中外化学学家小传:施陶丁格

合集下载

诺贝尔奖趣闻(二)——与诺奖失之交臂的大师

诺贝尔奖趣闻(二)——与诺奖失之交臂的大师

诺贝尔奖趣闻(二)——与诺奖失之交臂的大师今年是诺贝尔奖颁发第115周年,在今年圣地亚哥举办的美国化学协会(ACS)年会上,来自不同领域的科学家化学家讲了十个科学奖的故事。

这十位科学家本应该拿到诺贝尔奖,但因为种种原因(私人恩怨,坏运气,早逝等)最终与诺奖失之交臂。

本文选取其中五位诺奖遗珠的故事。

一、门捷列夫作为元素周期表的发展人,俄国人门捷列夫的贡献不用多说了。

他没得奖实在是诺奖的失误。

在1904年诺贝尔奖颁给了惰性气体元素之后,门捷列夫拿诺奖的呼声越来越高。

于是在1905年他被第一次提名,但是没拿到最终的奖。

随后在1906年,门捷列夫再次被提名,在诺奖委员会投票中,他以4:1票胜出,然而,瑞士皇家科学院不接受这个结果,他们又召集了四名评委,重新组建了诺奖委员会,最终以5:4的结果将诺奖授予了分离氟化学的亨利莫瓦桑(死于1907年)。

学界认为,在这次评选中,瑞典皇家科学院重要的成员,阿伦尼乌斯(Arrhenius公式的提出者)对阻碍门捷列夫起到了重要影响。

这是因为,阿伦尼乌斯的离子解离理论在当时收到了俄国学界长期尖锐的批评。

因此阿伦尼乌斯以门捷列夫的工作太老为借口否定了他的工作。

随后在1907年,门捷列夫也去世了,再也没有机会获奖了。

二、华莱士·卡莱瑟斯大约在1930年左右,卡莱瑟斯在杜邦工作并发明了缩合聚合。

在1935年之前,他就成功发明了尼龙。

然而由于杜邦公司的原因,尼龙直到1939年才在社会上引起了较大的轰动。

虽然在1930年之后学界已经广泛认可卡莱瑟斯的工作。

但没有任何人提名他为诺奖的候选人。

在当时高分子界,还有一位与他齐名的施陶丁格(加成聚合的发明者)。

施陶丁格在1931年至1935年间一直被诺贝尔奖提名,但从未获奖。

在1936年,卡莱瑟斯与施陶丁格一起获奖的呼声达到了顶峰。

但当时最有资格来提名他们的朗缪尔(Langmuir,1932年诺贝尔奖获得者,著名界面化学家)并没有提名卡莱瑟斯。

施陶丁格

施陶丁格

施陶丁格Hermann Staudinger(1881~1965)1881年3月23日生于德国莱因兰—法耳次州的沃尔姆斯;1907年毕业于施特拉斯堡大学,获博士学位。

同年聘为卡尔斯鲁厄工业大学副教授。

1912年于苏黎世工业大学任化学教授。

1920年,发表“论聚合反应”的论文,提出高分子的概念;1926年后在弗赖堡任教。

1932年,出版划时代的巨著《高分子有机化合物》1953年获诺贝尔化学奖;1965年9月8日在弗赖堡逝世,终年84岁。

施陶丁格是高分子科学的奠基人。

20年代,他将天然橡胶氢化,得到与天然橡胶性质差别不大的氢化天然橡胶等,从而证明了天然橡胶不是小分子次价键的缔合体,而是以主价键连接成的长链状高分子量化合物。

他还正式提出了高分子化合物这个名称;预言了高分子化合物在生物体中的重要作用。

他提出了关于高分子的粘度性质与分子量关系的施陶丁格定律。

至今,用粘度法测定高分子的分子量仍然是常用的方法。

他所提出高分子科学理论,是纤维、橡胶、塑料等高分子工业生产的基础。

因其对高分子科学的建立和理论方面的贡献,施陶丁格荣获1953年诺贝尔化学奖。

他创办了《高分子化学》杂志。

共发表了600多篇论文和专著。

事迹:棉、麻、丝、木材、淀粉等都是天然高分子化合物,从某种意义上来说,甚至连人本身也是一个复杂的高分子体系。

在过去漫长的岁月中,人们虽然天天与天然高分子物质打交道,对它们的本性却一无所知。

现在我们已认识什么是高分子,并建立了颇具规模的高分子合成工业,生产出五光十色的塑料、美观耐用的合成纤维、性能优异的合成橡胶,致使高分子合成材料与金属材料、无机非金属材料并列构成材料世界的三大支柱。

