第2课时 分式的基本性质

合集下载

分式的基本性质(1)第二课时

分式的基本性质(1)第二课时
课题:16.2分式的基本性质(1)第二课时
教学目标:
1.理解分式的基本性质.
2.会用分式的基本性质将分式约分
教学重、难点:
重点:理解分式的基本性质. 掌握约分。
难点:灵活应用分式的基本性质将分式约分。
学习目标:
1、理解并识记分式的基本性质并会用式子表达
2、会正确运用分式的性质进行分式的变形



程:
一、板书课题,揭示目标
同学们,今天我们来学习16.2分式的基本性质,(2)(板书课题)本节课的教学目标是(投影)
二、指导自学
为了使同学们顺利的达到本节课的教学目标,请大家认真看学习指导
自学指导
认真看课本P4练习下面的内容,思考P6上面的内容
(1)、注意黄色书签的提示和思考云图中的问题,思考分式的基本性质是什么?
(2)、注意例2的格式与步骤,思考分式变形的根据是什么?分子,分母是如何变化?
5分钟后,比比谁能做出与例题类似的题目
三、学生自学,教师巡视
1、学生看书,思考,教师巡视,督促每个学生都认真紧张自学
2、检测自学效果
出示检测题:
1、填空题2x/y=4xy/() x-y/x+y=()/(x+y)2
b学生检测:让两位学生上来板演,其他学生在练习本上做,教师下去巡视,收集学生出现的问题,进行第二次备课
四、更正讨论归纳
1、自由更正:请大家仔细看两位同学的板演。其它学生在练找一找有没有错误。1分钟后比比谁能找出错误并更正
2、讨论归纳
第2题若对,为什么对?若错,问为什么错?
引导学生归纳分式的形式:分式的分子与分母同乘以一个不等于0的整式,分式的值不变(教师板书)
评:第2课题,要判断两个式子是否相等

人教数学 第15章分式 第2课时15.1.2分式的基本性质(1) 学生版导学案

人教数学 第15章分式 第2课时15.1.2分式的基本性质(1) 学生版导学案

课题:15.1.2分式的基本性质(1)月日班级:姓名:一、教材分析:(一)学习目标:1.经历分数基本性质的类比过程,知道分式的基本性质.2.会简单运用分式的基本性质,会根据分式的基本性质,指出分式变形的依据,求变形后分式的分子或分母.3.知道分式约分的意义,会利用分式的基本性质进行分式约分.(二)学习重点和难点:1.重点:分式的基本性质和分式的约分。

2.难点:根据分式的基本性质,求变形后分式的分子或分母。

二、问题导读单:阅读P129—131页(例3完了)回答下列问题:1.回忆说明分数的基本性质:_______________________________________________ ______________________________________________________________如:根据分数的基本性质,在12的分子、分母同乘2,分数的值不变,所以12=24;再如:根据______________,在69的______、______同除以___,分数的值______,所以69=23.2.写出分式的基本性质:(1)文字语言_____________________________________________________________________________________________________(2)符号语言_____________________________________________________(3)如2a3a2b6ab=说明如何得到的_________________________________________3.仔细研读例题2,与同学交流每题是根据什么填写的?从哪里入手?你得到启示是:_____________________________________________________4. 仔细研读130页思考及例题3,回答相应问题,并与同学交流每题是根据什么填写的?运用了哪些知识?你说明约分实质是:________________________________三、问题训练单:5.完成下面的解题过程:下列等式的右边是怎么从左边得到的?示例:324x2x2xy y=(1)26ba3ab=;解:3324x 4x 2x 2x 2xy 2xy 2x y÷==÷ 解:2a =——————=6b 3ab ; (2)210x 2x 15xy 3y= (3)b b 4a 4a -=-; 解:210x 15xy=——————=2x 3y ; 解:b 4a --=——————=b 4a ; (4)21x 1x 1x 1+=--. (5)x x 3y 3y -=- 解:1x 1-=—————————=2x 1x 1+-. 解: (6)222a a ab a b a b+=--. 解: 6.填空: (1)21()xy 2xy =; (2)22a a b 2a b ()=-; (3)24a ()6ab 3b =; (4)22x xy x y ()x++=. 7.直接写出约分的结果: (1)2bc ac = (2)234xy 6x y = (3)3218a b 6a c -= (4)233312x y z 15x y--= 8.约分: (1)22a ab (a b)++ (2)222x y (x y)-- = == = (3)222x y 3xy x 3xy-- (4)222a 4ab 4b 3a 6ab +++ = == =四、问题生成单:五、谈本节课收获和体会:。

