAN,在Rt△PEH中,PH=EH•sin∠HEF=EH•sin∠ETA=×=,∴HG的最小值为.【点评】本题是三角形综合题,考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、平行线的性质以及锐角三角函数定义等知识,本题综合性强,难度较大,熟练掌握等腰直角三角形的判定与性质和锐角三角函数定义,证明三角形相似是解题的关键,属于中考常考题型.。
2020年四川省成都市六区县中考数学一诊试卷 (解析版)

2020年中考数学一诊试卷一、选择题1.如图所示,数轴的单位长度为1,且点B表示的数是2,那么点A表示的数是()A.1B.0C.﹣1D.﹣22.如图所示的几何体是由六个相同的小正方体搭成,则该几何体的俯视图为()A.B.C.D.3.2月14日下午,国务院联防联控机制就加大防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是()A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元4.下列运算正确的是()A.2m+n=2mn B.3a2b﹣2b=a2C.(﹣2m2n)3=﹣8m6n3D.(n﹣2)2=n2+45.如图,直线a∥b,将一块含30°角的直角三角尺按图中方式放置,其中点A和点B两点分别落在直线a和b上.若∠2=50°,则∠1的度数为()A.10°B.20°C.30°D.40°6.点(﹣3,1)关于y轴的对称点在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣7.下列关于分式方程+1=的解的情况,判断正确的是()A.x=1.5B.x=﹣0.5C.x=0.5D.无解8.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时2)为()A.2B.19C.10D.9.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则的长为()A.4πB.πC.πD.π10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4;④当﹣4<x<0时,ax2+bx+c>0;⑤a﹣b+c<0.其中结论错误的个数有()个A.1B.2C.3D.4二、填空题(每小题4分,共16分)11.代数式中,实数m的取值范围是.12.如图,菱形ABCD的周长是12,∠ABC=120°,那么这个菱形的对角线BD的长是.13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=(k<0)的图象上,且y1<0<y2,则x1与x2的大小关系是.14.如图,在△ABC中,AB=BC,以点A为圆心,AC长为半径画弧,交BC于点C和点D,再分别以点C,D为圆心,大于CD长为半径画弧,两弧相交于点E,作射线AE 交BC于点M,若CM=1,BD=3,则sin B=.三、解答题(本大题共小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(﹣π)0+2﹣2﹣2cos45°+|1﹣|.(2)解不等式组,并写出不等式组的整数解.16.先化简,再求值:÷(+m﹣3),其中m =﹣1.17.某社区为了加强社区居民对病毒防护知识的了解,通过微信群宣传病毒的防护知识,并鼓励社区居民在线参与作答《2020年病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区60≤x≤70 70<x≤80 80<x≤9090<x≤100甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a=b=;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对病毒防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传病毒防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.18.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,≈1.73.19.如图,在平面直角坐标系xOy中,一次函数y=﹣x﹣5和y=2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的解析式;(2)将直线y=﹣x﹣5,沿y轴正方向向上平移m(m>0)个单位长度得到的新直线l与反比例函数y=(x<0)的图象只有一个公共点,求新直线l的函数表达式.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,=,CO的延长线交⊙O于点E,交BD的延长线于点F,连接FA,且恰好FA∥CD,连接BE交CD于点P,延长BE 交FA于点G,连接DE.(1)求证:FA是⊙O的切线;(2)求证:点G是FA的中点;(3)当⊙O的半径为6时,求tan∠FBE的值.一、填空题(每小题4分,共20分)21.比较大小:(填“>”“<”或“=”).22.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为元.23.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为.24.如图,在平面直角坐标系xOy中,等边△OAB的面积为,边AB交y轴于点C,且AC=2BC,反比例函数y=(x<0)的图象经过点A.则反比例函数的解析式为.25.在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与直线x=﹣k,y=﹣k分别交于点A,B.直线x=﹣k与y=﹣k交于点C.记线段AB,BC,AC围成的区域(不含边界)为W;横,纵坐标都是整数的点叫做整点.(1)当k=﹣2时,区域W内的整点个数为;(2)若区域W内没有整点,则k的取值范围是.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.27.如图,在正方形BCD中,E是AD边上一点,连接BE,过A作AF⊥BE于P,交CD 于F.(1)如图1,连接BF,当AE=1,AD=4时,求BF的长;(2)如图2,对角线AC,BD交于点O.连接OP,若DE=2AE=4,求OP的长;(3)如图3,对角线AC,BD交于点O.连接OP,DP,若DP⊥PO,试探索DP与BP 的数量关系,并说明理由.28.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求)1.如图所示,数轴的单位长度为1,且点B表示的数是2,那么点A表示的数是()A.1B.0C.﹣1D.﹣2【分析】根据数轴的单位长度为1,点A在点B的左侧距离点B4个单位长度,直接计算即可.解:点A在点B的左侧距离点B4个单位长度,∴点A表示的数为:2﹣4=﹣2,故选:D.2.如图所示的几何体是由六个相同的小正方体搭成,则该几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看第一列是两个小正方形,第二列上层是一个小正方形,第三列上层是一个小正方形,故选:C.3.2月14日下午,国务院联防联控机制就加大疫情防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是()A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:805.5亿元用科学记数法表示正确的是8.055×1010元.故选:B.4.下列运算正确的是()A.2m+n=2mn B.3a2b﹣2b=a2C.(﹣2m2n)3=﹣8m6n3D.(n﹣2)2=n2+4【分析】直接利用合并同类项法则、积的乘方运算法则、完全平方公式计算得出答案.解:A、2m与n不是同类项,不能合并,原计算错误,故此选项不符合题意;B、3a2b与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(﹣2m2n)3=﹣8m6n3,原计算正确,故此选项符合题意;D、(n﹣2)2=n2﹣4n+4,原计算错误,故此选项不符合题意;故选:C.5.如图,直线a∥b,将一块含30°角的直角三角尺按图中方式放置,其中点A和点B两点分别落在直线a和b上.若∠2=50°,则∠1的度数为()A.10°B.20°C.30°D.40°【分析】根据平行线的性质即可得到结论.解:∵直线a∥b,∠2=50°,∴∠1+90°+∠2+30°=180°,即∠1+90°+50°+30°=180°,解得∠1=10°.故选:A.6.点(﹣3,1)关于y轴的对称点在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】先根据关于y轴对称的点的坐标特点求出点(﹣3,1)关于y轴的对称点的坐标,代入反比例函数y=即可得出k的值.解:∵点(﹣3,1)关于y轴的对称点为(3,1),∴1=,解得k=3.故选:A.7.下列关于分式方程+1=的解的情况,判断正确的是()A.x=1.5B.x=﹣0.5C.x=0.5D.无解【分析】根据分式方程的解法即可求出答案.解:∵=,∴=,∴(x﹣1)(2﹣4x)=2x﹣1,∴4x2﹣4x+1=0,∴(2x﹣1)2=0,∴x=,经检验,x=不是原方程的解,故选:D.8.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时2)为()A.2B.19C.10D.【分析】根据平均数的计算公式先求出这组数据的平均数,再代入方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],进行计算即可得出答案.解:这组数据的平均数是:(17+18+19+20+21)=19(时),则方差:S2=[(17﹣19)2+(18﹣19)2+(19﹣19)2+(20﹣19)2+(21﹣19)2]=2(时2);故选:A.9.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则的长为()A.4πB.πC.πD.π【分析】连接OB、OC,根据圆周角定理求出∠BOC,根据直角三角形的性质求出OB,根据弧长公式计算,得到答案.解:连接OB、OC,由圆周角定理得,∠BOC=2∠A=120°,∵OB=OC,∴∠OBC=(180°﹣120°)=30°,∴OB=2OM=4,∴的长==π,故选:C.10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4;④当﹣4<x<0时,ax2+bx+c>0;⑤a﹣b+c<0.其中结论错误的个数有()个A.1B.2C.3D.4【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据抛物线与x轴的交点横坐标进行判断;④根据﹣4<x<0时,抛物线在x轴上方,进行判断;⑤根据当x=﹣1时,y的函数值的位置进行判断.解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵抛物线与x轴交于(﹣4,0)和(0,0),∴方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4,则此小题结论正确;④由函数图象可知,当﹣4<x<0时,抛物线在x轴上方,即ax2+bx+c>0,则此小题结论正确;⑤则函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;故选:B.二、填空题(每小题4分,共16分)11.代数式中,实数m的取值范围是m≥﹣.【分析】二次根式的被开方数是非负数,即2m+1≥0.解:由题意,得2m+1≥0.解得m≥﹣.故答案是:m≥﹣.12.如图,菱形ABCD的周长是12,∠ABC=120°,那么这个菱形的对角线BD的长是3.【分析】根据∠ABC=120°,而AB=AD,易证△BAD是等边三角形,从而可求BD 的长.解:∵四边形ABCD是菱形,BD是对角线,∴AB=BC=CD=AD,AD∥BC,∵∠ABC=120°,∴∠A=60°,∴△BAD是等边三角形,∴AB=BD=AD,∵菱形ABCD的周长是12,∴AB=3,∴BD=3,故答案为:3.13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=(k<0)的图象上,且y1<0<y2,则x1与x2的大小关系是x1>x2.【分析】先判断出点A、B在第三象限,再根据反比例函数的增减性判断.解:∵k<0,y1<0<y2,∴点A在第四象限,点B在第二象限,∴x1>x2.故答案为x1>x2.14.