面对这一辉煌成就,我们不能不缅怀高分子科学的奠基人、德国化学家施陶丁格。

论文发表的背景什么是高分子呢?它是由许多结构相同的单体聚合而成的,分子量往往是几万、几十万,结构的形状也很特别。

如果说普通分子象个小球,那未高分子由于单体彼此连接成长链,就象一根有50米长的麻绳。

斯陶丁格反应机理

斯陶丁格反应机理

斯陶丁格反应机理全文共四篇示例,供读者参考第一篇示例:斯陶丁格反应是一种具体的化学反应机理,由奥地利化学家卡尔·斯陶丁格首次提出,并在后来被广泛应用于有机合成化学领域。

斯陶丁格反应在有机化学领域具有重要的应用价值,可以用于合成各种有机化合物,尤其是含氮和含氧的复杂有机分子。

本文将对斯陶丁格反应机理进行详细介绍。

斯陶丁格反应是一种重要的取代反应,通常用于将一个含有NO2基团的化合物转化为对应的胺化合物。

反应的一般形式如下:R-NO2 + H2 + 碘化亚铁(FeI2)→ R-NH2 + FeI3 + H2O在这个反应中,硝基化合物R-NO2被氢还原成相应的胺化合物R-NH2。

反应中所用的碘化亚铁(FeI2)是还原剂,通常反应会在一定的温度和压力条件下进行,以促进反应的进行。

斯陶丁格反应的机理如下:1. 硝基化合物R-NO2在FeI2的作用下发生亲电还原,生成中间体R-NO2·。

3. R-NO2^-经过负离中间体,接受质子生成相应的胺化合物R-NH2。

通过以上机理步骤,硝基化合物可以被还原成胺化合物,从而实现斯陶丁格反应的目的。

这种反应机理是通过实验数据及理论计算得出的,已经得到广泛验证。

斯陶丁格反应在有机合成化学中有着广泛的应用。

由于硝基基团在有机分子中具有很高的活性,因此可以通过斯陶丁格反应方便地将其还原成胺基团,从而完成合成目标。

斯陶丁格反应还可以用于合成具有生物活性的有机化合物,如药物和生物活性分子等。

第二篇示例:斯陶丁格反应是一种有机化学反应,具体是木瓦醇的消除反应,常用于有机合成中。

它是以奥地利化学家、诺贝尔奖获得者埃里希·斯陶丁格的名字命名的。

斯陶丁格反应是通过对醇在酸性条件下受热处理,产生烯和水的反应。

这种反应有时也被称为“自由基解磷反应”。

斯陶丁格反应的机理涉及酸性条件下的消除反应。

醇在强酸的作用下脱去一个质子,生成一个离子。

然后,这个中间产物会发生脱离反应,形成一个烯和水。

高分子的重要人物

高分子的重要人物

高分子重要人物(排序不分先后)创立高分子化学的施陶丁格(Hermann Staudinger 1881-1965)棉、麻、丝、木材、淀粉等都是天然高分子化合物,从某种意义上来说,甚至连人本身也是一个复杂的高分子体系。

在过去漫长的岁月中,人们虽然天天与天然高分子物质打交道,对它们的本性却一无所知。

现在我们已认识什么是高分子,并建立了颇具规模的高分子合成工业,生产出五光十色的塑料、美观耐用的合成纤维、性能优异的合成橡胶,致使高分子合成材料与金属材料、无机非金属材料并列构成材料世界的三大支柱。

面对这一辉煌成就,我们不能不缅怀高分子科学的奠基人、德国化学家赫尔曼·施陶丁格。

1881年3月23日,海尔曼·施陶丁格出生在德国的弗尔姆斯。

他父亲是新康德派的哲学家,所以他从小就受到各种新的哲学思想的熏陶,对新事物比较敏锐,在科学推理、思维中,能够不受传统观念的束缚,善于从复杂的事物中,理出头绪,发现关键之处。

