输配电线路设计
浅析输配电线路的合理规划设计 吴昊

浅析输配电线路的合理规划设计吴昊摘要:随着我国经济的发展,国家各项基础建设速度的加快,城市改造力度的加大,国家电网公司对电网中输配电线路的设计、改造、技术、标准等方面提出了越来越高的要求。
因此,作为电力企业的输配电线路设计专业人员,必须密切关注各方面的变化,必须认真钻研专业知识和专业技能,结合实际情况进行输配电线路的设计,并且能站在一定的高度,具有前瞻性、长远的发展眼光,为促进电力企业的发展奠定基础。
因此,本文对输配电线路的合理规划设计进行分析。
关键词:电力系统;输配电线路;规划设计;策略电力系统作为电力资源输送的重要组成部分,由若干个部分组成。
包括配电、用电、变电、输电、发电等等。
其中,配电网是电力系统的终端组成部分,负责与用户端进行连接。
而输配电线路的规划设计,又影响着电能输送质量和效率。
所以,在电力系统操控过程中,为了保持系统运行稳定性、安全性。
同时,从根本上避免电力资源浪费问题的凸显,必须做好输配电线路的规划设计工作,只有如此,才能保证用户对电能的正常使用。
1输配电线路的设计原则为了达到最优的输配电线路设计效果,在输配电线路具体设计环节中,必须遵从四项基本原则。
即电网配套发展、合理利用能源、提高经济效益、环境保护。
其中,电网配套发展是指电网建设作为一个整体,如若不能保证输电、变电设施等的同时设计,那么将引起电力资源输送效率低等问题,所以,必须保持电网配套发展。
而合理利用资源,是指在电能输送过程中,应分析输配电线路能源分布情况,而后,减少对不可再生资源的浪费,达到最优的配电网骨干网架部署。
此外,在输配电线路具体规划期间,也应站在供电企业利益角度,规划线路的具体设计要点,并引入具有节能降耗功能的新设备、新技术、新材料等等,避免配电网的建设威胁周边环境。
2输配电线路的特征和工作难点现代电力系统正处在朝着智能化方向发展的阶段,输配电线路的运行状况也随之变得越来越复杂,以下主要对输配电线路的特征及工作难点进行分析:第一点,输配电线路分布较为广泛,且错综复杂,工作量大。
课程设计输配电线路

《输配电线路》课程单元教学设计
一、目标及内容
课程名称:输配电线路
编写教师
彭玉金、王旭、宁琦、李岩、王峰、
2012年8月15日
审核批准
(签名)
年月日
培训对象
国家电网公司2012年度新入职员工,第一期集中培训班
课时数
6
上课时间
上课地点
泰山校区教学
培训目标
能力(技能)目标
任务一:熟悉输配电线路基本构成及部件;
任务二:熟悉系统设备及功能;
任务三:输配电线路主要的检修维护设备;
参考资料
二、教学设计
步骤
教学内容
教学方法
教学手段
学员活动
时间分配
引入、告知
(教学内容、目的)
以输配电线路视频引入教学内容,阐明教学目的。
启发式
交互式
教具
多媒体
提问
10分钟
讲授或实训
(掌握初步基本能力,加深对基本能力的体会,巩固、拓展、检验)
输配电线路的作用。
输配电线路基本知识。
输配电线路的运维知识。
输配线路的反事故措施
交互式
30分钟
作业
完成学员手册的问题
。
后记
1、架空线路的作用
2、架空线路的组成
3、架空线路中的专业术语
4、电缆线路的组成及作用
5、电缆线路的运维知识
6、配电配电线路的运维知识
7、架空线路的反事故措施
8、泰山校区输配电基地学习、参观
启发式
交互式
多媒体
提问
探讨
20分钟
20分钟
20分钟
20分钟
20分钟
电力输配电线路工艺

电力输配电线路工艺电力输配电线路是指将电能从发电厂输送到用户的过程,其中的工艺流程和线路设计非常重要。
本文将介绍电力输配电线路的工艺流程,并探讨其中的关键要素和技术细节。
一、输电线路工艺1.线路选址与规划输电线路的选址和规划是最初的关键步骤。
该过程需要考虑诸多因素,包括但不限于环境因素、地形地貌、负荷需求等。