如图,在△ABC中,AB=BC,以点A为圆心,AC长为半径画弧,交BC于点C和点D,再分别以点C,D为圆心,大于CD长为半径画弧,两弧相交于点E,作射线AE 交BC于点M,若CM=1,BD=3,则sin B=.【分析】连接AD,利用等腰三角形的性质得出DM=MC,进而利用直角三角形的解法解答即可.解:连接AD,由作图可知,AD=AC,AM是∠DAC的角平分线,∴AM⊥DC,DM=MC=1,∵BD=3,∴BM=3+1=4,AB=3+2=5=BC,∴AM=,∴sin B=,故答案为:.三、解答题(本大题共小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(﹣π)0+2﹣2﹣2cos45°+|1﹣|.(2)解不等式组,并写出不等式组的整数解.【分析】(1)原式利用零指数幂法则,负指数幂的法则,特殊角的三角函数、绝对值的意义计算即可得到结果;(2)先求得两个不等式的解集,再在数轴上得出不等式组的整数解.解:(1)原式=1+﹣2×+2﹣1=1+﹣+2﹣1=+;(2)解不等式①得x>﹣1;解不等式②得x≤1;∴不等式组的解集为﹣1<x≤1,∴不等式组的整数解为0,1.16.先化简,再求值:÷(+m﹣3),其中m=﹣1.【分析】根据分式的加法和除法可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.解:÷(+m﹣3)====,当m=﹣1时,原式==.17.某社区为了加强社区居民对病毒防护知识的了解,通过微信群宣传病毒的防护知识,并鼓励社区居民在线参与作答《2020年病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区60≤x≤70 70<x≤80 80<x≤9090<x≤100甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a=82.5b=90;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对病毒防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传病毒防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.【分析】(1)根据中位数和众数的定义即可求得a、b的值;(2)用乙小区总人数乘以乙小区成绩大于90分的人数所占的百分比即可;(3)从平均数,中位数,众数三方面进行分析,得出甲小区的居民对病毒防护知识掌握更好些;根据题意画出树状图得出所有等情况数和甲、乙小区各抽到一份满分试卷的情况数,然后根据概率公式即可得出答案.解:(1)把乙小区的数据从小到大排列,则中位数a==82.5;∵甲小区中90出现了6次,出现的次数最多,∴甲小区的众数b=90;故答案为:82.5,90;(2)根据题意得:1200×=240(人),答:乙小区成绩大于90分的人数为240人;(3)因为从试卷得分的平均数,中位数,众数来看都是甲小区的试卷分数大于乙小区的试卷分数,所以甲小区的居民对病毒防护知识掌握更好些;根据题意列表如下:甲1甲2乙1乙2甲1(甲2,甲1)(乙1,甲1)(乙2,甲1)甲2(甲1,甲2)(乙1,甲2)(乙2,甲2)乙1(甲1,乙1)(甲2,乙1)(乙2,乙1)乙2(甲1,乙2)(甲2,乙2)(乙1,乙2)由表可知共有12种等可能情况,其中满足条件的有8种,所以P(甲、乙小区各抽到一份满分试卷)==.18.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,≈1.73.【分析】作CD⊥AB交其延长线于点D,由∠BCD=30°,∠BDC=90°,BC=30知BD=15,CD=15,再由tan∠ACD=求得AD=CD tan∠ACD=CD•tan45°≈35.81(海里),根据AB=AD﹣BD求解可得答案.解:过C作CD⊥AB交其延长线于点D,由题可知∠BCD=30°,∠ACD=54°,在Rt△BCD中,∵∠BCD=30°,∠BDC=90°,BC=30,∴BD=15,CD=15,在Rt△ACD中,∵∠ACD=54°,∠BDC=90°,CD=15,tan∠ACD=,∴AD=CD tan∠ACD=CD•tan45°≈1.38×15×1.73≈35.81(海里),∴AB=AD﹣BD=35.81﹣15=20.81≈20.8(海里),答:山东舰从A到B航行约20.8海里.19.如图,在平面直角坐标系xOy中,一次函数y=﹣x﹣5和y=2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的解析式;(2)将直线y=﹣x﹣5,沿y轴正方向向上平移m(m>0)个单位长度得到的新直线l与反比例函数y=(x<0)的图象只有一个公共点,求新直线l的函数表达式.【分析】(1)两直线解析式联立组成方程组,解方程组求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)据题意设直线l函数表达式为:y=﹣﹣5+m,然后解,消去y整理得﹣2+(m﹣5)x﹣8=0,根据题意有△=(m﹣5)2﹣4×(﹣)×(﹣8)=0,解得m=1,即可求得新直线l的函数表达式.【解答】(1)解:将解析式联立得解之得,∴点A(﹣2,﹣4),∵反比例函数y=的图象经过点A.∴﹣4=,k=8,∴反比例函数解析式为y=;(2)据题意设直线l函数表达式为:y=﹣﹣5+m,将解析式联立得,消去y得﹣﹣5+m=,去分母得﹣2+(m﹣5)x﹣8=0,据题意有△=(m﹣5)2﹣4×(﹣)×(﹣8)=0,解之得m=1或9又反比例函数中x<0,∴m=1,∴新直线l函数表达式为:y=﹣﹣4.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,=,CO的延长线交⊙O于点E,交BD的延长线于点F,连接FA,且恰好FA∥CD,连接BE交CD于点P,延长BE 交FA于点G,连接DE.(1)求证:FA是⊙O的切线;(2)求证:点G是FA的中点;(3)当⊙O的半径为6时,求tan∠FBE的值.【分析】(1)根据垂径定理得出AB⊥CD,根据FA∥CD求出FA⊥AB,根据切线的判定得出即可;(2)根据相似三角形的判定求出△GAB∽△GEA,△FEG∽△BFG,得出比例式,即可求出GF=GA;(3)根据FA∥CD得出比例式==,求出DP=HP,求出DE=BH,求出OH=DE=BE,求出OH和OH,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,CD是⊙O的一条弦,=,∴AB⊥CD,又∵FA∥CD,∴FA⊥AB,∵OA过O,∴FA是⊙O的切线;(2)证明:连接AE,∵AB是⊙O的直径,∴AE⊥BG,又∵FA⊥AB,∴∠GEA=∠BAG,又∵∠BGA=∠EGA,∴△GAB∽△GEA,∴=,∴GA2=GB×EG,∵FA∥CD,∴∠C=∠EFG,又∵∠C=∠FBE,∴∠EFG=∠FBE,又∵∠FGE=∠BGF,∴△FEG∽△BFG,∴=,∴GF2=GB×GE,∴GF=GA,∴G为AF的中点;(3)解:∵FA∥CD,∴==,又∵GF=GA,∴DP=HP,又∵CE是⊙O的直径,D在圆上,∴CD⊥DE,又∵AB⊥CD于点H,EO=OC,∴点H是CD的中点,AB∥DE,又∵DP=HP,∴DE=BH,又∵点O是CE中点,点H是CD的中点,∴OH=DE=BE,又∵⊙O的半径为6,∴OH=2,CH===4,∴tan∠FBE=tan C===.一、填空题(每小题4分,共20分)21.比较大小:>(填“>”“<”或“=”).【分析】先通分得出,再估算出的范围,最后比较分子大小,即可得出答案.解:∵2<<3,∴8<4<9,∴3<12﹣4<4,∴>.故答案是:>.22.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为14元.【分析】直接利用概率公式求解可得.解:100×+50×+20×=14(元),故答案为:14.23.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为4.【分析】先利用判别式的意义得到a≥﹣,再根据根与系数的关系得到x1+x2=3+2a,x1x2=a2,则利用x1x2﹣5=x1+x2得到a2﹣5=3+2a,然后解关于a的方程确定满足条件的a的值.解:根据题意得△=(3+2a)2﹣4a2≥0,解得a≥﹣,∵x1+x2=3+2a,x1x2=a2,而x1x2﹣5=x1+x2,∴a2﹣5=3+2a,整理得a2﹣2a﹣8=0,解得a1=4,a2=﹣2(舍去),∴a的值为4.故答案为4.24.如图,在平面直角坐标系xOy中,等边△OAB的面积为,边AB交y轴于点C,且AC=2BC,反比例函数y=(x<0)的图象经过点A.则反比例函数的解析式为y =﹣.【分析】作OD⊥AB于D,AE⊥OC于E,根据三角形面积求得等边三角形的边长为,根据题意求得BC=,AC=,CD=,根据勾股定理求得OC,然后证得△ACE∽△OCD,根据相似三角形的性质求得AE=,CE=,进而求得OE=2,即可求得A(﹣,2),代入y=(x<0)求得k的值,得到反比例函数的解析式.解:作OD⊥AB于D,AE⊥OC于E,设等边三角形OAB的边长为a,∵等边△OAB中,∠OAB=60°,∴OD=OA=a,BD=a,∵等边△OAB的面积为,∴AB•OD=,即=,∴a=,∵AC=2BC,∴BC=a=,AC=a=,∴CD=BD﹣BD=﹣=,∴OC===,∵∠ACE=∠OCD,∠AEC=∠ODC=90°,∴△ACE∽△OCD,∴==,==,∴AE=,CE=,∴OE=OC﹣CE=﹣=2,∴A(﹣,2),∵反比例函数y=(x<0)的图象经过点A.∴k=﹣×2=﹣2,∴反比例函数的解析式为y=﹣,故答案为y=﹣25.在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与直线x=﹣k,y=﹣k分别交于点A,B.直线x=﹣k与y=﹣k交于点C.记线段AB,BC,AC围成的区域(不含边界)为W;横,纵坐标都是整数的点叫做整点.(1)当k=﹣2时,区域W内的整点个数为6;(2)若区域W内没有整点,则k的取值范围是0<k≤1或k=2.【分析】(1)将k=﹣2代入解析式,求得A、B、C三点坐标,并作出图形,便可求得W区域内的整数点个数;(2)分三种情况解答:当k<0时,区域内必含有坐标原点,故不符合题意;当0<k≤1时,W内点的横坐标在k到0之间,无整点,进而得0<k≤1时,W内无整点;当1<k≤2时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为(﹣1,﹣k)和(﹣1,﹣k﹣1),当k不为整数时,其上必有整点,但k=2时,只有两个边界点为整点,故W内无整点;当k>2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k﹣1),线段长度为k+1>3,故必有整点.解:(1)直线l:y=kx﹣1=﹣2x﹣1,直线x=﹣k=2,y=﹣k=2,∴A(2,﹣5),B(﹣,2),C(2,2),在W区域内有6个整数点:(0,0),(0,1),(1,0),(1,1),(1,﹣1),(1,﹣2),故答案为6;(2)当k<0时,则x=﹣k>0,y=﹣k>0,∴区域内必含有坐标原点,故不符合题意;当0<k≤1时,W内点的横坐标在﹣1到0之间,不存在整点,故0<k≤1时W内无整点;当1<k≤2时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为M(﹣1,﹣k)和N(﹣1,﹣k﹣1),MN=1,此时当k不为整数时,其上必有整点,但k=2时,只有两个边界点为整点,故W内无整点;当k>2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k﹣1),线段长度为k+1>3,故必有整点.综上所述:0<k≤1或k=2时,W内没有整点.故答案为:0<k≤1或k=2.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.【分析】(1)利用待定系数法求解可得;(2)设每天的利润为W元,根据“总利润=每支利润×每天销售量”得出函数解析式,配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程﹣10x2+620x﹣8800﹣100=350,解之求出x的值,再根据二次函数的性质得出25≤x≤37,结合x≤22×(1+20%)可得答案.