提出新的观点。

在中学时,他曾对植物学发生浓厚的兴趣,所以中学毕业后,他考入哈勒大学学习植物学。

这时有一位对科学发展颇有见地的朋友向他父母进言,最好先让施陶了格打下雄厚的化学基础后,再让他进入植物学的领域。

这一中肯的建议被采纳了,借他父亲转到达姆一所大学任教的机会,施陶丁格也来到该城的工业大学改读化学。

从此施陶丁格与化学给下不解之缘。

1903年,他完成了关于不饱和化合物丙二酸酯的毕业论文,从大学毕业。

接着又来到施特拉斯堡,拜著名的有机化学家梯尔为师继续深造。

1907年,以他在实验中发现的高活性烯酮为题完成了博士论文,获得了博士学位。

同年他被聘为卡尔斯鲁厄工业大学的副教授。

5年后他被楚利希联邦工业大学聘任为化学教授。

在这里他执教了14年,这期间的教学和研究使他熟悉了化学,特别是有机化学的各个领域和一些新的理论,为他顺利开展科学研究奠定了扎实的基础。

也在这期间,他投入了上述关于高分子组成、结构的学术论战。

为现代有机化学的发展作出巨大贡献的化学家

为现代有机化学的发展作出巨大贡献的化学家

为现代有机化学的发展作出巨大贡献
的化学家
1. 罗伯特·伯恩斯·伍德沃德:伍德沃德被公认为是现代有机化学的奠基人之一。

他在有机合成领域做出了杰出的贡献,开发了许多新的合成方法和策略,其中包括伍德沃德-霍夫曼规则和逆合成分析法等。

2. 赫尔曼·施陶丁格:施陶丁格是一位德国化学家,他在 20 世纪初期对有机化学的发展做出了重要贡献。

他提出了分子结构理论,这一理论对于理解有机化合物的性质和反应机理起到了重要作用。

3. 保罗·萨巴蒂尔:萨巴蒂尔是一位法国化学家,他在有机化学领域做出了许多重要贡献,特别是在反应机理和立体化学方面。

他发现了许多新的反应和合成方法,并提出了许多重要的理论和概念。

4. 理查德·施罗克:施罗克是一位美国化学家,他因在烯烃复分解反应方面的研究而获得了 2005 年诺贝尔化学奖。

他的工作为有机合成提供了新的方法和策略,对于药物、材料和其他领域的研究都有重要的影响。

这些化学家的工作为现代有机化学的发展奠定了基础,他们的贡献对于我们理解和应用有机化学原理具有重要意义。

施陶丁格反应操作

施陶丁格反应操作

施陶丁格反应操作
施陶丁格反应是一种重要的有机合成反应,它可以将烯烃和烷烃反应,生成烯烃和烷烃的烷基化合物。

它是由德国化学家施陶丁于1883年发
现的,因此得名。

施陶丁格反应的基本原理是,在高温下,烯烃和烷烃可以发生反应,
生成烯烃和烷烃的烷基化合物。

反应的催化剂是一种称为“施陶丁格催
化剂”的有机物,它可以加速反应的进行。

施陶丁格反应的操作步骤如下:
1.将烯烃和烷烃混合,并加入施陶丁格催化剂;
2.将混合物加热,使反应物发生反应;
3.将反应物冷却,使反应结束;
4.将反应产物进行提纯,得到所需的烯烃和烷烃的烷基化合物。

施陶丁格反应是一种重要的有机合成反应,它可以将烯烃和烷烃反应,生成烯烃和烷烃的烷基化合物。

它的操作步骤是:将烯烃和烷烃混合,加入施陶丁格催化剂,加热,冷却,提纯,得到所需的烯烃和烷烃的
烷基化合物。

施陶丁格反应的应用非常广泛,它可以用于合成多种有
机化合物,如芳香族化合物、醇类、酯类等。

Staudinger学术观点和贡献

Staudinger学术观点和贡献

施陶丁格是高分子科学的奠基人,是联邦德国有机化学家和高分子化学家。

他于1922年将天然橡胶氢化,得到与天然橡胶性质差别不大的氢化天然橡胶,从而证明了天然橡胶不是小分子次价键的缔合体,而是以主价键连接成的长链状高分子量化合物,证明了高分子线链学说。

他还正式提出了“高分子化合物”这个名称,预言了高分子化合物在生物体内的重要作用。

在他做助手研究期间,他便发现了“烯酮”是一种在药物合成中很有用的中间体,他在1912年出版的《烯酮》一书被认为是这一领域的经典教材;在他任教期间,他和拉沃斯拉夫·鲁日奇卡一起,确认了除虫菊酯的结构,并开发了这一除虫剂的人工合成途径,1919年他和迈耶共同发表了叠氮化合物和三苯基膦反应,即施陶丁格反应。

