混料罐实验梯形图

合集下载

PLC课程设计混料罐的单次与连续控制

PLC课程设计混料罐的单次与连续控制

《PLC 控制技术》 课程设计报告混料罐的单次与连续控制班 级 11电气自动化技术2班 学 号 姓 名 指导教师 提交日期 2013.6.15 成 绩JINGCHU UNIVERSITY OF TECHNOLOGY目录1 设计任务和要求 (3)1、1控制过程要求 (3)1、2设计任务流程 (4)2 硬件设计 (5)2.1输入/输出设备的选型 (5)2.2 主电路设计 (5)2.3 PLC选型 (6)2.4 PLC 输入/输出分配表 (7)2.5 PLC的输入/输出电气接口图 (7)3 软件设计 (7)3.1控制程序的流程图 (7)3.2控制程序的设计思路 (9)3.3软件调试及结果分析 (9)4 课程设计总结 (12)5 参考文献 (13)1 设计任务和要求1、1控制过程要求如下所示:有一混料罐装有二个进料泵控制二种液料的进罐,装有一个出料泵控制混合料出罐,另有一个混料泵用于搅拌液料,罐体上装有三个液位检测开关S1、S2、S3,分别送出罐内液位低、中、高的检测信号,罐内与检测开关对应处有一只装有磁钢的浮球作为液面指示器(浮球到达开关位置时开关吸合,离开时开关释放)。

有一个混料配方选择开关SA1,用于选择配方1或配方2。

设有一个起动按钮SB1,当按动SB1后,混料罐就按给定的工艺流程开始运行。

设有一个停止按钮SB2作为流程的停运开关。

混料罐连续循环与单次循环可按SA2自锁按钮进行选择,当SA2为“0”时混料罐连续循环,当SA2为“1”时混料罐单次循环。

1、2设计任务流程:PLC试验台的本系统的实验图片如下图所示:2 硬件设计2.1 输入/输出设备的选型输入设备选择时,按照要求本系统进行给予输入分配如下表格所示:表1对于输出设备的选择如下表所示: 表22.2 主电路设计2.3 PLC选型对于选型,不仅要要节省资源,而且要节俭设备的损耗,因为本系统的要求的输入输出的数量比较的少,所以可以直接的进行PLC选型:FX1N-14MR-001 输入点: 8, 6点继电器输出所以选择该类型的PLC完全可以实现本实验的要求,而且输入输出口不用的也较少。

三菱PLC编程实例

三菱PLC编程实例

课题一PLC控制运料小车一、课题要求:要求:根据给定的设备和仪器仪表,在规定的时间内完成程序的设计、安装、调试等工作,达到课题规定的要求。

二、设计原则:按照完成的工作是否达到了全部或部分要求,由实验老师对其结果进行评价。

三、课题内容:其中启动按钮S01用来开启运料小车,停止按钮S02用来手动停止运料小车(其工作方式见考核要求2选定)。

按S01小车从原点起动, KM1接触器吸合使小车向前运行直到碰SQ2开关停,KM2接触器吸合使甲料斗装料5秒,然后小车继续向前运行直到碰 SQ3开关停,此时KM3接触器吸合使乙料斗装料3秒,随后KM4接触器吸合小车返回原点直到碰SQ1开关停止,KM5接触器吸合使小车卸料 5秒后完成一次循环。

四、设计要求:1、编程方法由实验老师指定:⑴用欧姆龙系列PLC简易编程器编程1⑵用计算机软件编程2、工作方式:A.小车连续循环与单次循环可按S07自锁按钮进行选择,当S07为“0”时小车连续循环,当S07为“1”时小车单次循环;B.小车连续循环,按停止按钮S02小车完成当前运行环节后,立即返回原点,直到碰SQ1开关立即停止;当再按启动按钮S01小车重新运行;C.连续作3次循环后自动停止,中途按停止按钮S02则小车完成一次循环后才能停止;3、按工艺要求画出控制流程图;4、写出梯形图程序或语句程序;5、用欧姆龙系列PLC简易编程器或计算机软件进行程序输入;6、在考核箱上接线,用电脑软件模拟仿真进行调试。

五、输入输出端口配置:六、问题:小车工作方式设定:A.小车连续循环与单次循环可按S07自锁按钮进行选择,当S07为“0”时小车连续循环,当S07为“1”时小车单次循环;B.小车连续循环,按停止按钮S02小车完成当前运行环节后,立即返回原点,直到碰SQ1开关立即停止;当再按启动按钮S01小车重新运行;C.连续作3次循环后自动停止,中途按停止按钮S02小车完成一次循环后才能停止。