解:(1)根据题意设y=kx+b(k≠0),将(30,100)、(35,50)代入得,解得,∴y与x之间的关系式为y=﹣10x+400;(2)设每天的利润为W元,则W=(x﹣22)y=(x﹣22)(﹣10x+400)=﹣10x2+620x﹣8800=﹣10(x﹣31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)﹣10x2+620x﹣8800﹣100=350,解得x=25或x=37,结合图象和二次函数的特点得出25≤x≤37,又x≤22×(1+20%),综上可得25≤x≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.27.如图,在正方形BCD中,E是AD边上一点,连接BE,过A作AF⊥BE于P,交CD 于F.(1)如图1,连接BF,当AE=1,AD=4时,求BF的长;(2)如图2,对角线AC,BD交于点O.连接OP,若DE=2AE=4,求OP的长;(3)如图3,对角线AC,BD交于点O.连接OP,DP,若DP⊥PO,试探索DP与BP 的数量关系,并说明理由.【分析】(1)证明△ABE≌△DAF(ASA),推出DF=AE=2,求出CF利用勾股定理即可解决问题.(2)证明△OPB∽△EDB,可得=解决问题.(3)证明△DEP∽△BOP,可得=,再证明OB=DE即可解决问题.【解答】(1)解:如图1中,∵正方形ABCD,∴∠DAB=∠D=∠C=90°,AB=BC=DC=AD=4∵AF⊥BE于P,∴∠EBA+∠FAB=90°,又∠DAF+FAB=90°,∴∠EBA=∠DAF,又∠DAB=∠D,AB=DA,∴△ABE≌△DAF(ASA),∴DF=AE=1,∵AD=CD=BC=4,∴CF=DC﹣DF=3,在Rt△BFC中,BF===5.(2)如图2中,∵正方形ABCD对角线AC,BD相交于点O,∴∠CAB=∠ADB=45°,∠AOB=90°,∵AF⊥BE于P,∴∠APB=∠AOB=90°,∴A,P,O,B四点共圆,∴∠OPB=∠OAB=45°(也可由相似证得),∴∠OPB=∠ADB,又∠OBP=∠DBE,∴△OPB∽△EDB,可得=,又DE=2AE=4,可得AD=AB=6,BD=6,OB=3,BE=2,∴=,∴OP=.(3)结论:DP=BP.理由如下:如图3中,连接EF.∵DP⊥OP,由(2)问可知∠APB=∠AOB=90°,∴A,P,O,B四点共圆,∴∠OPB=∠OAB=45°,∴∠DPE=∠OPB=45°,又A,P,O,B四点共圆有∠POA=∠PBA,∴∠DEP=∠DAB+∠PBA=∠AOB+∠POA=∠POB,又∠DPE=∠OPB,∴△DEP∽△BOP,∴=,∵AF⊥BE,∠EDF=90°,∴∠EDF+∠EPF=180°,∴D,E,P,F四点共圆,∴∠DFE=∠DPE=45°,∴∠DEF=∠DFE=45°,∵DE=DF,又AE=DF,于是AE=DE=AD,OB=BD=×AD=DE,∴==,∴DP=BP.28.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,将A、B两点坐标代入y=x2+bx+c,即可求解;。
四川省成都市2020届高中毕业班第一诊断性检测文科数学答案

四川省成都市2020届高中毕业班第一诊断性检测文科数学试题参考答案1.B 【分析】由题意得复数z 1与23z i =--的实部相等,虚部互为相反数,则z 1可求. 【解析】∵复数z 1与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称,∴复数z 1与23z i =--(i 为虚数单位)的实部相等,虚部互为相反数,则z 1=3i -+.故选:B .2.D 【分析】因为{1,0,1,2}AB =-,A ,B 本身含有元素1-,0,1,2,根据元素的互异性1m ≠-,0,求出m 即可.【解析】解:集合{1A =-,0,}m ,{1B =,2},{1,0,1,2}AB =-,因为A ,B 本身含有元素1-,0,1,2,所以根据元素的互异性,1m ≠-,0即可, 故1m =或2,故选:D .3.C 【分析】根据sin θθ=得到tan θ=.【解析】sin tan θθθ=∴=22tan tan 21tan 42θθθ===---故选:C 4.D 【分析】直接利用全称命题的否定定义得到答案.【解析】命题p :x R ∀∈,221x x -≥,则p ⌝为: 0x R ∃∈,02021x x -<故选:D5.A 【分析】根据频率分布直方图求得中位数即可.【解析】在频率分步直方图中,小正方形的面积表示这组数据的频率,∴中位数为:0.50.01100.0310701072.50.0410-⨯-⨯+⨯=⨯.故选:A6.D 【分析】将S 9,S 5转化为用a 5,a 3表达的算式即可得到结论.【解析】解:依题意,19951553992552a a S a a a S a +⨯==+⨯,又533a a =,∴95927355S S =⨯=,故选:D .7.C 【分析】由空间中直线与直线、直线与平面及平面与平面位置关系逐一核对四个选项得答案.【解析】由m ∥α,n ∥β,且α∥β,得m ∥n 或m 与n 异面,故A 错误;由m ∥α,n ∥β,且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故B 错误; 由m ⊥α,α∥β,得m ⊥β,又n ∥β,则m ⊥n ,故C 正确;由m ⊥α,n ∥β且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故D 错误.故选:C . 8.A 【分析】利用函数的图象平移变换和伸缩变换的应用求出结果即可. 【解析】函数sin(4)6y x π=-图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到sin(2)6y x π=-的图象,再把所得图象向左平移6π个单位长度,得到函数f (x )=sin 2()sin(2)666y x x πππ⎡⎤=+-=+⎢⎥⎣⎦的图象.故选:A .9.B 【分析】抛物线到焦点的距离转化为到准线的距离,可求出横坐标之和,进而求出中点的横坐标,求出结果即可.【解析】由抛物线方程24y x =,得其准线方程为:1x =-,设11(,)M x y ,22(,)N x y ,由抛物线的性质得,1211=5MF NF x x +=+++,MN ∴中点的横坐标为32, 线段MN 的中点到y 轴的距离为:32.故选:B . 10.C 【分析】利用根式的运算性质、幂函数的单调性可得a ,b 的大小关系,利用对数函数的单调性即可得出c <1.【解析】∵122a ==,且133b =∴1a b <<,3lnln 12e <=.∴b a c >>.故选:C . 11.B 【分析】设F '是右焦点,利用对称性,得3AF AF '=,由双曲线定义得,|3AF a AF a '==,然后利用AOF AOF π'∠+∠=可得出关于,,a b c 的关系式,从而求得离心率e .【解析】设F '是右焦点,则BF AF '=,3AF BF =,即3AF AF '=,又22AF AF AF a ''-==,∴AF a '=,3AF a =,而,OA b OF c '==,∴OA AF '⊥,由AOF AOF π'∠+∠=得cos cos 0AOF AOF '∠+∠=,∴222902b c a bbc c+-+=,整理得3==c e a .故选:B .12.A 【分析】根据函数的单调性和对称性画出函数图像,()22y k x =-+过定点()2,2,计算直线和曲线相切的情况计算斜率得到答案. 【解析】当2x ≤时,()()()'1xxf x xe f x x e =∴=+函数在(),1-∞-上单调递减,在()1,2-上单调递增,且()11f e-=-()()22f x f x -=+,函数关于2x =对称,()22y k x =-+过定点()2,2如图所示,画出函数图像:当()22y k x =-+与()xf x xe =相切时,设切点为()00,x y则()000000022122x x y x e x e k x x --+===-- 根据对称性考虑2x =左边图像,根据图像验证知00x =是方程唯一解,此时1k = 故答案为()()1,00,1k ∈-⋃故选:A13.6【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解析】作出实数x ,y 满足约束条件402200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域如图:(阴影部分)由2z x y =+得y =﹣12x +12z ,平移直线y =﹣12x +12z , 由图象可知当直线y =﹣12x +12z 经过点A 时,直线y =﹣12x +12z 的截距最大,此时z最大.由40220x y x y +-=⎧⎨-+=⎩,解得A (2,2),代入目标函数z =x +2y 得z =2×2+2=6. 故答案为:6.14.3n 【分析】将已知条件转化为基本量a 1,q 的方程组,解方程组得到a 1,q ,进而可以得到a n .【解析】在正项等比数列{}n a 中,481a =,2336a a +=,得312118136a q a q a q ⎧=⎨+=⎩,解得133a q =⎧⎨=⎩,∴a n =11n a q -⋅=3•3n ﹣1=3n . 故答案为:3n15.6π【分析】由题意利用两个向量垂直的性质,两个向量的数量积的定义,求出向量a 与b 的夹角的大小.【解析】解:平面向量a ,b 满足||2a =,||3b =,且()b a b ⊥-,∴2()0b a b b a b -=-=,∴2a b b =.设向量a 与b 的夹角的大小为θ,则23cos 3θ=, 求得[]cos 0,π2θθ=∈,故6πθ=,故答案为:6π. 16【分析】根据,,PAPB PC 两两垂直得到2R =得到答案.【解析】易知,,PA PB PC 两两垂直,2,1PA PB PC ===将三棱锥P ABC -放入对应的长方体内得到2R R ==343V R π==17.【分析】(1)由已知条件结合余弦定理可求cos A 的值,进而根据同角三角函数基本关系式可求sin A 的值.(2)利用三角形的面积公式可求bc 的值,b =3c ,解得b ,c 的值,根据余弦定理可求a 的值,即可求解三角形的周长. 【解析】(1)∵2223b c a +-=,∴由余弦定理可得2bc cosA bc ,∴cosA =,∴在△ABC 中,sin A =13.(2)∵△ABC ,即12bc sin A =16bc ,∴bc =,又sin B =3sin C ,b =3c ,∴b =,c =2,则a 2=b 2+c 2﹣2bc cos A =6,a ∴=2abc ++=+18.【分析】(Ⅰ)完善列联表,计算2 2.778 3.841K ≈<得到结论.(Ⅱ)设人事部的这6名中的3名“追光族”分别为“a ,b ,c ”,3名“观望者”分别为“A ,B ,C ,列出所有情况计算得到答案.【解析】(Ⅰ)由题,22⨯列联表如下:∵()221002020204025 2.778 3.841406040609K ⨯-⨯==≈<⨯⨯⨯,∴没有95%的把握认为该公司员工属于“追光族”与“性別”有关.(Ⅱ)设人事部的这6名中的3名“追光族”分别为“a ,b ,c ”,3名“观望者”分别为“A ,B ,C ”.则从人事部的这6名中随机抽取3名的所有可能情况有“,,a b c ;,,a b A ;,,a b B ;,,a b C ;,,a c A ;,,a c B ;,,a c C ;,,b c A ;,,b c B ;,,b c C ;,,a A B ;,,a A C ;,,a B C ;,,b A B ;,,b A C ;,,b B C ;,,c A B ;,,c A C ;,,c B C ;,,A B C ”共20种.其中,抽取到的3名中恰有1名属于“追光族”的所有可能情况有“,,a A B ;,,a A C ;,,a B C ;,,b A B ;,,b A C ;,,b B C ;,,c A B ;,,c A C ;,,c B C ”共9种.∴抽取到的3名中恰有1名属于“追光族”的概率920P =.19.【分析】(Ⅰ)证明BC AE ⊥和BC AP ⊥得到BC ⊥平面PAE . (Ⅱ)根据相似得到PDQM 证明PD 平面QAF .【解析】(Ⅰ)如图,连接AC .∵底面ABCD 为菱形,且60ABC ∠=︒, ∴三角形ABC 为正三角形.∵E 为BC 的中点,∴BC AE ⊥.又∵AP ⊥平面PBC ,BC ⊂平面PBC , ∴BC AP ⊥. ∵APAE A =,,AP AE ⊂平面PAE ,∴BC ⊥平面PAE .(Ⅱ)连接BD 交AF 于点M ,连接QM . ∵F 为CD 的中点,∴在底面ABCD 中,12DM DF MB AB ==,∴13DM DB =. ∴13PQ DM PB DB ==,∴在三角形BPD 中,//PD QM . 又∵QM ⊂平面QAF ,PD ⊄平面QAF , ∴//PD 平面QAF .20.