他还证明了构成网状结构聚合物的条件,提出了关于高分子的粘度性质与分子量关系的施陶丁格定律,是至今仍然常用的用粘度测定高分子分子量的方法。

同时,他在高分子科学理论方面也有所创新,奠定了塑料、橡胶、纤维等高分子工业生产的理论基础。

1932年,施陶丁格总结了自己的大分子理论,出版了划时代的巨著《高分子有机化合物》,成为高分子科学诞生的标志。

他揭示了高分子的实质,为合成高分子的研究指明了方向,使高分子合成工业获得了迅速的发展。

为了表彰施陶丁格在建立高分子科学上的伟大贡献,1953年他被授予诺贝尔化学奖。

晚年,他主要的精力在于倡导分子生物学的创立,1947年,他出版了著作《大分子化学及生物学》,在这一著作中,它尝试地描绘了分子生物学的概貌,为分子生物学这一前沿学科的建立和发展奠定了基础。

同时,他主持编辑了《高分子化学》杂志,一生共发表过600多篇论文和专著。

参考文献:[1]Virgil Percec. " Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize", ISBN: 978-3-319-03718-9 (Print) 978-3-319-03719-6 (Online)[2]"The Nobel Prize in Chemistry 1953,Hermann Staudinger" [EB/OL]. [3]"Hermann Staudinger and the Foundation of Polymer Science" [EB/OL]. American Chemical Society, Education, Explore Chemistry[4]张清建. 施陶丁格:高分子化学奠基人[J]. 自然辩证法通讯,2006,第五期[5]维基百科. 赫尔曼·施陶丁格。

[课外阅读]德国化学家:施陶丁格

[课外阅读]德国化学家:施陶丁格

[课外阅读]德国化学家:施陶丁格
施陶丁格(Hermann Staudinger),德国化学家。

1881年3月23日生于德国沃尔姆斯。

1903年在哈雷大学获得博土学位。

1926年任弗赖堡大学教授,1940—1951年任研究主任。

施陶丁格一生主要从事高分子化学研究,1920年他创立了高分子线链学说。

因为施陶丁格对开发塑料作出贡献,而获得了1953年的诺贝尔化学奖。

施陶丁格于1965年9月8日去世。

施陶丁格一生主要从事高分子化学研究,1920年他创立了高分子线链学说。

施陶丁格证明,小分子形成长链结构的高聚物是由于化学反应结合而成,而不是简单的物理集聚。

他认为,这些线型分子可用不同的方法合成并各有其特性。

他还证明了构成网状结构聚合物的条件;他还确定了高聚物的黏度与其分子量之间的关系。

这些研究成果对于开发塑料具有重大意义。

正因为施陶丁格对开发塑料作出贡献,而获得了1953年的诺贝尔化学奖。

文章来源网络整理,请自行参考编辑使用
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中外化学学家小传:施陶丁格什么是高分子呢?它是由许多结构相同的单体聚合而成的,分子量往往是几万、儿十万。

结构的形状也很特别,如果说普通分子象个小球,那未高分子由于单体彼此连接成长链,就象一根有50米长的麻绳。

有些高分子长链之间又有短链相结而成网状。

又由于大分子与大分子之间存在引力,这些长链不但各自卷曲而且相互缠绕,形成了既有一定强度、又有不同程度弹性的固体。

固为分子大,长链一头受热时,另一头还不热,故熔化前有个软化过程,这就使它具有良好的可塑性,正是这种内在结构,使它具有包括电绝缘在内的许多特性,成为新型的优质材料。

人们对它们的组成、结构的认识和合成方法的掌握经历了一个实践——认识——实践的曲折过程。

1812年,化学家在用酸水解木屑、树皮、淀粉等植物的实验中得到了葡萄糖,证明淀粉、纤维素都由葡萄糖组成。

1826年,法拉第通过元素分析发现橡胶的单体分子是C5H8,后来人们测出C5H8的结构是异戊二烯。

就这样,人们逐步了解了构成某些天然高分子化合物的单体。

1839年,有个名叫古德意尔的美国人,偶然发现天然橡胶与硫磺共热后明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发脆断裂的不实用的性质,变为富有弹性、可塑性的材料。