通过综合考虑这些因素,选择合适的输电线路路径和规划方案。
2.杆塔设计与选型杆塔是支撑输电线路的重要构件,其设计和选型也决定了输电线路的稳定性和安全性。
根据线路的长度、负荷、地形等要素,选择适当的杆塔类型和间距,并进行杆塔设计计算,确保其能够承受线路的负荷并抵御自然灾害等外力。
3.导线选择与布设输电线路的导线选择直接影响功率传输效率和线路损耗。
根据输电距离、负荷需求、线路电流等因素,选择适当的导线类型(如铝合金导线、钢芯铝绞线等),并合理布设导线,避免过大的电阻和电感损耗。
4.绝缘子及附件安装绝缘子和其附件的安装是保证输电线路安全性的重要环节。
根据线路电压等级和运行环境,选择适当的绝缘子类型,并按照规范的要求进行正确的安装和固定,确保线路的绝缘性能和可靠性。
二、配电线路工艺1.线路规划与布置配电线路的规划和布置需要充分考虑用户用电负荷需求、线路长度、供电可靠性等因素。
根据这些要素,合理规划和布置配电线路,确保电能传输的快捷和稳定。
2.配电变压器安装与配置配电变压器是将电能从输电线路转换为用户用电电压的重要设备。
根据用户需求和用电负荷特点,选择适当容量的配电变压器,并进行正确的安装和配置,确保用户的用电需求得到满足。
3.电缆敷设与连接配电线路的电缆敷设和连接需要遵循一定的工艺要求和标准。
根据线路负荷和长度,选择适当的电缆类型,并进行正确的敷设和连接,保证线路的可靠性和电能传输效率。
4.配电开关设备配置在配电线路中,配电开关设备的配置非常重要。
根据线路的供电方式、用电负荷等要素,选择适当的开关类型和配置方案,确保线路的安全性和稳定性。
电气工程设计手册-电气一次设计

电气工程设计手册-电气一次设计电气工程设计手册-电气一次设计一、设计基础1.1 设计依据电气一次设计应遵循国家相关标准及规范要求,并结合工程实际情况进行设计。
1.2 设计范围电气一次设计的范围包括输配电线路设计、变电站设计、配电装置设计、电力监控系统设计等。
1.3 设计任务电气一次设计的任务是根据工程实际需求,确定设计方案,进行设计和计算,出具设计文件,并指导施工和验收。
二、设计内容2.1 输配电线路设计输配电线路设计应根据所处环境、用电负荷、线路长度等因素,合理选择导线规格、杆塔型号、设备配置等,进行线路走向、杆塔位置、导线张力等方面的计算和确定,编制线路设计方案、杆塔布置图、绝缘子串图等,确保线路安全、可靠、经济运行。
2.2 变电站设计变电站设计应根据所处电网电压等级、用电负荷、运行方式等,选用合适的变电设备,编制变电站总平面布置图、主接线图、单线图、接地装置图等,明确变电站的连接方式、保护控制手段及技术性能要求,确保其安全运行。
2.3 配电装置设计配电装置设计应根据所处电网电压等级、用电负荷、供电方式等因素,合理选用开关设备、配电变压器等装置及其配置,进行配电网的接线方式、开关操作方案、保护控制方案等的计算和确定,编制配电箱图、配电接线图、主接线图等,确保配电装置可靠、稳定、经济运行。
2.4 电力监控系统设计电力监控系统设计应统筹考虑电网、变电站、配电装置等装置运行状态和数据信息的采集、传递、处理等问题,设计系统硬件及软件结构,编制系统设计方案、系统接线图、系统流程图等,确保电力监控系统可靠、稳定、安全运行。
三、设计文件3.1 设计文件的种类和内容电气一次设计的主要设计文件包括设计依据、设计报告、设计计算书、设计图纸、技术规格书、工程验收规范等。
3.2 设计文件的编制要求设计文件应符合国家相关标准及规范要求,严格按设计程序、设计标准进行编制,保证设计质量、文件准确性和工程实效。
四、施工与验收4.1 施工施工应按照设计图纸、技术规格书等要求进行,严格遵守安全操作规程,确保工程质量、进度和安全。
输电线路设计导线地线截面的选择

感谢您的观看!
