机械能守恒定律应用中的几种模型
机械能守恒定律的几种典型形式

机械能守恒定律的几种典型形式吴江市盛泽中学 陈栋梁一、 单个物体(除地球),只有重力做功的的机械能守恒 例一:如图所示,桌面高度为h ,质量为m 的小球从离桌面高H 处自由落下,不计空气阻力; ——整个过程小球只受重力作用,只有重力做功,机械能守恒。
例二:用一根长l 的细线,一端固定在项板上,另一端拴一个质量为m 的小球。
现使细线偏离竖直方向一定角后,从A 处无初速地释放小球(如图)——整个过程小球受重力、绳子的拉力,但绳子的拉力不做功,只有重力做功,机械能守恒。
二、 有弹簧参与的机械能守恒例三:如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最短.若不计弹簧质量和空气阻力 在小球由A -B—C 的运动过程中(AD)A 、小球和弹簧总机械能守恒B 、小球的重力势能随时间均匀减少C 、小球在B 点时动能最大D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量——在小球接触弹簧过程中,小球机械能不守恒,弹簧机械能不守恒,但小球的动能+小球的重力势能+弹簧的弹性势能,总量保持不变,即小球和弹簧组成的系统机械能守恒。
三、 单个物体,有其它力存在的机械能守恒例四:如图所示,质量为m =5kg 的物体,置于一倾角为30︒的粗糙斜面上,用一平行于斜面的大小为40N 的力F 拉物体,使物体沿斜面M 向上做初速度为V 0的匀减速直线运动,加速度大小为52/s m ,斜面始终保持静止状态。
——此例中物体受力:重力,斜面的支持力,外力F ,及阻力;其中支持力做功为零,重力做负功,外力F 做正功,阻力做负功,但由题意可知,阻力与外力F 大小相等,即阻力和外力F 做的总共为零,故可以认为只有做功,机械能守恒。
H h A B C F m 30︒ M四、单个物体整体机械能守恒例五:长为L的均匀链条,放在光滑的水平桌面上,且使其长度的1/2垂在桌边,如图所示,松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为多大?——此例中物体是一根链条,被分成了两部分,两部分加起来,整体机械能守恒五、多个物体机械能守恒问题例六:如图示,长为l的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴O转到最高点,则底端小球在如图示位置应具有的最小速度v= 。
机械能守恒的几种模型

“机械能守恒”的几种模型山东滕州五中 郝士其 (277500)“机械能守恒定律”是物理学中十分重要的物理规律,不少同学常将它与“能的转化与守恒定律”混为一谈。
在物理过程中常常伴随着能量的变化,各种能量在转化或转移的过程中,总能量是守恒的,但物体(或物体系)的机械能却不一定守恒。
现分析如下:一、机械能守恒的条件①只有重力(或弹簧的弹力)做功,其它力不做功;②虽有重力(或弹簧的弹力)之外的力做功,但它们做功的代数和为零;二、机械能守恒的判定方法①利用机械能的定义判断(直接判断);②用做功判断:若物体或系统只有重力(或弹簧弹力)做功,其它力不做功,机械能守恒;若重力(或弹簧的弹力)之外的力做正功,机械能增大;做负功,机械能减小;做零功(不做功),机械能守恒。
③用能量转化来判断:若物体系统中只有动能和势能的转化而无机械能与其它形式的能的转化,则物体系统中机械能守恒;④对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目有特别说明,否则机械能必定不守恒。
三、机械能守恒定律的表达式① 守恒观点E K1+E P1=E K2+E P2 ;② 转化观点△E K =△E P ;③ 转移观点△E A 增=△E B 减四、机械能守恒的几种模型(一)单个物体的机械能守恒.【例1】质量为m 的小球,从离桌面H 高处由静止下落,桌面离地高度为h ,如图所示,若以桌面为参考平面,那么小球落地时的重力势能及整个过程中重力势能的变化分别是( )A .mgh ,减少mg(H-h)B . mgh ,增加mg(H+h)C .-mgh ,增加mg(H-h)D . -mgh ,减少mg(H+h)解析:小球下落过程只有重力做功,机械能守恒。
物体的机械能是相对于零势能面而言的;但重力势能的变化决定于重力做的功:重力做正功,重力势能减小,重力做负功,重力势能增大,答案:D【例2】如图所示的四个选项中,木块均在固定的斜面上运动,其中图A 、B 、C 中的斜面是光滑的,图D 中的斜面是粗糙的,图A 、B 中的力F 为木块所受的外力,方向如图中箭头所示,图A 、B 、D 中的木块向下运动,图C 中的木块向上运动。
系统机械能守恒的三类“连接体模型”

系统机械能守恒的三类“连接体模型”摘要:研究与连接体模型相关的机械能守恒问题,是物理教学的重点内容。
有助于提高学生分析问题和物理模型建构能力。
文章通过分析两物体速度大小相等的连接体模型;角速度相等的连接体模型;分速度数值相等的连接体模型,从能量守恒的角度分析相关情境,解决物理问题。
关键词:连接体模型;能量守恒;机械能守恒;为了研究实际情境中各物体的运动规律,科学家往往把复杂的、具体的物体或过程,用简化的模型或过程来代替。