【分析】(1)求出2(1)()()x x a f x x -+'=,然后分0a ≥、10a -<<、1a =-、1a <-四种情况讨论即可;(2)当2a =时,令212()1h x lnx x x=-+-,利用导数求出()0max h x =即可证明. 【解析】(1)22221(1)(1)()()1a a x a x a x x a f x x x x x-+---+'=+-==, 因为0x >,a R ∈,所以当0a ≥时,0x a +>,函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增; 当10a -<<时,01a <-<,函数()f x 在(0,)a -上单调递增,在(,1)a -上单调递减,在(1,)+∞上单调递增;当1a =-时,22(1)()0x f x x-'=≥,函数()f x 在(0,)+∞上单调递增; 当1a <-时,1a ->,函数()f x 在(0,1)上单调递增,在(1,)a -上单调递减,在(,)a -+∞上单调递增.(2)当2a =时,2()f x lnx x x =++,则212()1f x x x'=+-,[]1,2x ∈, 所以2212()()1f x f x x lnx x x x-'--=-+-, 令212()1h x lnx x x =-+-,则22331144()x x h x x x x x +-'=+-=,令2()4u x x x =+-,因为函数()u x 在[1,2]上单调递增,u (1)0<,u (2)0>, 所以存在唯一的0(1,2)x ∈,使得0()0h x '=,因为当0(1,)x x ∈时,0()0h x '<,当0(x x ∈,2)时,00()h x '>, 所以函数()h x 在0(1,)x 上单调递减,在0(x ,2)上单调递增, 又因为h (1)0=,h (2)210ln =-<,所以()0max h x =, 即2()()f x f x x x-'≤+对任意的[1x ∈,2]都成立. 21.【分析】(Ⅰ)令直线AB :()1x my m R =+∈,联立方程利用韦达定理得到12222m y y m +=-+,12212y y m =-+,22S m =+t =带入化简得到答案.(Ⅱ)直线BE 的方程为223322y y x x ⎛⎫=- ⎪⎝⎭-,令2x =得,221212D y y my =-.代入(Ⅰ)中式子化简得到答案.【解析】(Ⅰ)由题,()1,0F ,令直线AB :()1x my m R =+∈,()11,A x y ,()22,B x y .联立22112x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()222210m y my ++-=. ∵()224420m m ∆=++>,12222m y y m +=-+,12212y y m =-+,∴12y y -===∴四边形OAHB 的面积211212S OH y y y y =⋅-=-=t =,∴1t ≥,∴S t t==+∵12t t+≥(当且仅当1t =即0m =时取等号),∴0S <≤.∴四边形OAHB 面积的取值范围为(.(Ⅱ)∵()2,0H ,()1,0F ,∴3,02E ⎛⎫⎪⎝⎭. ∴直线BE 的斜率2232y k x =-,直线BE 的方程为223322y y x x ⎛⎫=- ⎪⎝⎭-. 令2x =得,221212D y y my =-.……①由(Ⅰ),12222m y y m +=-+,12212y y m =-+. ∴12122y y my y +=,1222111222y y y my y y +==+. 化简①,得22122111221112222D y y y y y my y ===-+-. ∴直线AD 与x 轴平行.22.【分析】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,写出其普通方程,再结合ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,可得曲线C 1,C 2的极坐标方程; (2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,求得|AB |=|ρ1﹣ρ2|,再求出M (3,2π)到射线()06πθρ=≥的距离h=3sin 3π=,即可求得△MAB 的面积.【解析】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,则曲线C 2:22(2)4x y -+=,∵ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,∴曲线C 1的极坐标方程为ρ=4sinθ,曲线C 2的极坐标方程为ρ=4cosθ;(2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,124sincos1).66AB ππρρ∴=-=-=又点(3,)2M π到射线(0)6πθρ=≥的距离为3sin32h π==MAB ∴∆的面积12S AB h =⋅= 23.【分析】(1)原不等式可化为:|x ﹣3|≥4﹣|2x +1|,即|2x +1|+|x ﹣3|≥4,分段讨论求出即可;(2)由基本不等式得m n +的最小值92,转化为|x +32|﹣f (x )≤92恒成立即可.【解析】(1)原不等式化为3421x x -≥-+,即213 4.x x ++-≥ ①12x ≤-时,不等式化为2134x x ---+≥,解得23x ≤-;②132x -<<时,不等式化为2134x x +-+≥,解得0x ≥,03x ∴≤<; ③3x ≥时,不等式化为2134x x ++-≥,解得2x ≥,3x ∴≥. 综上可得:原不等式解集为2(,][0,)3-∞-⋃+∞.(2)() 3.f x x =-3339()3(3)2222x f x x x x x ∴+-=+--≤+--=, 当且仅当3()(3)02x x +-≥且332x x +≥-时取等号.又142(0,0)m n m n+=>>,1141419()()(5)(52222n m m n m n m n m n ∴+=++=++≥+=, 当且仅当4n mm n=时取等号.∴3().2m n x f x +≥+-。
2020届初三中考数学一诊联考试卷含答案解析 (四川)

2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图所示,ABC ∆绕着点A 旋转能够与ADE ∆完全重合,则下列结论不一定成立的是( )A .AE AC =B .EAC BAD ∠=∠ C .//BC AD D .若连接BD ,则ABD ∆为等腰三角形2.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5323.数据1950000用科学记数法表示为()A.1.9×105B.1.95×106C.1.95×107D.0.195×1084.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣25.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.6.如图,在△ABC中,CD是∠ACB的外角平分线,且CD∥AB,若∠ACB=100°,则∠B的度数为()A.35°B.40o C.45o D.50o7.A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-;B.4848944x x+=+-;C.48x +4=9;D.9696944x x+=+-;8.下列立体图形中,主视图是矩形的是()A.B.C.D.9.对于函数y=-2(x-3)2,下列说法不正确的是()A.开口向下B.对称轴是3x=C.最大值为0D.与y轴不相交10.一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱二、填空题(共4题,每题4分,共16分)11.如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,若AB DE=_____.12.在平面直角坐标系中,△ABC的一个顶点是A(2,3),若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为23,则A′的坐标为_____.13.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.14.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m ﹣2(m>0)与x轴交于A、B两点,若该抛物线在A、B之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m的取值范围是_____.三、解答题(共6题,总分54分)15.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.16.某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本15元、35元,甲、乙两种图书的售价分别为每本20元、45元.(1)若书店购书恰好用了2300元,求购进的甲、乙图书各多少本?(2)销售时,甲图书打8.5折,乙图书不打折.若甲、乙两种图书全部销售完后共获利15,求购进的甲、乙图书各多少本?17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.18.如图,已知▱ABCD中,∠ABC=60°,AB=4,BC=m,E为BC边上的动点,连结AE,作点B关于直线AE的对称点F.(1)若m=6,①当点F恰好落在∠BCD的平分线上时,求BE的长;②当E、C重合时,求点F到直线BC的距离;(2)当点F到直线BC的距离d满足条件:2≤d,求m的取值范围.19.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A,D两点作⊙O;(用圆规、直尺作图,不写作法,但要保留作图痕迹)(2)判断直线BC与⊙O的位置关系,并说明理由.20.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD=BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.。
2020年四川省成都市中考数学一诊试卷解析版

中考数学一诊试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列是一元二次方程的是( )A. x2-2x-3=0B. x-2y+1=0C. 2x+3=0D. x2+2y-10=02.一个由半球和圆柱组成的几何体如图水平放置,其俯视图为( )A.B.C.D.3.菱形的两条对角线长分别为6和8,则菱形的面积是( )A. 10B. 20C. 24D. 484.在△ABC中,若∠C=90°,cos A=,则∠A等于( )A. 30°B. 45°C. 60°D. 90°5.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为( )A.2:3 B. 4:9 C. : D. 3:26.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10m,,则容器的内径是( )A. 5cmB. 10cmC. 15cmD. 20cm7.如图,已知AB∥CD∥EF,BD:DF=2:5,那么下列结论正确的是( )A. AC:EC=2:5B. AB:CD=2:5C. CD:EF=2:5D. AC:AE=2:58.某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,如果平均每月增长率为x,则由题意可列方程( )A. 100(1+x)2=500B. 100+100•2x=500C. 100+100•3x=500D. 100[1+(1+x)+(1+x)2]=5009.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( )A. B.C. D.10.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为( )A. 12B. 15C. 16D. 18二、填空题(本大题共9小题,共36.0分)11.若,则=______.12.抛物线y=x2-4x-4的顶点坐标是______.13.设A(x1,y1),B(x2,y2)是反比例函数y=-图象上的两点,若x1<x2<0,则y1与y2之间的关系是______.14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q.