这一发现的推广应用促进了天然橡胶工业的建立。

天然橡胶这一处理方法,在化学上叫作高分子的化学改性,在工业上叫作天然橡胶的硫化处理。

进一步试验,化学家们将纤维素进行化学改性获得了第一种人造塑料——赛璐珞和人造丝。

1889年法国建成了最早的人造丝工厂,1900年英国建成了以木浆为原料的粘胶纤维工厂,天然高分子的化学改性,大大开阔了人们的视野。

1907年,美国化学家在研究苯酚和甲醛的反应中制得了最早的合成塑料——酚醛树脂,俗名电木。

1909年德国化学家以热引发聚合异戊二烯获得成功。

在这一实验启发下,德国化学家采用与异戊二烯结构相近的二甲基丁二烯为原料,在金属钠的催化下,合成了甲基橡胶,开创了合成橡胶的工业生产。

上述对高分子化合物的单体分析,天然高分子的化学改住的实践和在合成塑料、合成橡胶方面的探索,使人们深切地感到必须弄清高分子化合物的组成、结构及合成方法。

对于这个基础理论问题人们所知甚少,这一理论发展的缓慢与高分子本身的复杂特性有关。

化学家们一直搞不清它们的分子量究竟是多少,它为什么难于透过半透膜而有点象胶体,它为什么没有固定的熔点和沸点,不易形成结晶?这些独特的性质以当时流行的化学观来看是很难理解的。

早在1861年,胶体化学的奠基人,英国化学家格雷阿姆曾将高分子与胶体进行比较,认为高分于是由一些小的结晶分子所形成。

并从高分子溶液具有胶体性质着眼,提出了高分子的胶体理论。

这理论在一定程度上解释了某些高分子的特性,得到许多化学家的支持。

尽管也有化学家提出了不同看法,但均未引起注意。

我们将支持格雷阿姆的高分子胶体理论的称为胶体论者。

他们拿胶体化学的理论来套高分子物质,认为纤维素是葡萄糖的缔合体。

所谓缔合即小分子的物理集合。

他们还因当时无法测出高分子的未端基团,而提出它们是环状化合物。

在当时只有德国有机化学家施陶丁格等少数儿个人不同意胶体论者的上述看法。

施陶丁格发表了“关于聚合反应”的论文,他从研究甲醛和丙二烯的聚合反应出发,认为聚合不同于缔合,它是分子靠正常的化学键结合起来。

天然橡胶应该具有线性直链的价键结构式。

这篇论文的发表;就象在一潭平静的湖水中扔进一块石头,引起了一场激烈的论战。

1922年,施陶丁格进而提出了高分子是由长链大分子构成的观点,动摇了传统的胶体理论的基础。

胶体论者坚持认为,天然橡胶是通过部分价键缔合起来的,这种缔合归结于异戊二烯的不饱和状态。

他们自信地预言:橡胶加氢将会破坏这种缔合,得到的产物将是一种低沸点的低分子烷烃,针列这一点,施陶丁格研究了天然橡胶的加氢过程,结果得到的是加氢橡胶而不是低分子烷烃,而且加氢橡胶在性质上与天然橡胶几乎没有什么区别。

结论增强了他关于天然橡胶是由长链大分子构成的信念。

随后他又将研究成果推广到多聚甲醛和聚苯乙烯,指出它们的结构同样是由共价键结合形成的长链大分子。

施陶丁格的观点继续遭到胶体论者的激烈反对,有的学者曾劝告说:“离开大分子这个概念吧!根本不可能有大分子那样的东西”但是施陶丁格没有退却;他更认真地开展有关课题的深入研究,坚信自己的理论是正确的。