连接体模型就是我们在教学中被简化的一类物理模型。
研究“连接体模型”的能量守恒问题,有助于提高学生分析问题和物理模型建构能力。
连接体模型是两个或两个以上物体相互作用,或通过轻绳、轻弹簧、轻杆连接的物理模型。
为了更好的分析连接体模型,先要通过受力分析,运用牛顿运动定律,明确各个力的关系。
[例1]如图1,在光滑的水平桌面上,一根拉直的轻绳通过定滑轮将物块A与物块B连接起来,物块A 的质量大于物块B的质量,分别设为M和m,将A、B静止释放。
分析A、B运动过程中,轻绳的拉力T为多少?解析:分别对A、B受力分析对A:对B:当在受力分析的基础上,借助牛顿运动定律,分析连接体模型各个物体的运动过程和运动特点。
教师可以进一步引导学生从能量守恒的角度分析相关情境,解决问题。
文章通过分析三类连接体模型,帮助学生了解连接体模型的特点,掌握分析连接体问题的方法。
一、速率相等的连接体模型如图2所示,由物体A和B通过细绳组成的四种连接体模型,A B连接体的初速度为零,细绳拉力不为零。
若静止释放A、B,物体B将通过细绳拉着A一起做加速运动。
请分析A、B的速度方向,以及比较它们速度的大小(不计空气阻力以及各接触面的摩擦力)。
结合模型,分析A、B运动过程, A、B的速度均沿着绳子的方向,则两物体的速率相等。
不计空气阻力和摩擦力,系统只有动能和重力势能相互转化,从能量转化的角度,系统的机械能守恒。
[例2] 如图3所示长度均为L,质量为m的甲、乙、丙三根链条,链条的一半悬空放置。
机械能守恒在模型中的应用

机械能守恒在模型中的应用(一)连绳模型【例1】 如图所示,甲、乙两个物体的质量分别为m 甲和m 乙(m 乙>m 甲),用细绳连接跨在半径为R 的光滑半圆柱的两端,连接体由图示位置从静止开始运动,当甲到达半圆柱体顶端时对圆柱体的压力为多大?解析:设甲到达半圆柱体顶部时,二者的速度的大小为v ,以半圆柱顶部为零势能面,由机械能守恒定律可得-(m 乙+m 甲)gR =12(m 乙+m 甲)v 2-m 乙g ⎝⎛⎭⎫R +π2R ① 或以半圆柱底部为零势能面,由机械能守恒定律有0=m 甲gR +12(m 乙+m 甲)v 2-m 乙g ·π2R (与上式一样,可见零势能面的选取与解题无关,可视问题方便灵活选择零势能面)设甲到达顶部时对圆柱体的压力为F N ,以甲为受力分析对象,则m 甲g -F N =m 甲v 2R ② 联立①②两式可得F N =m 甲g ⎣⎢⎡⎦⎥⎤3m 甲-π-1 m 乙m 乙+m 甲. 由牛顿第三定律对圆柱体压力 F N ′=F N =m 甲g ⎣⎢⎡⎦⎥⎤3m 甲-π-1 m 乙m 乙+m 甲 点评:此类问题要认清物体的运动过程,注意物体运动到最高点或最低点时速度的隐含条件及认清两者的速度关系。
(二)连杆模型【例2】如图所示,两个质量分别为m 和2m 的小球a 和b ,之间用一长为2l 的轻杆连接,杆在绕中点O 的水平轴无摩擦转动。
今使杆处于水平位置,然后无初速释放,在杆转到竖直位置的过程中,求:(1)杆在竖直位置时,两球速度的大小(2)杆对b 球做的功【解析】(1)以a 、b 和地球组成的系统为研究对象,以轻杆的水平位置为零势能面,由机械能守恒定律得:0= (mv a 2/2+mgl ) + (2mv b 2/2 – 2mgl ) ①由圆周运动规律得:v a =v b =lw=v ②①②结合解得:32gl =υ(2)对b 球,由动能定理得:W F +2mgl=2mv 2/2 -0综合(1)结果解得:W F = -4mgl/3。
动能定理和机械能守恒知识点和相关模型以及能量守恒定律

动能定理和机械能守恒知识点和相关模型以及能量守恒定律嘿,朋友们!咱们今天来聊聊物理里超级重要的动能定理、机械能守恒还有能量守恒定律。
这可都是能让我们看清物体运动和能量变化的神奇法宝呢!先来说说动能定理。
想象一下,一个小球在光滑的平面上滚动,速度越来越快。
这时候,力对小球做的功就等于小球动能的变化。
就好像你努力工作得到的成果,和你付出的努力是成正比的一样。
力做功越多,动能的变化就越大。
那要是力不做功呢?动能就不变啦!是不是很神奇?再看看机械能守恒。
这就像是一个不会漏财的存钱罐。
只有重力或者弹力做功的时候,机械能的总量就不变。
比如说一个摆球,从高处摆到低处,重力势能减少了,但是动能增加了,机械能的总和却一直不变。
这不就像你把钱从一个口袋放到另一个口袋,总数不变嘛!接下来是能量守恒定律,这可是物理学中的“定海神针”!能量不会凭空产生,也不会凭空消失,只会从一种形式转化为另一种形式。
就好比你的精力,白天工作消耗了,晚上睡一觉又恢复了,总量不变。
不管是热能、电能、光能还是机械能,它们之间相互转化,但是总的能量永远不变。
咱们来具体说说相关模型。
比如说,有一个滑块在粗糙的斜面上滑行。
摩擦力做功,动能减少,但是重力势能也在变化。
这时候就要用到动能定理来算算力做的功和动能变化的关系。
再比如,一个弹簧连着一个物体,压缩或者拉伸弹簧的时候,弹性势能和动能、重力势能之间的变化,就得靠机械能守恒来搞清楚。
还有那种碰撞的模型,两个物体撞在一起,动能可能会有损失,但是总能量还是不变的。