若QC=1,BC=3,则平行四边形ABCD周长为______15.设a、b是方程x2+x-2021=0的两个实数根,则(a-1)(b-1)的值为______.16.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有______个.17.已知一列数a1,a2,…,a n(n为正整数)满足a1=1,a2==,…,a n=,请通过计算推算a2019=______,a n=______.(用含n的代数式表示)18.如图,点A在双曲线y=(k≠0)的第一象限的分支上,AB垂直x轴于点B,点C在x轴正半轴上,OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,连接CD,若△CDE的面积为1,则k的值为______.19.如图,矩形ABCD中,AB=3,BC=4,点E是A边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为______.三、解答题(本大题共9小题,共84.0分)20.(1)计算:(π-2)0-2cos30°-(2)解方程:x2-5x+4=0.21.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD是矩形.22.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)23.今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D 级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是______;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.24.如图,在平面直角坐标系中,一次函数y=-x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4).(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.25.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.26.为建设天府新区“公园城市”,实现城市生活垃圾减量化、资源化、无害化的目标.近日,成都市天府新区计划在各社区试点实施生活垃圾分类处理活动,取得市民积极响应.某创业公司发现这一商机,研发生产了一种新型家庭垃圾分类桶,并投入市场试营销售.已知该新型垃圾桶成本为每个40元,市场调查发现,该垃圾桶每件售价y(元)与每天的销售量为x(个)的关系如图.为推广新产品及考虑每件利润因素,公司计划每天的销售量不低于1000件且不高于2000件.(1)求每件销售单价y(元)与每天的销售量为x(个)的函数关系式;(2)设该公司日销售利润为W(元),求每天的最大销售利润是多少元?27.已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,点E在△ABC内,且∠CAE+∠CBE=90°(1)如图1,当△ABC和△EFC均为等腰直角三角形时,连接BF,①求证:△CAE∽△CBF;②若BE=2,AE=4,求EF的长;(2)如图2,当△ABC和△EFC均为一般直角三角形时,若=k,BE=1,AE=3,CE=4,求k的值.28.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(-3,-7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式及点B的坐标.(2)在抛物线上A,M两点之间的部分(不包含A,M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)上下平移直线AB,设平移后的直线与抛物线交与A′,B′两点(A′在左边,B'在右边),且与y轴交与点P(0,n),若∠A′MB′=90°,求n的值.答案和解析1.【答案】A【解析】解:A、是一元二次方程,故此选项正确;B、是二元一次方程,故此选项错误;C、是一元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:A.根据一元二次方程的定义即可求出答案.此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】A【解析】解:这个几何体的俯视图为:故选:A.根据俯视图是指从几何体的上面观察得出的图形作答.本题考查了简单几何体的三视图,能理解三视图的定义是解此题的关键.3.【答案】C【解析】【分析】此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=24.故选C.4.【答案】C【解析】解:∵△ABC中,∠C=90°,cos A=,∴∠A=60°.故选:C.根据∠A为△ABC的内角,且∠C=90°可知∠A为锐角,再根据cos A=即可求出∠A的度数.本题比较简单,考查的是直角三角形的性质及特殊角的三角函数值.5.【答案】B【解析】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,所以S△ABC:S△DEF=()2=,故选B.因为两相似三角形的面积比等于相似比的平方,所以.本题比较容易,考查了两个相似三角形面积比等于相似比的平方的性质.6.【答案】C【解析】解:连接AD、BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴==,∵A,D两个端点之间的距离为10m,∴BC=15m,故选:C.首先连接AD、BC,然后判定△AOD∽△BOC,根据相似三角形的性质可得==,进而可得答案.此题主要考查了相似三角形的应用,关键是掌握相似三角形的判定和性质.7.【答案】A【解析】解:∵AB∥CD∥EF,∴AC:EC=BD:DF=2:5,AC:AE=BD:BF=2:7.故选:A.根据平行线分线段成比例定理对各选项进行判断.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.8.【答案】D【解析】解:设平均每月增长率为x,100[1+(1+x)+(1+x)2]=500.故选:D.如果平均每月增长率为x,根据某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,可列方程.本题考查理解题意的能力,分别求出一,二,三月份的,以总和为等量关系列出方程.9.【答案】C【解析】解:分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.【答案】A【解析】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r-2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r-2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选:A.先根据垂径定理求出AC的长,再设OA=r,则OC=r-2,在Rt△AOC中利用勾股定理求出r的值,再求出BE的长,利用三角形的面积公式即可得出结论.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.11.【答案】【解析】解:∵=,∴3(x+y)=5y,∴3x=2y,∴=.故答案为:.根据两内项之积等于两外项之积列式整理即可.本题考查了比例的性质,主要利用了两内项之积等于两外项之积的性质,需熟记.12.【答案】(2,-8)【解析】解:解法1:利用公式法y=ax2+bx+c的顶点坐标公式为(,),代入数值求得顶点坐标为(2,-8);解法2:利用配方法y=x2-4x-4=x2-4x+4-8=(x-2)2-8,所以顶点的坐标是(2,-8).故答案为:(2,-8).本题可以运用配方法求顶点坐标,也可以根据顶点坐标公式求坐标.本题考查求抛物线的顶点坐标、对称轴的方法.13.【答案】y2>y1>0【解析】解:∵反比例函数y=-中,k=-2<0,∴函数图象的两个分支位于二、四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0,∴y2>y1>0.故答案为:y2>y1>0.先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】14【解析】解:∵由作图可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵QC=1,∴CD=DQ+CQ=3+1=4,∴平行四边形ABCD周长=2(DC+AD)=2×(4+3)=14.故答案为:14.根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出平行四边形ABCD周长.本题考查的是复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.【答案】-2019【解析】解:∵a、b是方程x2+x-2021=0的两个实数根,∴a+b=-1,ab=-2021,∴(a-1)(b-1)=ab-(a+b)+1=-2021+1+1=-2019,故答案为:-2019.根据根与系数的关系得出a+b=-1,ab=-2021,再代入计算即可.本题主要考查根与系数的关系,熟练掌握根与系数的关系是解题的关键.16.【答案】17【解析】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.17.【答案】【解析】解:根据题意得,a1=1=;a2=;a3==;…发现规律:∴a n=.∴a2019==.故答案为:,.根据题意先计算出前几个数,发现规律即可求解.本题考查了规律型-数字的变化类,解决本题的关键是写出前几个数之后,寻找规律,总结规律,运用规律.18.【答案】【解析】解:设A(a,b),∵OC=2AB,点D为OB的中点,∴C(2a,0),D(0,b),∵AE=3EC,△CDE的面积为1,∴S△ADC=4S△CDE=4,∵S梯形ABOC=S△ABD+S△OCD+S△ADC,∴(a+2a)•b=•a•b+•2a•b+4,∴ab=,∵点A在双曲线y=(k≠0)的图象上,∴k=.故答案为.设A(a,b),则C(2a,0),D(0,b),根据三角形面积公式,由AE=3EC得到S△ADC=4S△CDE=4,由于S梯形ABOC=S△ABD+S△OCD+S△ADC,则(a+2a)•b=•a•b+•2a•b+4,整理得ab=,然后根据反比例函数图象上点的坐标特征即可得到k=.本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.19.【答案】【解析】解:如图,在矩形ABCD中,AB=3,BC=4,∠B=∠D=90°,连接AC,∴AC=5,∵AB=3,AE=,∴点F是边BC上的任意位置时,点G始终在AC的下方,设点G到AC的距离为h,S四边形AGCD=S△ACD+S△ACG=3×4+×5h,=6+h.要使四边形AGCD的面积的最小,即h最小.∵点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=,sin∠BAC==,解得EH=AE=,EG=BE=AB-AE=3-,∴h=EH-EG=-(3-)=-3.∴S四边形AGCD=6+×(-3)=-=.故答案为:.根据矩形ABCD中,AB=3,BC=4,可得AC=5,由AE=可得点F是边BC上的任意位置时,点C始终在AC的下方,设点G到AC的距离为h,要使四边形AGCD的面积的最小,即h最小.所以点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.根据锐角三角函数先求得h的值,再分别求得三角形ACD和三角形ACG的面积即可得结论.本题考查了翻折变换,解决本题的关键是确定满足条件的点G的位置,运用相似、锐角三角函数等知识解决问题.20.【答案】解:(1)原式=1-2×-4+-1=1--4+-1=-4;(2)分解因式得:(x-1)(x-4)=0,可得x-1=0或x-4=0,解得:x1=1,x2=4.【解析】(1)原式利用零指数幂法则,特殊角的三角函数值,算术平方根定义,以及绝对值的代数意义计算即可求出值;(2)方程利用因式分解法求出解即可.此题考查了解一元二次方程的解法,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.【解析】根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A=∠D=90°,所以是矩形.此题主要考查了平行四边形的性质,矩形的判定,即有一个角是90度的平行四边形是矩形.22.