第15页/共15页
3、最大负荷电流要小于导线的安全工作电流,不能因为电 流太大而造成断线事故。
4、验算导线载流量时,钢芯铝线的允许温度一般采用+ 70℃(大跨越可用+90℃),钢绞线的允许温度一般采 用+120℃。环境温度应采用最高气温月的最高平均气 温,风速应用0.5m/s,太阳辐射功率密度应采用 0.1W/cm2。
截面的选择原则是就近选择。
第4页/共15页
2、按载流量选择截面
(1)按导线的载流量选择导线截面时,应使其在最大连续 负荷电流运行条件下,不超过允许值。导线的允许温度,铝 线及钢芯铝绞线可采用+70°C;大跨越档可采用+90°C; 镀锌钢绞线可采用+125°C. (2)环境气温应采用最高气温月的最高平均气温。
选择LGJ-240mm2导线 (2)按载流量校验 LGJ-240导线载流量为+70°C(环境温度+40°C)载流量为491A,满足要求。 (3)根据电压将校验(线路长度按10km考虑)
u%=0.0266%1013.519=3.6%<5%
满足要求
第11页/共15页
(4)需要注意的问题 A、线路的运行方式,如果线路分列运行,即两回线路同时运行,线路截面应该减
第12页/共15页
2、10kV输电线路选择
以上变压器选择表中,通风机房设在风井场地,距工业场地3km,请选择去通 风机配电室的线路 (1)按载流量选择
I = 1172 =84.58A 3 100.8
查《工业与民用配电设计手册》P526,LGJ-25即可满足要求,但考虑到本矿井 地处山区风大,选用LGJ-50. (2)按机械强度校验 查导线截面按机械强度要求的最小截面LGJ-16即可满足要求 (3)按压降校验
35KV架空输电线路初步设计方案

35KV架空输电线路初步设计方案第二部分 工程概况-、设计情况随着经济发展,负荷增加,近年来,用户对供电可靠性的要求不断提高,为避免因线路故障及检修造成对XX变电站停电及线路网架要求,该线路的建设必要性非常大。
本工程线路全线经过地带为平原,沿线植被主要是农田、粮林间作带。
根据通许县城城市整体规划,经过与县城规划部门实地查看,规划部门允许该线路走径。
电压等级:35KV线路回数:本期采用单回路架设线路长度:35KV输电线路工程单回5.98kM。
导地线型号:导线LGJ-185/30;二、气象条件根据本地区高压输电线路多年运行经验。
本工程线路所选气象条件为线路所通过地区30年一遇的数值(其值详见下表)。
气 象 条 件 一 览 表气象条件类别 气 温( ℃ )风 速(m / s)覆冰厚度(m m)最高气温 + 40 0 0 最低气温 - 20 0 0最大风速 - 5 28.12米/秒(基准高离地面10米)覆冰情况 - 5 10 导线10 地线15年均气温 + 15 0 0 外过电压 + 15 10 0 过电压 + 15 15 0 安装情况 - 10 10 0 安装情况 0.9g/cm3雷暴日 ≤40第三部分 设计说明书第一章.导线及避雷线部分导线是固定在杆塔上输送电流的金属线,由于经常承受着拉力和风、冰、雨、雪及温度变化的影响,同时还受空气中化学杂质的侵蚀,所以导线的材料除了应有良好的导电率外,还有足够的机械强度和防腐性能。
导线和地线:根据规划,新建线路全部采用LGJ-185/30。
导线:按GB1179-83标准推荐用LGJX-185/30钢芯铝(稀土)绞线。
地线:根据Q/GDW179-2008)《地线采用镀锌钢绞线时与导线配合表》选用GJ-35(1×7) 镀锌绞线。
导地线定货标记:导线:LGJX-185/30 GB1179-83稀土钢芯铝绞线地线:GJ-35:1×7-2.6导地线参数表项目 参数 参数型号 LGJX-185/30 GJ-35标称截面铝/钢(mm2) 185/30 37.15结构根数/直径(mm)铝 28/2.88钢 7/2.50 7×2.6计算截面(mm2) 铝 181.34钢 29.59 37.15合计 210.93 37.15外径(mm) 18.88 7.8直流电阻不大于(欧姆/千米) 0.1592计算拉断力(N) 64250 43688计算质量(kg/千米) 732.6 318.2弹性系数(N/ mm2) 78400 181300线膨胀系数(1/℃) 18.8×10-6 11.5×10-6 交货长度不小于(m) 2000 1000注:拉断力取计算拉断力的95%。