朋友们,你们想想,如果没有这些定理和定律,我们怎么能搞清楚物体运动中的能量变化呢?那不就像在黑暗中摸索,啥也看不清嘛!所以说,掌握好动能定理、机械能守恒和能量守恒定律,就能让我们在物理的世界里畅游,轻松解决各种难题。
这些知识就像是我们手中的明灯,照亮我们探索物理奥秘的道路。
你们说是不是?咱们一定要把它们学好、用好,让物理变得不再那么可怕,而是充满乐趣!。
微专题32 机械能守恒定律在连接体问题中的应用-2025版高中物理微专题

微专题32机械能守恒定律在连接体问题中的应用【核心要点提示】机械能守恒定律理解的三种形式:1.守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2.转化观点(1)表达式:ΔE k=-ΔE p.(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.3.转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.【微专题训练】类型一:速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,则A、B的速率相等。
2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。
这类题目的典型特点是系统不受摩擦力作用。
(2017·福建八县一中联考)(多选)如图所示,倾角为30°、高为L的固定斜面底端与水平面平滑相连,质量分别为3m、m的两个小球A、B用一根长为L的轻绳连接,A球置于斜面顶端。
现由静止释放A、B两球,B球与弧形挡板碰撞过程时间极短,无机械能损失,且碰后只能沿斜面下滑,两球最终均滑到水平面上。
已知重力加速度为g,不计一切摩擦,则(ABD)A.A球刚滑至水平面上时的速度大小为5gL2B.B球刚滑至水平面上时的速度大小为32gLC.两小球在水平面上不可能相撞D.在A球沿斜面下滑的过程中,轻绳对B球先做正功,后不做功[解析]从A球开始下滑到A球落地的过程中,系统的机械能守恒,A球到达水平面上时B球在斜面的中点上,则有3mgL-mg L2=12(4m)v2,解得v=5gL2,故A正确;A球滑到水平面后,A球的速度不再变化,而B球速度继续增大,此时轻绳对B球不再有力的作用,对B球由机械能守恒可知mg 12L=12mv′2-12mv2,解得B球最终滑到水平面上时速度v′=32gL,故B正确;B球滑到水平面上,由于B球的速度大于A球的速度,故两球最终一定会相撞,故C错误;由题意可知,开始时,B球动能增加,轻绳对B球做正功,当A球沿斜面下滑一半距离后,A、B球一起沿斜面下滑,速度和加速度均相等,故轻绳无拉力,轻绳不再做功,故D正确。
在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。
2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。
机械能守恒定律专题9 功能关系 能量守恒定律(3) 板块模型18.5.21

机械能守恒定律专题9 能量守恒定律应用(3)板块模型1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE 内=-ΔE 机=F f x相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.例题1、如图5,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是(BC)图5A .物块到达小车最右端时具有的动能为F (L +s )B .物块到达小车最右端时,小车具有的动能为F f sC .物块克服摩擦力所做的功为F f (L +s )D .物块和小车增加的机械能为F f s解析 对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12m v 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12M v ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能和摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F(L+s)-F f L,故D错误.例题2、图7甲中,质量为m1=1kg的物块叠放在质量为m2=3kg的木板右端.木板足够长,放在光滑的水平面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10m/s2.甲图7(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4s内,若拉力F的变化如图乙所示,2s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4s 内木板和物块的v-t图象,并求出0~4s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.