八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制

八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制
x
y
y
错解解析:上述解法出错的原因是把分子、分母首项的
符号当成了分子、分母的符号.
x
正确解析:
x
y
y
x
y
x
y
x
x
y
.
y
归纳
当分式的分子、分母是多项式时,
若分子、分母的首项系数是负数,应先
提取“-”并添加括号,再利用分式的
基本性质化成题目要求的结果;变形时
要注意不要把分子、分母的第一项的符
号误认为是分子、分母的符号.
b
(1)
2x
by
y
2 xy

0 ;
b
解:(1)因为y≠0,所以
2x
ax
(2)因为x≠0,所以
bx
ax
(2)
bx
a
.
b
b y
by
;
2 x y 2 xy
ax x a
.
bx x b
归纳
应用分式的基本性质时,一定要确定分式
在有意义的情况下才能应用.应用时要注
意是否符合两个“同”:一是要同时作
“乘法”或“除法”运算;二是“乘(或除
定义 把分式分子、分母的公因式约去,这种变形叫
分式的约分.
约分的步骤:
(1)约去系数的最大公约数;
(2)约去分子分母相同因式的最低次幂.
特别解读
1. 约分的依据是分式的基本性质,关键是确定分子和
分母的公因式;
2. 约分是针对分式的分子和分母整体进行的,而不是
针对其中的某些项,因此约分前一定要确认分子和
1
D.缩小到原来的
20
5.
x 2- y 2
当x=6,y=-2时,则式子 ( x- y ) 2

北师大版八年级下册数学《5.1 第2课时 分式的基本性质》教案

北师大版八年级下册数学《5.1 第2课时 分式的基本性质》教案

第2课时 分式的基本性质1.理解并掌握分式的基本性质和符号法则;(难点)2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x的分子、分母都乘以10得2x +1020+5x.故选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b .解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b2a ;(2)原式=-5y7x 2;(3)原式=-a +2b2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:约分及最简分式【类型一】 判定分式是否为最简分式下列分式是最简分式的是( )A.2a 2+a abB.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a5bc 325a 3bc 4;(2)x 2-2xy x 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a 25c ;(2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计 1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。

新北师大版数学八年级下册:认识分式第2课时分式的基本性质作业课件

新北师大版数学八年级下册:认识分式第2课时分式的基本性质作业课件
化简分式时,通常要使结果变为 最简分式 或者整式.
1.填空:
(1)53xay=(160aax2y);
(2)aa2形一定正确的是( C )
A.ba=ba--22
B.ab=abcc
C.abxx=ab D.ba=ba22
3.如果把x5+xy的x与y都扩大10倍,那么这个代数式的值( A )
(1)下列分式中,属于真分式的是( C )
x2 A.x-1
x-1 B.x+1
C.-2x-3 1
x2+1 D.x2-1
(2)将假分式mm2++13化成整式与真分式的和的形式.
解:(2)mm2++13=m2m-+1+1 4=mm2+-11+m+4 1=m-1+m+4 1
A.不变
B.扩大50倍
C.扩大10倍
D.缩小到原来的110
4.与分式--aa+-bb相等的是( B )
a+b A.a-b
a-b B.a+b
C.-aa+-bb
D.-aa-+bb
5.下列各式与xx-+22相等的是( B )
(x-2)+3 A.(x+2)+3
2x-2 C.2x+2
(x-2)2 B. x2-22
12.下列分式是最简分式的有 ②③ .(只填序号即可)
①23aaxy;②2y2+m3x;③aa2++bb2;④aa2--bb2;⑤x2+x2-2x1+1.
13.下列分式中,是最简分式的是( A )
2x
6
A.x2-1
B.3x
x+1 C.x2-1
1-x D.x-1
14.下列分式是最简分式的是( B )
B.1
3 C.5
D.2
17.如图,设k=甲乙图图中中阴阴影影部部分分面面积积(a>b>0),则有( B )

5.1第2课时分式的基本性质(教案)2023-2024学年八年级下册数学北师大版(安徽)