电力工程中的电网规划与输电线路设计原则

电力工程中的电网规划与输电线路设计原则电力工程中的电网规划和输电线路设计是确保电力系统正常运行和电能传输的重要环节。
本文将介绍电力工程中电网规划的基本原则和输电线路设计的几个重要考虑因素。
一、电网规划原则1. 供电可靠性:电网规划要确保供电可靠性,保证电力系统能够持续、稳定地向用户提供电能。
为此,应合理设置主干线路、变电站和配电站等设施,形成合理的电网结构,同时采用备用容量、联络线路和自动切换装置等手段提高系统的可靠性。
2. 经济性:电网规划需要在确保供电可靠性的前提下,尽可能节约投资成本和运行成本。
合理选择输电线路的材料、容量和结构,在设计过程中充分考虑投资回报周期和系统负荷预测等因素,以保证电网的经济性。
3. 可扩展性:电网规划要具备一定的可扩展性,能够适应未来电力需求的增长和新能源接入的需求。
在电网规划中考虑电网的容量、负荷预测和新能源开发等因素,合理安排电网结构和设备布局,以便未来进行扩容和改造。
4. 灵活性:电网规划要具备一定的灵活性,能够适应不同用户的需求。
通过合理的电网配置和供电方式选择,提高电能的可调度性和供电的灵活性,满足不同用户的用电要求。
二、输电线路设计原则1. 线路选线:在进行输电线路设计时,需要充分考虑线路的选线问题。
选线应考虑线路长度、地形地貌、环境条件等因素,选择适合的线路走廊和通道,降低线路建设和运营的成本。
2. 线路容量:输电线路设计中的关键问题是确定线路的容量。
根据负荷需求、输电距离、电压等因素,合理选择输电线路的材料、直径和导线间距,并进行合适的线路分段来满足输电容量的需求。
3. 线路电压:输电线路设计需要确定适当的线路电压等级。
电压等级的选择应综合考虑输电距离、负荷需求、电源可靠性等因素,以降低输电损耗和提高输电效率。
4. 线路绝缘:输电线路设计中需要考虑绝缘问题。
根据线路电压等级和环境条件选择适当的绝缘材料和绝缘方式,确保线路的安全性和可靠性。
5. 线路布置:输电线路设计需要合理布置线路塔杆和设备。
35KV输电线路初步设计说明书

目录第一章总述 (2)1.1 初步设计编制依据 (2)1.2 初步设计遵循依据 (2)1.3 初步设计编制规模及范围 (2)1.4 材料耗用指标 (3)1.5 可研审查意见执行情况 (3)第二章线路两端进出线 (3)2.1 110kV坪桥变电站 (3)2.2 35kV谭家营变电站 (3)2.3 线路相序 (4)第三章线路走径部分 (4)3.1线路通过地区概况 (4)3.2线路路径描述 (4)3.3线路协议 (6)3.4沿线地形、地貌及地质条件 (6)3.5地基岩土物理力学性质指标 (7)3.6交通运输条件 (7)第四章气象条件 (8)4.1 气象条件 (8)4.2设计气象条件的确定 (8)第五章导地线 (9)5.1导线截面 (9)5.2地线截面 (9)5.3导线、地线的机械物理特性 (9)5.4导线、地线的设计参数 (9)第六章机电安装 (10)6.1绝缘配合 (10)6.2污区等级划分 (10)6.3绝缘子 (10)6.4金具 (12)6.6防雷与接地 (13)第七章导线对地和交叉跨越距离 (13)第八章杆塔与基础 (14)8.1杆塔 (14)8.2基础 (16)第九章对通信线路的影响及其保护 (17)第十章环境保护及劳动安全 (17)10.1环境保护 (17)10.2 劳动安全 (18)第十一章附属设施及其他 (18)11.1附属设施 (18)11.2线路通道 (19)11.3附件 (19)第一章总述1.1 初步设计编制依据1.1.1杏子川采油厂《35kV谭家营输变电工程可行性研究报告》1.1.2《初步设计委托书》1.2 初步设计遵循依据1.2.1中华人民共和国国家标准GB50061-2010《66KV及以下架空电力线路设计规范》1.2.2 