【答案】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233m.【解析】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x 的值即可.23.【答案】60【解析】解:(1)21÷35%=60户,60-9-21-9=21户,故答案为:60,补全条形统计图如图所示:(2)1500×=750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,∴P(选中e)==,(1)从两个统计图可得,“B级”的有21户,占调查总户数的35%,可求出调查总户数;求出“C级”户数,即可补全条形统计图:(2)样本估计总体,样本中“严重”和“非常严重”占,估计总体1500户的是“严重”和“方程严重”的户数;(3)用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.24.【答案】解:(1)将A(2,4)代入y=-x+m与y=(x>0)中得4=-2+m,4=,∴m=6,k=8,∴一次函数的解析式为y=-x+6,反比例函数的解析式为y=;(2)解方程组得或,∴B(4,2);(3)设直线y=-x+6与x轴,y轴交于C,D点,易得D(0,6),∴OD=6,∴S△AOB=S△DOB-S△AOD=×6×4-×6×2=6.【解析】(1)由点A的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立方程,解方程组即可求得;(3)求出直线与y轴的交点坐标后,即可求出S△AOD和S△BOD,继而求出△AOB的面积.本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出△AOB的面积.25.【答案】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB-AE=BC+CH=BH,即5-AE=3+AE,∴AE=1.【解析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°-∠ABD;∠DGF=∠CGB=90°-∠CBD.因为D 是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.26.【答案】解:(1)设y与x的函数解析式为:y=kx+b(k≠0),∵函数图象过点(1500,55)和(2000,50),∴,∴,∴y与x的函数解析式为:y=-0.01x+70;(2)由题意得,w=(y-40)x=(-0.01x+70-40)x=-0.01x2+30x,即w=-0.01x2+30x,∵-0.01<0,∴当x=时,,∵1000≤x≤2000,∴当每天销售1500件时,利润最大为22500元.∴每天的最大销售利润是22500元.【解析】(1)设y与x的函数解析式为:y=kx+b(k≠0),将函数图象上的两个点的坐标代入列出方程组,进行解答便可;(2)根据“利润=(售价-进价)×销售量“列出函数解析式,然后根据二次函数的性质,求出其最大值.本题是一次函数与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数的解析式,求二次函数的最大值,关键是正确运用待定系数法和从实际问题中列出二次函数的解析式.27.【答案】解:(1)①∵△ABC和△CEF都是等腰直角三角形,∴∠ECF=∠ACB=45°,∴∠BCF=∠ACE,∵△ABC和△CEF都是等腰直角三角形,∴CE=CF,AC=CB,∴=,∴,∴△BCF∽△ACE;②由①知,△BCF∽△ACE,∴∠CBF=∠CAE,=,∴BF=AE=×4=2,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,根据勾股定理得,EF===2;(2)如图(2),连接BF,在Rt△ABC中,tan∠ACB==k,同理,tan∠ECF=k,∴tan∠ACB=tan∠ECF,∴∠ACB=∠ECF,∴∠BCF=∠ACE,在Rt△ABC中,设BC=m,则AB=km,根据勾股定理得,AC==m;在Rt△CEF中,设CF=n,则EF=nk,同理,CE=n∴,=,∴,∵∠BCF=∠ACE,∴△BCF∽△ACE,∴∠CBF=∠CAE,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,∵△BCF∽△ACE,∴,∴BF=AE=,∵CE=4,∴n=4,∴n=,∴EF=,在Rt△EBF中,根据勾股定理得,BE2+BF2=EF2,∴12+()2=()2,∴k=或k=-(舍),即:k的值为.【解析】(1)①先判断出∠BCF=∠ACE,再判断出,即可得出结论;②先判断出∠CBF=∠CAE,进而判断出∠EBF=90°,再求出BF=2,最后用勾股定理求解即可得出结论;(2)先判断出∠BCF=∠ACE,再判断出,进而判断出△BCF∽△ACE,进而表示出BF=,再表示出EF=,最后用勾股定理得,BE2+BF2=EF2,建立方程求解即可得出结论.此题是相似形综合题,主要考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,判断出∠EBF=90°是解本题的关键.28.【答案】解:(1)抛物线的表达式为:y=a(x-1)2+9,将点A的坐标代入上式并解得:a=-1,故抛物线的表达式为:y=-x2+2x+8,将点B坐标代入上式并解得:m=5,故点B(3,5);(2)过点M、C、A分别作三条相互平移的平行线,分别交y轴于点G、H、N,直线l 与抛物线交于点D,设直线m的表达式为:y=kx+t,将点M的坐标代入上式并解得:t=9-k,故直线m的表达式为:y=kx+9-t,即点G(0,9-t),同理直线l的表达式为:y=kx+1-k,故点H(0,1-k),同理直线n的表达式为:y=kx+3k-7,故点N(3k-7),S△DAC=2S△DCM,则HN=2GH,即1-k-(3k-7)=2(9-k-1+k),解得:k=-2,故直线l的表达式为:y=-2x+3…②,联立①②并解得:x=5(舍去)或-1,故点D(-1,5);(3)直线A′B′的表达式为:y=2x+n,设点A′、B′的坐标分别为:(x1,y1)、(x2,y2),将抛物线与直线A′B′的表达式联立并整理得:x2+n-8=0,故x1+x2=0,x1x2=n-8,y1+y2=2(x1+x2)+2n=2n,同理可得:y1y2=4n-32+n2,过点M作x轴的平行线交过点A′与y轴的平行线于点G,交过点B′与y轴的平行线于点H,∵∠A′MB′=90°,∴∠GMA′+∠GA′M=90°,∠GMA′+∠MHB′=90°,∴∠GA′M=∠HMB′,故tan∠GA′M=tan∠HMB′,即:,而x1+x2=0,x1x2=n-8,y1+y2=2n,y1y2=4n-32+n2,整理得:n2-13n+30=0,解得:n=3或10(舍去10),故n=3.【解析】(1)抛物线的表达式为:y=a(x-1)2+9,将点A的坐标代入上式并解得:a=-1,即可求解;(2)S△DAC=2S△DCM,则HN=2GH,即1-k-(3k-7)=2(9-k-1+k),即可求解;(3)∠GA′M=∠HMB′,故tan∠GA′M=tan∠HMB′,即:,而x1+x2=0,x1x2=n-8,y1+y2=2n,y1y2=4n-32+n2,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.第21页,共21页。
2020年四川省成都市新都区九年级一诊(上学期期末)数学试题(解析版)

新都区2020年1月九年级学业水平监测数学试题A 卷(共50分)一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上) 1.2-的绝对值是( )A. 2-B. 2C. 2±D. 【答案】B【解析】【分析】根据负数的绝对值等于它的相反数解答.【详解】解:|-2|=2故选:B .【点睛】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.用科学记数法表示5 700 000,正确的是( )A. 5.7×106B. 57×105C. 570×104D. 0.57×107 【答案】A【解析】5 700 000=5.7×1 000 000=5.7×106,故选A.3.下列计算正确的是( )A. ()3473a a b b =B. 2(41)82b a ab b --=--C. ()23242a a a a ⨯+=D. 22(1)1a a -=- 【答案】C【解析】【分析】根据整式的混合运算法则逐一进行判断即可.【详解】解:A .()34123a a b b =,此选项计算错误;B .2(41)82b a ab b --=-+,此选项计算错误;C .()2324442a a a a a a =+⨯+=,此选项计算正确;D .22(1)21a a a -=-+,此选项计算错误;故选:C .【点睛】本题考查了整式的混合运算,熟练掌握整式的混合运算的法则是解题的关键4.函数y =x 的取值范围是( ) A. 0x ≥B. 1x >C. 0x ≥且1x ≠D. 1x ≥且0x ≠ 【答案】C【解析】【分析】根据被开方数大于等于0,分母不等于0即可得解.【详解】解:由题意得x≥0,x -1≠0,解得x≥0且x≠1,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.在Rt △ABC 中,∠C =90°,AC =4,BC =3,则cos B 的值为( ) A. 45 B. 35 C. 43 D. 34【答案】B【解析】【分析】先求第三边,再求三角函数值.【详解】∵Rt ABC n 中,C 90∠=︒,AC =4,BC =3,∴AB =5,cosB =BC AB =35. 故选B .【点睛】此题重点考察学生对三角函数值的理解,掌握三角函数值的计算是解题的关键.6.方程2x 3x 0-=的解为( )A. x 0=B. x 3=C. 1x 0=,2x 3=-D. 1x 0=,2x 3= 【答案】D【解析】【分析】将方程左边的多项式提取x ,分解因式后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【详解】方程x 2﹣3x =0,因式分解得:x (x ﹣3)=0,可化为x =0或x ﹣3=0,解得:x 1=0,x 2=3. 故选D .【点睛】本题考查了利用因式分解法求一元二次方程的解,利用此方法解方程时,应先将方程整理为一般形式,然后将方程左边的多项式分解因式,根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.7.如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,已知∠ADE =65°,则∠CFE 的度数为( )A. 60°B. 65°C. 70°D. 75°【答案】B【解析】【分析】根据三角形中位线的性质可得DE//BC,EF//AB,根据平行线的性质求出∠CFE的度数即可.【详解】∵点D、E、F分别是AB、AC、BC的中点,∴DE//BC,EF//AB,∴∠ADE=∠B,∠B=∠CFE,∵∠ADE=65°,∴∠CFE=∠ADE=65°,故选B.【点睛】本题考查了三角形中位线的性质及平行线的性质,三角形的中位线平行于第三边,且等于第三边的一半,熟练掌握相关性质是解题关键.8.已知反比例函数y,kx的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是, ,A. (3,,2)B. (,2,,3)C. (1,,6)D. (,6,1)【答案】B【解析】【分析】反比例函数图象上的点横坐标和纵坐标的积为k,把已知点坐标代入反比例解析式求出k的值,即可做出判断.【详解】解:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=6x,则(-2,-3)在这个函数图象上,故选:B.【点睛】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.菱形具有而矩形不一定具有的性质是( )A对角线互相垂直 B. 对角线相等 C. 对角线互相平分 D. 对角互补【答案】A【解析】【详解】菱形的对角线互相垂直平分,矩形的对角线相等互相平分.则菱形具有而矩形不一定具有的性质是:对角线互相垂直.故选A10.