1、按工艺要求画出控制流程图:2、写出梯形图程序或语句程序3、用欧姆龙系列PLC简易编程器或计算机软件进行程序输入及调试。

03 用PLC进行混料罐的控制线路设计,并进行模拟调试

03 用PLC进行混料罐的控制线路设计,并进行模拟调试

用PLC进行混料罐的控制线路设计,并进行模拟调试一、实验目的熟练使用各条基本指令,通过对工程事例的模拟,熟练地掌握PLC编程和调试。

二、液体混料罐控制模拟实验面板图:图1三、控制要求从面板图可知,本装置为两种液体混合的模拟。

SB1用于启动装置,SB2用于停止装置,开关S1用于选择配方,S2用于流程的循环选择,SL1、SL2、SL3为三个液面传感器,液体A、B及排液泵阀门由YV1、YV2、YV3控制,M为搅拌电机,由KM控制控制要求如下:初始状态:装置投入运行时,液体A、B阀门关闭,排液阀打开 3 秒。

启动操作:按下启动按钮SB1,装置开始按照以下约定的规律操作:液体A阀门打开,液体A流入混料罐,当液位升到SL2时,(若选配方1,S1=1)A阀门关闭,B阀门打开;(若选配方2,S1=0)A阀门、B阀门均开。

当液位升到SL1时,A阀门、B阀门关闭,搅拌机运行3秒,运行时间到,(配方1)排液阀YV3开,液位降至SL2时,搅拌机关;(配方2)搅拌机停止,排液阀YV3打开。

液位降到SL3时,延时3秒,混料罐放空,YV3关闭,此时完成一个工作循环,若S2=0,装置继续下一个工作循环,若S2=1,装置停止运行。

四、编制梯形图并写出程序,实验梯形图参考图2指令表五、将PTS-11挂件上PLC输出端的COM,COM0,COM1,COM2相接。

将PWD-42挂件上的液体混合装置控制模拟模块的SB1、SB2、SL1、SL2、SL3、S01、S02分别接至PTS-11挂件上的X0、X1、X2、X3、X4、X5、X6,YV1、YV2、YV3、YKM 分别接至 PTS-11挂件上的Y0、Y1、Y2、Y3,+24V、COM分别接至PWD41挂件上的+24V六.实验操作过程按实验接线接好连线,将程序输入到PLC中并运行PLC,排液阀YV3打开(指示灯亮),排出混料罐内剩余液体,3秒后关闭(指示灯灭)。

将SL1、SL2、SL3断开。

混料罐控制实验

混料罐控制实验
实验原理
混料罐工作后,A阀门 打开,液体A流入;当液 位上升到M检测位时, 关闭A阀门,打开B阀门 液体B流入;当液位上升 到H检测位时, B阀门 关闭,搅拌
电机开始运行,延时5S后,停止搅拌。卸料阀 门打开,混合液体C流出,当液位下降到L检测 位时,延时2S,卸料阀门关闭,然后进行下一 个周期操作,循环运行。
在混料工作运行期间,若按下正常停机按钮, 则该周期结束后,系统停止工作;若按下急停 按钮,卸料阀门立即打开,当液位降到实验目的﹑实验任务。 根据题目要求写出I/O分配表,并设计梯
形图。 写出每个程序在运行中观察到的现象。
实验设备
可编程控制器----西门子S7-200 基础实验板TS2 P4计算机一台

维修电工高级PLC题目混料罐PPT课件

维修电工高级PLC题目混料罐PPT课件

THANKS FOR WATCHING
感谢您的观看
在操作过程中,要保证工 作场所的整洁、卫生,防 止杂物和污染物进入混料 罐。
ABCD
在操作过程中,要时刻关 注设备的运行状态,发现 异常情况要及时处理。
在操作过程中,要保证工 作场所的安全,防止发生 火灾、爆炸等事故。
紧急情况下的处理措施
01
如果混料罐出现泄漏、压力异常等紧急情况,要立即停止操作,关闭 电源,并报告上级领导。
提高混料罐系统的效率与稳定性
优化设计
通过优化混料罐系统的设计和结构,能够提高系统的效率和使用 寿命,降低故障率和维修成本。
定期维护
定期对混料罐系统进行维护和保养,能够确保系统的稳定性和可靠 性,延长设备的使用寿命。
技术升级
随着新技术的不断涌现,及时对混料罐系统进行技术升级和改造, 能够提高系统的性能和效率,适应不断变化的市场需求。
故障定位
利用PLC控制系统和相关仪表,确定故障部位和原因。
修复与替换
对损坏的部件进行修复或替换,恢复设备正常运行。
混料罐系统的预防性维护策略
制定维护计划
根据设备运行状况和维修经验,制定合理的维 护计划。
定期检查与更换
按照维护计划,定期对关键部件进行检查和更 换。
数据记录与分析
记录设备运行和维护数据,分析设备性能变化趋势,提前发现潜在问题。
数据处理
PLC具备强大的数据处理能力,可以 对混料罐系统中的各种数据进行分析、 计算和存储,为生产管理提供数据支 持。
PLC控制混料罐的工作原理
01
02
03
输入信号处理
混料罐系统中的各种传感 器将采集到的信号输入到 PLC中,PLC通过程序对 这些信号进行处理。