5.1第2课时分式的基本性质(教案)2023-2024学年八年级下册数学北师大版(安徽)
3.重点难点解析:在讲授过程中,我会特别强调分式的基本性质和运算这两ห้องสมุดไป่ตู้重点。对于难点部分,如分式的乘除法、通分等,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式相关的实际问题,如购物打折、制作饼干等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式的基本原理,如通分、约分等。
(3)分式的乘方运算:掌握分式乘方的运算规则,特别是指数法则的应用。
举例:分析分式乘方时,如何将分子和分母分别进行乘方运算,并简化结果。
(4)分式在实际问题中的应用:学会将现实问题转化为分式问题,并运用所学知识解决问题。
举例:讲解如何将现实生活中的问题转化为分式表达式,运用分式的性质和运算方法解决问题。
最后,我会在课后及时了解同学们的疑问和困惑,针对性地进行辅导,确保每个人都能在分式这部分内容上学有所得。同时,我也会在今后的教学中,更加注重培养同学们的动手能力和团队协作能力,让他们在解决实际问题的过程中,真正掌握分式的核心知识。
(1)分子、分母的符号变化:探讨分式分子、分母同时乘以或除以同一个非零数时,分式的值不变。
(2)分式的乘除法:分析分式乘法、除法的运算规律,以及分式乘除法的简化方法。
(3)分式的乘方:讲解分式乘方的运算方法,以及如何运用指数法则简化计算。
3.分式的基本运算:结合实际例题,引导学生掌握分式的加减运算、乘除运算以及乘方运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

10-2 分式的基本性质-2020-2021学年八年级数学下册课时同步练(原卷版)

10-2 分式的基本性质-2020-2021学年八年级数学下册课时同步练(原卷版)

第十单元第2课时分式的基本性质一.选择题1.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-2 2.把分式yx x -2中的x y 、都扩大m 倍(m ≠0),则分式的值( ) A .扩大m 倍B .缩小m 倍C .不变D .不能确定 3.要使分式有意义,x 的取值范围为( )A.x ≠﹣5B.x >0C.x ≠﹣5且x >0D.x ≥04.若分式1212+-b b 的值是负数,则b 满足( ) A .b <0 B .b ≥1 C .b <1 D .b >15.下面四个等式:;22;22;22y x y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22y x y x ④其中正确的有( ) A .0个 B .1个 C .2个 D .3个6.化简222()x y y x --的结果是( ) A .﹣1 B .1 C .x y y x +- D .x y x y +- 二.填空题7. 如果分式15x -在实数范围内有意义,则x 的取值范围是______. 8. 若,则= .9.当______时,分式||44x x --的值为零. 10.填空:)()1(=++-n m n m =-----b a n m m n 212)2(;)(⋅-ba 221 11.填入适当的代数式,使等式成立:22222()a ab b a b a b+-=⋅-+ 12. 分式22112mm m -+-约分的结果是______. 三.解答题13. (1)当x=﹣1时,求分式的值.(2)已知a 2﹣4a+4与|b ﹣1|互为相反数,求的值.14.已知112x y -=,求373232x xy y x xy y+---的值.15.(1)阅读下面解题过程:已知22,15x x =+求241x x +的值. 解:∵22,15x x =+()0x ≠ 12,15x x=+∴即152x x +=⋅ 2422221114115117()2()22x x x x x x ====⋅+++--∴ (2)请借鉴(1)中的方法解答下面的题目: 已知22,31x x x =-+求2421x x x ++的值.。

青岛版八年级上册数学教学设计《3-1分式的基本性质(第2课时)》

青岛版八年级上册数学教学设计《3-1分式的基本性质(第2课时)》

青岛版八年级上册数学教学设计《3-1分式的基本性质(第2课时)》一. 教材分析《3-1分式的基本性质(第2课时)》这一节内容,是在学生已经掌握了分式的概念、分式的基本运算法则的基础上进行授课的。

本节内容主要让学生了解并掌握分式的基本性质,包括分式的分子、分母同时乘以或除以同一个不为0的整式,分式的值不变;分子、分母同时加上或减去同一个整式,分式的值也不变。

这些性质对于学生后续学习分式的运算和应用有着重要的指导作用。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于分式的基本运算法则已经有了一定的了解。

但是,学生在运用分式的性质进行运算时,容易出错,特别是在分子、分母同时乘以或除以同一个不为0的整式时,容易忽略“不为0”的条件。

因此,在教学过程中,需要引导学生注意这一点,并加强相关的练习。

三. 教学目标1.知识与技能目标:让学生掌握分式的基本性质,能够运用分式的性质进行简单的运算。

2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:分式的基本性质的掌握和运用。

2.难点:分式的基本性质在实际运算中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究分式的基本性质。

2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和解决问题的能力。

3.通过例题讲解、课后练习,巩固所学知识。

六. 教学准备1.教学课件:制作相关的教学课件,便于学生直观地理解分式的基本性质。

2.练习题:准备一些有关分式基本性质的练习题,用于课后巩固所学知识。

七. 教学过程1.导入(5分钟)利用一个实际问题,引出分式的基本性质,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示分式的基本性质,让学生直观地感受分式的性质。

同时,引导学生进行思考,如何运用分式的性质进行运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档