答案(1)8N(2)见解析系统产生的内能可以直接用能量守恒等于力F做的功解析(1)把物块和木板看成整体,由牛顿第二定律得F=(m1+m2)a物块与木板将要相对滑动时,μ1m1g=m1a联立解得F=μ1(m1+m2)g=8N.(2)物块在0~2s内做匀加速直线运动,木板在0~1s内做匀加速直线运动,在1~2s内做匀速运动,2s后物块和木板均做匀减速直线运动,故二者在整个运动过程中的v-t图象如图所示.0~2s内物块相对木板向左运动,2~4s内物块相对木板向右运动.0~2s内物块相对木板的位移大小Δx1=2m,系统摩擦产生的内能Q1=μ1m1gΔx1=4J.2~4s内物块相对木板的位移大小Δx2=1m,物块与木板因摩擦产生的内能Q2=μ1m1gΔx2=2J;木板对地位移x 2=3m ,木板与地面因摩擦产生的内能Q 3=μ2(m 1+m 2)gx 2=30J.0~4s 内系统因摩擦产生的总内能为Q =Q 1+Q 2+Q 3=36J.例题3、如图4所示,在光滑水平地面上放置质量M =2kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6m .滑块在木板上滑行t =1s 后,和木板一起以速度v =1m /s 做匀速运动,取g =10 m/s 2.求:图4(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块相对木板滑行的距离.解析 (1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2N.(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3m/s滑块沿弧面下滑的过程,由动能定理得mgh -W f =12m v 20 W f =mgh -12m v 20=1.5J. (3)t =1s 内木板的位移x 1=12a 1t 2 此过程中滑块的位移 x 2=v 0t +12a 2t 2 故滑块相对木板滑行距离 L =x 2-x 1=1.5m.答案 (1)2N (2)1.5J (3)1.5m例题4、如图1所示,AB 段为一半径R =0.2m 的14光滑圆弧轨道,EF 是一倾角为30°的足够长的光滑固定斜面,斜面上有一质量为0.1kg 的薄木板CD ,开始时薄木板被锁定.一质量也为0.1kg 的物块(图中未画出)从A 点由静止开始下滑,通过B 点后水平抛出,经过一段时间后恰好以平行于薄木板的方向滑上薄木板,在物块滑上薄木板的同时薄木板解除锁定,下滑过程中某时刻物块和薄木板能达到共同速度.已知物块与薄木板间的动摩擦因数μ=36.(g =10m/s 2,结果可保留根号)求:图1(1)物块到达B 点时对圆弧轨道的压力;(2)物块滑上薄木板时的速度大小;(3)达到共同速度前物块下滑的加速度大小及从物块滑上薄木板至达到共同速度所用的时间.答案 (1)3N ,方向竖直向下 (2)433m/s (3)2.5m/s 2 4315s 解析 (1)物块从A 运动到B 的过程,由动能定理得:mgR =12m v 2B,解得:v B =2m/s 在B 点由牛顿第二定律得:F N -mg =m v 2B R解得:F N =3N 由牛顿第三定律得物块对轨道的压力大小为3N ,方向竖直向下.(2)设物块滑上薄木板时的速度为v ,则:cos30°=v B v解得:v =433m/s. (3)物块和薄木板下滑过程中,由牛顿第二定律得:对物块:mg sin30°-μmg cos30°=ma 1对薄木板:mg sin30°+μmg cos30°=ma 2设物块和薄木板达到的共同速度为v ′,则:v ′=v +a 1t =a 2t解得:a 1=2.5m/s 2,t =4315s. 练习1:如图8所示,长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( CD )图8A .物体B 动能的减少量等于系统损失的机械能B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量解析 物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.练习2:光滑水平面上静止一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,并以速度v 2穿出,对这个过程,下列说法正确的是( AD )A .子弹克服阻力做的功等于12m (v 21-v 22) B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热产生的内能之和D .子弹损失的动能等于木块的动能和子弹与木块摩擦转化的内能之和练习3-3:如图6所示,木块A 放在木块B 的左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,仍将A 拉到B 的右端,这次F 做功为W 2,生热为Q 2.