混料实验

混料实验

新灰分 残差图
正态概率图
99
与拟合值
方差膨 项 系数 系数标准误 T P 胀因子 A 0.465642 0.002189 * * 1.964 B 0.460533 0.002189 * * 1.964
百分比
90 50 10
1 -0.004
-0.002
0.000 残差
0.002
0.004
残差
0.001 0.000 -0.001 -0.002 -0.003
单形重心设计的试验点为1到P个顶点的重心,顶点本身就是重心,两个顶点 的重心是它们连线的中点,三个顶点的重心是它们组成正三角形的中心,……, P个顶点的重心就是该单形的中心。
这些试验点的坐标不依赖于d,通常我们选用饱和设计。在d=1或2时,单形 重心设计与单形格子是设计一致的,但是d>2后就不相同了。
频率
B*C 0.006821 0.010089 0.68 0.536 1.982
2
1
S = 0.00226981 PRESS = 0.000435816
0 -0.003 -0.002 -0.001 0.000 0.001 0.002
R-Sq = 64.31% R-Sq(预测) = 0.00% R-Sq(调整) =
混料实验设计与分析
混料实验简介
在实际工作中,常常需要研究一些配方配比实验问题。这种问题经常出现在 橡胶、化工、制药、冶金、食品等课题中。这里所说的混料是指由若干不同成分 的元素混合成一种新的物品。组成混料的各种成文称为混料成分或分量,也就是 混料试验中的因子。
由不同成分组成的钢、铁、铝、药方、饲料以及燃料等都是混料,某些分配 问题,如企业的材料、资金、设备、人员等的分配也属于混料问题。

混料灌PLC控制实训

混料灌PLC控制实训

成绩评定表课程设计任务书摘要MCGS是北京昆仑通态自动化软件科技有限公司研发的基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,主要完成现场数采集与监测、前端数据的处理与控制,可运行于Microsoft Windows 95/98/Me/NT/2000/xp等操作系统。

具有功能完善、操作简便、可视性好、可维护性强的突出特点。

通过与其他相关的硬件设备结合,可以快速、方便的开发各种用于现场采集、数据处理和控制的设备。

用户只需要通过简单的模块化组态就可构造自己的应用系统,如可以灵活组态各种智能仪表、数据采集模块,无纸记录仪、无人值守的现场采集站、人机界面等专用设备。

可编程序控制器(Programmable Controller,英文缩写为PC,后又称为PLC)是以微处理器为基础,综合了计算机技术,半导体集成技术,自动控制技术,数字技术和通信网络技术发展起来的一种通用工业自动控制装置。

它面向控制过程、面向用户、适应工业环境、操作方便、可靠性高,是现代工业控制的支柱之一。

随着现代工业技术的快速发展,物料混合的应用更加的广泛,对于物料体混合控制技术的研究有着广泛的经济价值。

普通的人工操作和半自动化控制难以达到较高要求的控制目的,基于MCGS的混料罐PLC控制系统可以达到更加可靠的控制目的。

本次实训的题目为基于MCGS的混料罐PLC控制实训,系统针对两种物料按比例的混合进行设计,此系统由上位机和下位机两部分组成,采用PLC作为下位机进行直接控制设备和获取设备状况,在PC上利用组态软件MCGS模拟PLC的控制对象制作上位机监控界面显示各种信号变化。

主要内容包括混料罐PLC控制系统问题描述、系统电气图、PLC的输入输出分配表、PLC程序(梯形图)、MCGS组态过程、MCGSD 的运行画面、MCGS和PLC的通讯等。

关键字:MCGS;混料罐;PLC;实训目录1 绪论 (1)2 混料罐PLC控制系统设计 (2)2.1 混料罐PLC控制系统问题概述 (2)2.2 混料罐PLC控制系统设计 (3)2.2.1 控制器选择 (3)2.2.2 PLC I/O地址分配 (3)2.2.3 混料罐PLC控制系统电气图 (4)2.2.4 PLC程序(梯形图)设计 (4)3 MCGS工程组态软件简介 (9)3.1 MCGS组态软件整体结构 (9)3.2 MCGS组态软件五大组成部分 (10)3.3 MCGS组态软件的工作方式 (11)3.4 MCGS组态软件的主要特点 (12)4 混料罐PLC控制系统监控界面设计 (13)4.1 新建MCGS工程 (13)4.2 设计画面 (14)4.2.1 新建用户窗口 (14)4.2.2 编辑画面 (15)4.3 定义数据变量 (15)4.4 动画连接 (16)4.5 编写控制流程 (18)4.6 PLC与MCGS通讯 (20)4.6.1 设备连接 (20)4.6.2 串口设备属性设置 (21)5 混料罐PLC控制系统整体运行和综合测试 (22)结束语 (24)参考文献 (25)基于MCGS的混料罐PLC控制实训1绪论在现代工业中,尤其是在炼油、化工、制药等行业中,多种物料混合是必不可少的工序。