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4,,,2,1),则位似中心的坐标为()A. ,0,3,B. ,0,2.5,C. ,0,2,D. ,0,1.5,【答案】C【解析】如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴12 GP GFPC BC==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】本题考查的是位似变换的概念、坐标与图形性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心是解题的关键.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若23a b =,则a b b +=_____. 【答案】53 【解析】2,3a b =Q a b b +∴=2511b 33a +=+=. 12.分解因式:34n n -=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年四川省成都市新都区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.−2的绝对值是()A.−2B.2C.±2D.122.用科学记数法表示5700000,正确的是()A.5.7×106B.57×105C.570×104D.0.57×1073.下列计算正确的是()A.(a4b)3=a7b3B.−2b(4a−1)=−8ab−2bC.a×a3+(a2)2=2a4D.(a−1)2=a2−14.函数y=√xx−1的自变量x的取值范围是()A.x>0B.x≠1C.x>1且x≠1D.x≥0且x≠15.如图,△ABC中,∠C=90∘,若AC=4,BC=3,则cosB等于()A.35B.34C.45D.436.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=−3D.x1=0,x2=37.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65∘,则∠CFE的度数为()A.60∘B.65∘C.70∘D.75∘的图象经过点(3, 2),那么下列四个点中,也在这个8.已知反比例函数y=kx函数图象上的是()A.(3, −2)B.(−2, −3)C.(1, −6)D.(−6, 1)9.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补10.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(−4, 4),(2, 1),则位似中心的坐标为()A.(0, 3)B.(0, 2.5)C.(0, 2)D.(0, 1.5)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)如果a:b=2:3,那么(a+b):b=________.分解因式:a 3−4a =________.如图,已知路灯离地面的高度AB 为4.8m ,身高为1.6m 的小明站在D 处的影长为2m ,那么此时小明离电杆AB 的距离BD 为4 m .如图,点P 在反比例函数y =kx (x <0)的图象上,过P 分别作x 轴、y 轴的垂线,垂足分别为点A 、B .已知矩形PAOB 的面积为8,则k =________.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上) (1)计算:cos 230∘+|1−√2|−2sin45∘+(π−3.14)0 (2)解方程:x(x −1)=2x先化简,再求值:(m +1m+2)÷(m −2+3m+2),其中m =2.随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.(1)求:本次被调查的学生有多少名?补全条形统计图.(2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少.(3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.某路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60∘和45∘,求路况显示牌BC的长度.(结果保留根号)(x>0)的图象于如图,一次函数y=kx+b的图象交反比例函数y=axA(4, −8)、B(m, −2)两点,交x轴于点C,P是x轴上一个动点.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?(3)若△BCP与△OAC相似,请直接写出点P的坐标.如图,正方形ABCD的边长为8,点E,F分别在边AB,AD上,且∠ECF=45∘,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)证明:∠AHC=∠ACG;(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化,请求出S与m的函数关系式;如果不变化,请求出定值;②请直接写出使△CGH是等腰三角形的m值.B卷(共50分)二、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)已知a是方程x2−2x−1=0的一个根,则代数式2a2−4a−1的值为________.如图,已知直线l1 // l2 // l3 // l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=________.若方程3x+3=2x+k有负数根,则k的取值范围为________.如图,已知A(3, 1),B(1, 0),PQ是直线y=x上的一条动线段且PQ=√2(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为________如图,直线y=−x+b与双曲线y=1x(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连接OA、OB,若S△AOB=S△OBF+S△OAE,则b=________.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120∘,连结BG、CG、DG,①求证:△DGC≅△BGE;②求∠BDG的度数;(3)若∠ABC=90∘,AB=8,AD=14,M是EF的中点,求DM的长.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(−6, 0),D(−7, 3),点B、C在第二象限内.(1)点B的坐标________;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.2020年四川省成都市新都区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.−2的绝对值是()A.−2B.2C.±2D.12【解答】−2的绝对值是:2.2.用科学记数法表示5700000,正确的是()A.5.7×106B.57×105C.570×104D.0.57×107【解答】5 700 000=5.7×106.3.下列计算正确的是()A.(a4b)3=a7b3B.−2b(4a−1)=−8ab−2bC.a×a3+(a2)2=2a4D.(a−1)2=a2−1【解答】A、(a4b)3=a12b3,故此选项错误;B、−2b(4a−1)=−8ab+2b,故此选项错误;C、a×a3+(a2)2=2a4,正确;D、(a−1)2=a2−2a+1,故此选项错误;的自变量x的取值范围是()4.函数y=√xx−1A.x>0B.x≠1C.x>1且x≠1D.x≥0且x≠1【解答】根据题意得,x≥0且x−1≠0,解得x≥0且x≠1.5.如图,△ABC中,∠C=90∘,若AC=4,BC=3,则cosB等于()A.35B.34C.45D.43【解答】由勾股定理,得AB=√AC2+BC2=5,cosB=BCAB =35,6.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=−3D.x1=0,x2=3【解答】解:∵x2−3x=0,∴x(x−3)=0,则x=0或x−3=0,解得:x=0或x=3.故选D.7.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65∘,则∠CFE的度数为()A.60∘B.65∘C.70∘D.75∘【解答】解:∵点D,E,F分别是AB,AC,BC的中点,∴DE // BC,EF // AB,∴∠ADE=∠B,∠B=∠EFC,∴∠ADE=∠CFE=65∘.故选B.8.已知反比例函数y=kx的图象经过点(3, 2),那么下列四个点中,也在这个函数图象上的是()A.(3, −2)B.(−2, −3)C.(1, −6)D.(−6, 1)【解答】把(2, 3)代入反比例解析式得:k=6,,∴反比例解析式为y=6x则(−2, −3)在这个函数图象上,9.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【解答】解:A,菱形对角线互相垂直,而矩形的对角线不互相垂直,故本选项符合要求;B,矩形的对角线相等,而菱形不具备这一性质,故本选项不符合要求;C,菱形和矩形的对角线都互相平分,故本选项不符合要求;D,菱形矩形的对角都相等,但菱形不具备对角互补,故本选项不符合要求. 故选A.10.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(−4, 4),(2, 1),则位似中心的坐标为()A.(0, 3)B.(0, 2.5)C.(0, 2)D.(0, 1.5)【解答】如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(−4, 4),(2, 1),∴点C的坐标为(0, 4),点G的坐标为(0, 1),∴CG=3,∵BC // GF,∴GPPC =GFBC=12,∴GP=1,PC=2,∴点P的坐标为(0, 2),二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)如果a:b=2:3,那么(a+b):b=________.【解答】∵a:b=2:3,∴(a+b):b=2+33=53.分解因式:a3−4a=________.【解答】原式=a(a2−4)=a(a+2)(a−2).如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【解答】∵DE // AB,∴△CDE ∽△CBA , ∴CD CB=DE AB,即2CB=1.64.8,∴CB =6,∴BD =BC −CD =6−2=4(m).如图,点P 在反比例函数y =kx (x <0)的图象上,过P 分别作x 轴、y 轴的垂线,垂足分别为点A 、B .已知矩形PAOB 的面积为8,则k =________.【解答】 ∵S 矩形PAOB =8, ∴|k|=8,∵图象在二、四象限, ∴k <0, ∴k =−8,三、解答题(本大题共6小题,共54分,解答过程写在答题卡上) (1)计算:cos 230∘+|1−√2|−2sin45∘+(π−3.14)0 (2)解方程:x(x −1)=2x 【解答】原式=(√32)2+√2−1−2×√22+1=34+√2−1−√2+1 =34;整理成一般式,得:x 2−3x =0, ∵x(x −3)=0, ∴x =0或x −3=0, 解得x =0或x =3.先化简,再求值:(m +1m+2)÷(m −2+3m+2),其中m =2. 【解答】 原式=m(m+2)+1m+2÷(m+2)(m−2)+3m+2=m 2+2m +1×m +2=(m +1)2m +2×m +2(m +1)(m −1)=m+1m−1,当m =2时,原式=2+12−1=3.随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.(1)求:本次被调查的学生有多少名?补全条形统计图. (2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少. (3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率. 【解答】本次被调查的学生有由12÷24%=50(人),则“非常了解”的人数为50×10%=5(人),“了解很少”的人数为50×36%=18(人),“不了解”的人数为50−(5+12+18)=15(人),补全图形如下:估计该校1200名学生中“非常了解”与“了解”的人数和是1200×5+1250=408(人);画树状图为:共有20种等可能的结果数,其中恰好抽到一男一女的有12种结果,所以恰好抽到一男一女的概率为1220=35.某路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60∘和45∘,求路况显示牌BC的长度.