中华人民共和国电力行业标准DL/T 5154-2012《架空送电线路杆塔结构设计技术规定》1.2.3中华人民共和国电力行业标准DL/T 5219-2005《送电线路基础设计技术规定》1.2.4 中华人民共和国电力行业标准DL/T620-1997《交流电气装置的过电压保护》1.2.5中华人民共和国国家标准GB500065-2011《交流电气装置的接地设计规范》1.2.6 中华人民共和国国家标准GB 50009-2012《建筑结构荷载规范》1.2.7中华人民共和国国家标准GB50010-2010《混凝土结构设计规范》1.2.8 中华人民共和国国家标准GB50017-2003《钢结构设计规范》1.2.9 中华人民共和国国家标准GB50007-2011《建筑地基基础设计规范》1.3 初步设计编制规模及范围1.3.1初步设计规模1.3.1.1拟建的35kV坪桥——谭家营送电线路工程,以下简称(“35kV坪谭线”)起点为陕西省安塞县110kV坪桥变电站35kV门型构架,终点为安塞县35kV 谭家营变35kV进线挂点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代表档距由于荷载或温度变化引起张力变化的规律与耐张段实际变化规律几乎相同的假设档距。
耐张段内,当直线杆塔上出现不平均张力差,悬垂绝缘子串发生偏斜,而趋于平衡时,导线的应力(称代表应力)在状态方程式中所对应的档距,即为代表档距。
代表档距是指:为一假设档距,该档距由于荷载或温度变华引起张力变化的规律与耐张段实际变化规律几乎相同。
代表档距是一个加权平均的概念,类似于求该耐张段内的均方差,主要用于求各个控制工况及控制张力。
为了简化导线应力的计算,将具有若干连续档的耐张段,用一个悬挂点等高的等价档距来代表,此档距称为代表档距,也叫规律档距。
临界档距两个气象控制条件同时起作用的档距。
在仅考虑最低气温和最大比载两种气象条件下,档距L由零逐渐增大到无限大的过程中,必然存在这样一个档距:气温的作用和比载的作用同等重要,最低气温和最大比载是架空线的应力相等,即最低气温和最大比载两个气象条件同时成为控制条件。
两个或两个以上气象条件同时成为控制条件是的档距称为临界档距,用L0表.四种气象条件两两组合,可以得到6个临界档距。
:架空线应力在主要受气温影响的同时也受比载的影响,在最大比载和最低气温时出现的应力相等时的档距,称为临界档距。
有这样一个档距,当耐张段的代表档距小于它时,最大应力出现在气象条件Ⅰ下;大于它时,其出现在气象条件Ⅱ下;等于它时,在两种条件下均出现最大应力,那么我们就把这个档距称为气象条件Ⅰ和Ⅱ的临界档距..用于判别控制条件。
水平档距是指相邻两档的每一档中点之间的距离。
当计算杆塔结构所承受的电线横向(风)荷载时,其荷载通常近似认为是电线单位长度上的风压与杆塔两侧档距平均值之乘积,其档距平均值称为“水平档距”,即Lh=(L1+L2)/2; L1、L2分别为杆塔两侧的档距(m);垂直档距是指相邻两档中每一档离地面最近的点的两点之间的距离。
当计算杆塔结构所承受的电线垂直荷载时,其荷载通常近似的认为是电线单位长度上的垂直荷载与杆塔两侧电线最低点的水平距离之乘积,此距离因系供计算垂直荷载之用故称为“垂直档距”.垂直档距又称重力档距(Weight Span),即用于计算铁塔承受的线条重力荷载,其计算为铁塔两侧端点到两侧弧垂的水平切线(弧垂最低点)的距离之和,需要注意的是由于地形的高差较大,可能出现负档距的情况。
标准档距在保证对地距离并利用导线机械强度的前提下充分利用杆塔高度所得到的最大档距叫做计算档距。
根据导线力学计算公式,可以很容易地导出“计算档距”的理论公式。
用理论公式求“计算档距”,要进行多次计算,才能得到结果。
此外,也可以作出一系列档距下导线的力学、特性曲线,由此决定某一杆高所对应的最大档距—计算档距.与标准塔高对应的计算档距,叫标准档距。
它是指充分利用标准塔高的档距。