饮料灌装生产流水线PLC梯形图控制设计说明书

饮料灌装生产流水线PLC梯形图控制设计说明书

设计任务书《可编程控制器》课程设计设计题目:饮料灌装生产流水线PLC梯形图控制学院:学号:专业(方向)年级:学生姓名:2013年 6 月 17日设计说明书目录1 引言 (2)2 系统总体方案设计 (3)2.1 系统硬件配置及组成原理 (3)2.2 系统变量定义及分配表 (4)2.3 系统接线图设计 (4)3控制系统程序设计 (5)4控制系统的上位机设计 (12)4.1 人机界面选择 (12)4.2 人机界面设计 (12)5系统调试及结果分析 (18)5.1 PLC程序调试及解决的问题 (18)5.2 PLC与上位机联调 (18)5.3 结果分析 (18)结束语: (19)参考文献 (20)1 引言文章探讨了如何利用德国西门子PLC S7-200 进行饮料灌装生产流水线的控制,重点分析了系统软硬件设计部分,并给出了系统硬件接线图、PLC 控制I/O 端口分配表以及整体程序流程图等,实现了饮料灌装的自动化,提高了生产效率,降低了劳动强度。

关键词:PLC;自动化饮料灌装生产线;;系统硬件接线图;I/O 端口分配表传统的饮料罐装生产线的电气设备控制系统是传统的继电器——接触器控制方式,在使用的过程中,生产工效低,人机对话靠指示灯+按钮+讯响器的工作方式,响应慢,故障率高,可靠性差,系统的工作状态、故障处理、设备监控与维护只能凭经验被动的去查找故障点。

且在生产过程中容易产生二次污染,造成合格率低,生产成本增加。

而自动化生产线在众多领域应用得非常广泛,其控制部分常常采用PLC 控制,它使自动化生产线运行更加平稳,定位更加准确,功能更加完善,操作更加方便。

为适应发展,故提出下面的PLC控制技术改造现有生产线。

本文介绍了德国西门子PLCS7- 200 在自动化饮料罐装生产线控制系统中的应用,并从硬件和软件两方面进行了分析和研究。

2 系统总体方案设计2.1 系统硬件配置及组成原理传感器的选择信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

启动
000003 (000024) 20.06 20.01 20.00
控制A口
启动
TIM001 20.05
控制B口 停止
延时2''
20.00
控制A口
000004 (000031) 0.01 20.00 20.02 20.01
控制B口
M传感器
20.01
控制A口
控制电机
控制B口
000005 (000036) 0.02 20.01 TIM000 20.02
20.07 TIM002
复位延时2''
000001 (000012)
0.03
L传感器
复位输出 复位延时 2''
L传感器保持状 态
20.11
L传感器 保持状态
000002 (000017) 0.00 20.00 20.01 20.02 20.03 20.06
启动
启动按钮 控制A口
20.06
控制B口
控制电机 控制C口
A口 B口 电机 C口
控制A口
20.01 10.01
控制B口
20.02 10.02
控制电机
20.03 10.03
控制C口
20.07
复位输出
000013 (000065) END
(01)
控制电机
[OP1] [OP2]
H传感器
20.02
控制B口
搅拌6''
TIM 000 #60
控制电机
000006 (000042) TIM000 TIM001
搅拌6''
20.03
控制C口
搅拌6''
20.03
延时2'&) 0.03 20.03 20.00 TIM001 20.04
延时2''
[OP1] [OP2]
L传感器
20.04
控制C口
控制A口
延时2''
TIM 001 #20
延时2''
延时2''
000008 (000053)
0.04
KEEP
(11)
停止
停止
20.06
20.05
启动
000009 (000056) 000010 (000058) 000011 (000060) 000012 (000062) 20.00 10.00
[程序名称 : 新程序1] [段名: 段1]
000000 (000000)
0.06
TIM002
20.00
20.01
20.02
20.03
20.07
复位输出
复位
复位延时 控制A口 2''
20.08
控制B口
控制电机 控制C口
[OP1] [OP2]
20.07
TIM 002 #20 20.08
复位输出
L传感器 保持状态
相关文档
最新文档