(结果保留根号)【解答】∵在Rt△ADB中,∠BDA=45∘,AB=3m,∴DA=3m,在Rt△ADC中,∠CDA=60∘,∴tan60∘=CAAD,∴CA=3√3m∴BC=CA−BA=(3√3−3)米.如图,一次函数y=kx+b的图象交反比例函数y=ax(x>0)的图象于A(4, −8)、B(m, −2)两点,交x轴于点C,P是x轴上一个动点.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?(3)若△BCP与△OAC相似,请直接写出点P的坐标.【解答】∵反比例函数y=ax(x>0)的图象过A(4, −8),∴k=4×(−8)=−32.∴反比例函数的解析式为y=−32x,∵双曲线y=−32x过点B(m, −2),∴−2m=−32,∴m=16.由直线y=kx+b过点A,B得:{4k+b=−816k+b=−2,解得,{k=12b=−10,∴一次函数关系式为y=12x−10.观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值.在直线y=12x−10中,令y=0,则x=20,∴C(20, 0),∴OC=20,AC=√(20−4)2+82=8√5,BC=√(20−16)2+22=2√5,设P(m, 0),则PC=20−m,当△BCP∽△ACO时,则PCOC =BCAC,即20−m20=√58√5,∴m=15,此时P(15, 0);当△BCP∽△OCA时,则PCAC =BCOC,即8√5=2√520,∴m=16,此时P(16, 0),综上,P点的坐标为(15, 0)或(16, 0).如图,正方形ABCD的边长为8,点E,F分别在边AB,AD上,且∠ECF=45∘,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)证明:∠AHC=∠ACG;(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化,请求出S与m的函数关系式;如果不变化,请求出定值;②请直接写出使△CGH是等腰三角形的m值.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB=CD=DA=8,∠D=∠DAB=90∘,∠DAC=∠BAC=45∘,∴AC=√82+82=8√2,∵∠DAC=∠AHC+∠ACH=45∘,∠ACH+∠ACG=45∘,∴∠AHC=∠ACG;(2)解:AC2=AG⋅AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135∘,∴△AHC∼△ACG,∴AHAC =ACAG,∴AC2=AG⋅AH;(3)解:①△AGH的面积不变.理由:∵S△AGH=12⋅AH⋅AG=12AC2=12×(8√2)2=64,∴△AGH的面积为64.②如图1中,当GC=GH时,易证△AHG≅△BGC,可得AG=BC=8,AH=BG=16,∵BC // AH,∴BCAH =BEAE=12,∴AE=23AB=163.如图2中,当CH=HG时,易证AH=BC=8,∵BC // AH,∴BEAE =BCAH=1,∴AE=BE=4.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5∘.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45∘,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5∘,∴CM=EM,设BM=BE=x,则CM=EM=√2x,∴x+√2x=8,∴m=8(√2−1),∴AE=8−8(√2−1)=16−8√2,综上所述,满足条件的m的值为163或4或16−8√2.B卷(共50分)二、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)已知a是方程x2−2x−1=0的一个根,则代数式2a2−4a−1的值为________.【解答】∵a是方程x2−2x−1=0的一个根,∴a2−2a=1,∴2a2−4a−1=2(a2−2a)−1=2×1−1=1.如图,已知直线l1 // l2 // l3 // l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=________.【解答】解:过D作EF⊥l1,交l1于E,交l4于F.∵EF⊥l1,l1 // l2 // l3 // l4,∴EF和l2、l3、l4的夹角都是90∘,即EF与l2、l3、l4都垂直,∴DE=1,DF=2.∵四边形ABCD是正方形,∴∠ADC=90∘,AD=CD,∴∠ADE+∠CDF=90∘.又∵∠α+∠ADE=90∘,∴∠α=∠CDF.∵AD=CD,∠AED=∠DFC=90∘,∴△ADE≅△DFC,∴DE=CF=1,∴在Rt△CDF中,CD=√CF2+DF2=√5,∴sinα=sin∠CDF=CFCD =√5=√55.若方程3x+3=2x+k有负数根,则k的取值范围为________.【解答】方程两边都乘以(x+3)(x+k)得,3(x+k)=2(x+3),解得x=−3k+6,∵方程的解是负数,∴−3k+6<0,解得k>2,又∵x+3≠0,∴x≠−3,∵x+k≠0,即k≠3,∴k>2且k≠3.如图,已知A(3, 1),B(1, 0),PQ是直线y=x上的一条动线段且PQ=√2(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为________23,23).【解答】作点B关于直线y=x的对称点B′(0, 1),过点A作直线MN,并沿MN向下平移√2单位后得A′(2, 0)连接A′B′交直线y=x于点Q如图理由如下:∵AA′=PQ=√2,AA′ // PQ,∴四边形APQA′是平行四边形.∴AP=A′Q.∵AP+PQ+QB=B′Q+A′Q+PQ且PQ=√2.∴当A′Q+B′Q值最小时,AP+PQ+QB值最小.根据两点之间线段最短,即A′,Q,B′三点共线时A′Q+B′Q值最小.∵B′(0, 1),A′(2, 0),∴直线A′B′的解析式y=−12x+1.∴x=−12x+1.即x=23,∴Q点坐标(23, 23 ).如图,直线y=−x+b与双曲线y=1x(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,连接OA、OB,若S△AOB=S△OBF+S△OAE,则b=________43√3.【解答】令y=0,则−x+b=0,解得x=b,令x=0,则y=b,所以,点E(b, 0)、F(0, b),所以,OE=OF,过点O作OM⊥AB于点M,则ME=MF,设点A(x1, y1)、B(x2, y2),联立{y=−x+by=1x,消掉y得,x2−bx+1=0,根据根与系数的关系,x1⋅x2=1,所以y1⋅y2=1,所以y1=x2,y2=x1,所以OA=OB,所以AM=BM(等腰三角形三线合一),∵S △AOB =S △OBF +S △OAE , ∴FB =BM =AM =AE , 所以点A(34b, 14b), ∵点A 在双曲线y =1x 上, ∴34b ×14b =1, 解得b =43√3.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上) 某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:(1)研究发现,每天销售量y 与单价x 满足一次函数关系,求出y 与x 的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元? 【解答】 设y =kx +b ,根据题意可得{30k +b =50040k +b =400 ,解得:{k =−10b =800 ,则y =−10x +800;根据题意,得:(x −20)(−10x +800)=8000, 整理,得:x 2−100x +2400=0, 解得:x 1=40,x 2=60,∵销售单价最高不能超过45元/件, ∴x =40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元. 如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120∘,连结BG、CG、DG,①求证:△DGC≅△BGE;②求∠BDG的度数;(3)若∠ABC=90∘,AB=8,AD=14,M是EF的中点,求DM的长.【解答】证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD // BC,AB // CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;①∵四边形ABCD是平行四边形,∴AB // DC,AB=DC,AD // BC,∵∠ABC=120∘,∴∠BCD=60∘,∠BCF=120∘由(1)知,四边形CEGF是菱形,∠BCF=60∘,∴CE=GE,∠BCG=12∴CG=GE=CE,∠DCG=120∘,∵EG // DF,∴∠BEG=120∘=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD // BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≅△BGE(SAS);②∵△DGC≅△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60∘,∴∠BGD=60∘,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60∘;如图2中,连接BM,MC,∵∠ABC=90∘,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90∘,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45∘,∴∠BEM=∠DCM=135∘,在△BME和△DMC中,∵{BE=CD∠BEM=∠DCMEM=CM,∴△BME≅△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90∘,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2√65,∴DM=√22BD=√130.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(−6, 0),D(−7, 3),点B、C在第二象限内.(1)点B的坐标________;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.【解答】过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,如图1所示.∵四边形ABCD为正方形,∴AD=AB,∠BAD=90∘,∵∠EAD+∠ADE=90∘,∠EAD+∠BAF=90∘,∴∠ADE=∠BAF.在△ADE和△BAF中,有{∠AED=∠BFA=90∠ADE=∠BAFAD=BA,∴△ADE≅△BAF(AAS),∴DE=AF,AE=BF.∵点A(−6, 0),D(−7, 3),∴DE=3,AE=1,∴点B的坐标为(−6+3, 0+1),即(−3, 1).故答案为:(−3, 1).设反比例函数为y=kx,由题意得:点B′坐标为(−3+t, 1),点D′坐标为(−7+t, 3),∵点B′和D′在该比例函数图象上,∴{k=−3+tk=3(−7+t),解得:t=9,k=6,∴反比例函数解析式为y=6x.假设存在,设点P的坐标为(m, 0),点Q的坐标为(n, 6n).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①当B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴{6n−3=1m−6=2−n,解得:{m=132n=32,∴P(132, 0),Q(32, 4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴{m−n=6−26n−0=3−1,解得:{m=7n=3,∴P(7, 0),Q(3, 2);∵四边形B′QPD′为平行四边形,∴{n−m=6−20−6n=3−1,解得:{m=−7n=−3.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为P(132, 0)、Q(32, 4)或P(7, 0)、Q(3, 2)或(−7, 0)、(−3, −2).。