则应有( A )图6A .W 1<W 2,Q 1=Q 2B .W 1=W 2,Q 1=Q 2C .W 1<W 2,Q 1<Q 2D .W 1=W 2,Q 1<Q 2解析 拉力F 做的功由公式W =Fl cos α求得,其中l 是物体对地的位移,所以W 1<W 2,滑动摩擦力做功过程中产生的内能等于系统克服摩擦力做的功,即ΔE =Q =F f l相对,其中l 相对表示物体之间的相对位移,在这里是B 的长度,所以Q 1=Q 2.练习4:如图9所示,一块长木块B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( BD )图9A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功等于A 的动能的增量C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和解析 A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则B 对A 的摩擦力所做的功等于A 的动能的增量,B 正确.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错误.对B 应用动能定理W F-W f=ΔE k B,W F=ΔE k B+W f,即外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和,D正确.由上述讨论知B克服摩擦力所做的功与A的动能的增量(等于B对A的摩擦力所做的功)不等,故A错误.练习5:(2013·山东·16)如图4所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中(CD)图4A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减小,减小的机械能等于M 克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.练习6:如图所示,上表面光滑,长度为3m、质量M=10kg的木板,在F=50N的水平拉力作用下,以v0=5m /S的速度沿水平地面向右匀速运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律应用中的几种模型
机械能守恒定律属于教学中的重点知识,在实际问题中我们如果能正确建立几种典型的机械能守恒的模型,将有利于对此类问题的分析和解决.
(1)轻连绳模型
【典例1】如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始
运动过程中().
A.M、m各自的机械能分别守恒
B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能
D.M和m组成的系统机械能守恒
解析M下落过程中,绳的拉力对M做负功,M的机械能减少;m上升过程,绳的拉
力对m做正功,m的机械能增加,A错误;对M、m组成的系统,机械能守恒,易得B、D正确;M减少的重力势能并没有全部用于m重力势能的增加,还有一部分转变成M、
m的动能,所以C错误.
答案BD
点评:此类问题要认清物体的运动过程,注意物体运动到最高点或最低点时速度相同。
(2)轻连杆模型
【典例2】质量分别为m和M(其中M=2m)的两个小球P和Q,中间用轻质杆固定连接,在杆的中点O处有一个固定转轴,如图所示.现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置的过程中,下列
有关能量的说法正确的是().
A.Q球的重力势能减少、动能增加,Q球和地球组成的系统机械能守恒
B.P球的重力势能、动能都增加,P球和地球组成的系统机械能不守恒
C.P球、Q球和地球组成的系统机械能守恒D.P球、Q球和地球组成的系统机械能不守恒
解析Q球从水平位置下摆到最低点的过程中,受重力和杆的作用力,杆的作用力是Q 球运动的阻力(重力是动力),对Q球做负功;P球是在杆的作用下上升的,杆的作用力是动力(重力是阻力),对P球做正功.所以,由功能关系可以判断,在Q球下摆过程中,P球重力势能增加、动能增加、机械能增加,Q球重力势能减少、机械能减少;由于P球和Q球整体只有重力做功,所以系统机械能守恒.本题的正确答案是B、C.
答案BC
点评:此类问题应注意在运动过程中各个物
体之间的角速度、线速度的关系.
(3)轻弹簧模型
【典例3】
如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中().
A.圆环机械能守恒
B.弹簧的弹性势能先增大后减小
C.弹簧的弹性势能变化了mgh
D.弹簧的弹性势能最大时圆环动能最大
解析圆环受到重力、支持力和弹簧的弹力作用,支持力不做功,故环的机械能与弹簧的弹性势能总和保持不变,故全过程弹簧的弹性势能变化量等于环的机械能变化量,C 正确,圆环的机械能不守恒,A错误.弹簧
垂直杆时弹簧的压缩量最大,此时圆环有向下的速度,故此时弹性势能比末状态的弹性势能小,即:最终状态弹簧被拉长,且弹性势能达到最大,此时圆环的动能为零,所以弹性势能是先增加后减小最后又增大,B、D错误.
答案 C
点评:此类问题应注意物体与弹簧组成的系统机械能守恒,不同的过程中弹性势能的变化一般是不相同的.。