极限应力对于塑性材料,当其达到屈服而发生显著的塑性变形时,即丧失了正常的工作能力,所以通常取屈服极限作为极限应力;对于无明显屈服阶段的塑性材料,则取对应于塑性应变为0.2%时的应力为极限应力。
对于脆性
材料,由于材料在破坏前都不会产生明显的塑性变形,只有在断裂时才丧失正常工作能力,所以应取强度极限为极限应力。
许用应力机械设计或工程结构设计中允许零件或构件承受的最大应力值。
要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。
许用应力是机械设计和工程结构设计中的基本数据。
许用应力就是极限应力与安全因素的比值。
安全系数水工建筑物、结构或构件的抗破坏强度与设计荷载效应组合的比值,它是建筑物、结构或构件的安全储备的指标。
观测档距是指紧线时指定观测架空线弧垂的档距。
该档距中的弧垂设为f,其计算式为f=gl²/8δ一档架空线内,导线与导线悬挂点所连直线间的最大垂直距离。
导线上任意一点到悬挂点连线之间的铅垂距离称为导线在该点的弧垂。
最大弧垂出现在什么位置视具体情况而定,其中常见的对于高差不超过10%的相邻杆塔之间的导线最大弧垂,出现在档距中央。
架线时进行弧垂测定档的档距称为观测档距
弧垂导线上任意一点到悬挂点连线之间的铅垂距离称为导线在该点的弧垂。
一档架空线内,导线与导线悬挂点所连直线间的最大垂直距离。
导线上任意一点到悬挂点连线之间的铅垂距离称为导线在该点的弧垂。
最大弧垂出现在什么位置视具体情况而定,其中常见的对于高差不超过10%的相邻杆塔之间的导线最大弧垂,出现在档距中央。
弧垂是指在平坦地面上,相邻两基电杆上导线悬挂高度相同时,导线最低点与两悬挂点间连线的垂直距离。
如果导线在相邻两电杆上的悬挂点高度不相同,此时,在一个档距内将出现两个弧垂,即导线的两个悬挂点至导线最低点有两个垂直距离,称为最大弧垂和最小弧垂。
弧垂是指导线上任一点到悬挂点连线之间在铅垂方向的距离,它与应力成反比而与线长成正比.
2、应力定义为“单位面积上所承受的力”。
3、比载:单位长度和单位截面积导地线所承受的荷重,以g 表示。
档距两相邻杆塔导线悬挂点间的水平距离。
避雷线的保护角避雷线悬挂点和导线悬挂点的连线与避雷线悬挂点和地面间的垂线的夹角,
控制档距指在大气过电压条件下,使避雷线应力为最大值的档距;用于计算避雷线满足防雷要求下的控制应力. 是指在大气过电压,即+15℃,无风条件下,使避雷线应力为最大值的档距。
如图所示,问O点与A点的应力分别为多大。
解: (1) 导线最低点的应力:由式 0y X g σσ=+,则
(2) 导线悬挂点的应力:
在一条220KV 输电线路中,某耐张段各档距分别为500m,350m,400m 和480m,试求其代表档距。
解:3
3333
500350400480444.92(m)500350400480
i re i l l l +++===+++∑∑ 线路中某杆塔前后两档布置如下图所示(数据为米),已知导线在计算气象条件时
比32g =56.3910 N/m mm -⨯⋅;应力:0120M P a σ=。
试求
B 杆塔的水平档距和垂直档距各为多大。
解:(1)水平档距为:
(2)垂直档距为:
某架空线路采用导线为LGJ —120/20型,导线截面积S=134.49mm 2,查得导线的
计算拉断力Tp=41000N ,试分别计算导线最大使用应力和年平均运行应力为多少。
解:导线综合瞬时破坏应力为:
(1) 最大使用应力:
(2) 年平均运行应力的上限:
已知导线的直径为d=15.2mm, 自重比载g=35.18×10-3 [N/(m·mm 2)];最高气温时应力为244.1[N /mm ]σ=;最低气温时应力为260.56[N /mm ]σ=;风速的上下限值分别为:max min 4m/S,0.5m/S υυ==,设线路代表档距为300 m, 试求导线振动时可能最大和最小半波长。
解:(1)最大半波长:
max max
3
min 1d 9.815.29.860.569.9(m)2400g 4000.535.1810λσυ-⨯===⨯⨯ (2) 最小半波长:。