为此他先后在1924年及1926年召开的德国博物学及医学会议上,1925年召开的德国化学会的会议上详细地介绍了自己的大分子理论,与胶体论者展开了面对面的辩论。

辩论主要围绕着两个问题:一是施陶了格认为测定高分子溶液的粘度可以换算出其分子量,分子量的多少就可以确定它是大分子还是小分子。

胶体论者则认为粘度和分子量没有直接的联系,当时由于缺乏必要的实验证明,施陶丁格显得较被动,处于劣势。

施陶丁格没有却步,而是通过反复的研究,终于在粘度和分子量之间建立了定量关系式,这就是著名的施陶了格方程。

辩论的另一个问题是高分子结构中晶胞与其分子的关系。

双方都使用X射线衍射法来观测纤维素,都发现单体与晶胞大小很接近。

对此双方的看法截然不同。

胶体论者认为一个晶胞就是一个分子,晶胞通过晶格力相互缔合,形成高分子。

施陶丁格认为晶胞大小与高分子本身大小无关,一个高分子可以穿过许多晶胞。

对同一实验事实有不同解释,可见正确的解释与正确的实验同佯是重要的。

科学的裁判是实验事实。

正当双方观点争执不下时,1926年瑞典化学家斯维德贝格等人设计出一种超离心机,用它测量出蛋白质的分子量:证明高分子的分子量的确是从几万到几百万。

这一事实成为大分子理论的直接证据。

事实上,参加这场论战的科学家都是严肃认真和热烈友好的,他们为了追求科学的真理,都投入了缜密的实验研究,都尊重客观的实验事实。

当许多实验逐渐证明施陶丁格的理论更符合事实时,支持施陶了格的队伍也随之壮大,到1926年的化学会上除一人持保留态度外,大分子的概念已得到与会者的一致公认。

在大分子理论被接受的过程中,最使人感动的是原先大分子理论的两位主要反对者,晶胞学说的权威马克和迈那在1928年公开地承认了自己的错误,同时高度评价了施陶了格的出色工作和坚韧不拔的精神,并且还具体地帮助施陶丁格完善和发展了大分子理论。

这就是真正的科学精神。

1932年,施陶丁格总结了自己的大分子理论,出版了划时代的巨著《高分子有机化合物》成为高分子科学诞生的标志。

认清了高分子的面目,合成高分子的研究就有了明确的方向,从此新的高分子被大量合成,高分子合成工业获得了迅速的发展。

为了表彰施陶丁格在建立高分子科学上的伟大贡献,1953年他被授予诺贝尔化学奖。

1881年3月23日,海尔曼·施陶丁格出生在德国的弗尔姆斯。

他父亲是新康德派的哲学家,所以他从小就受到各种新的哲学思想的熏陶,对新事物比较敏锐,在科学推理、思维中,能够不受传统观念的束缚,善于从复杂的事物中,理出头绪,发现关键之处。

提出新的观点。

在中学时,他曾对植物学发生浓厚的兴趣,所以中学毕业后,他考入哈勒大学学习植物学。

这时有一位对科学发展颇有见地的朋友向他父母进言,最好先让施陶了格打下雄厚的化学基础后,再让他进入植物学的领域。

这一中肯的建议被采纳了,借他父亲转到达姆一所大学任教的机会,施陶丁格也来到该城的工业大学改读化学。

从此施陶丁格与化学给下不解之缘。

1903年,他完成了关于不饱和化合物丙二酸酯的毕业论文,从大学毕业。

接着又来到施特拉斯堡,拜著名的有机化学家梯尔为师继续深造。

1907年,以他在实验中发现的高活性烯酮为题完成了博士论文,获得了博士学位。

同年他被聘为卡尔斯鲁厄工业大学的副教授。

5年后他被楚利希联邦工业大学聘任为化学教授。

在这里他执教了14年,这期间的教学和研究使他熟悉了化学,特别是有机化学的各个领域和一些新的理论,为他顺利开展科学研究奠定了扎实的基础。

也在这期间,他投入了上述关于高分子组成、结构的学术论战。

1926年,他为了有更充裕的时间,进行更多的实验来验证他的大分子理论,他应聘来到布莱斯高的符来堡专心从事科学研究。

在符来堡他度过了他的后半生,许多重要的科研成果都是在这里完成的。

施陶丁格在高分子科学研究中取得成功之后,他开始按照早年的设想,将研究的重点逐步转入植物学领域。

事实上,他选择高分子课题时,就曾考虑到它与植物学的密切关系。

在1926年他就预言大分子化合物在有生命的有机体中,特别是蛋白质之类化合物中起重要的作用。

他顺理成章地将大分子的概念引人生物化学人和他的妻子、植物生理学家玛格达·福特合作研究大分子与植物生理。

要证明大分子同样存在于动、植物等有生命的生物体内,他们认为最好能找到除了粘度法之外的其它方法,证明大分子的存在和存在的形式。

经过两年多的努力,他们利用电子显微镜等现代实验观测手段,终于用事实证明了生物体内存在着大分子。

可惜的是这一项有重要意义的工作,囵希特勒法西斯的上台和第二次世界大战而被迫中断,施陶丁格所在的研究所毁于战火。

第二次世界大战一结束,施陶丁格立即总结了他前一段关于生物有机物中大分子的研究。

1947年出版了著作《大分子化学及生物学》。

在这一著作中,它尝试地描绘了分子生物学的概貌,为分子生物学这一前沿学科的建立和发展奠定了基础。

为了配合高分子科学的发展,1947年起他主持编辑了《高分子化学》这一专业杂志。

他晚年的兴趣主要在分子生物学的研究,由于年事已高,成旱不多,但是培养了许多高分子研究方面的人才,1965年9月8日,施陶丁格安然去世,享年84岁。

相关文档
最新文档