3-1 平面立体-立体的分类
合集下载
《建筑制图与识图》第3章

3.2.3 曲面立体表面上点的投影
1.利用曲面投影的积聚性
例3-2 如图(a)所示,已知圆柱体表面上一点A的V面投影。 求点A的H面、W面投影。
3.2.3 曲面立体表面上点的投影
分析与作图: 因圆柱的轴线垂直于H面,故圆柱的水平投影有积聚性,又 因a′可见,表明点A位于圆柱的前半个表面上,因此过a′向下投 影,在圆柱水平投影的前半圆周上得点A的水平投影a。由a,a′ 可求出a″,如图3-9(b)所示。因a′位于V投影对称轴的右侧, 故a″为不可见,A点在圆柱体上的位置如图3-9(c)所示。
3.3.1 截切体
因为立体的形状都不一样,截平面与立体表面的相对位置 也各不相同,由此产生的截交线形状也千差万别,但所有的截交 线都具有以下基本性质:
① 共有性。截交线是截平面与立体表面的共有线,既在截 平面上,又在立体表面上,是截平面与立体表面共有点的集合。
② 封闭性。由于立体表面是有范围的,所以截交线一般是 封闭的平面图形。
第3章 立体的投影
目录
3.1
平面立体
曲面立体
3.2
3.3
截切体和相贯体
组合体
3.4
3.1 平面立体
3.1.1 常见平面立体的投影图
平面立体
3.1.2 平面立体的投影图的绘制
3.1.3 平面立体表面上点和直线的投影
3.1.1 常见平面立体的投影
3.1.1 常见平面立体的投影
3.1.1 常见平面立体的投影
3.1.2 平面立体图的绘制
绘制平面立体的三面投影图,首先要按正确位置将 形体放入三面投影体系中,让形体的表面和棱线与投影 面尽量平行或垂直。
绘制平面体的投影图实际上就是绘制平面体底面和 侧表面的投影,一般先画出反映底面实形的正投影图, 然后再根据投影规律画出其他两个投影。
3立体的投影

项目3 立体的投影
3.1 投影实例 3.2 平面立体、曲面立 体的投影 3.3 平面截割立体 3.4 立体的相贯线
3.2.1 平面立体
平面立体简称平面体; 平面立体的特点:
各个表面都是平面图形,各平面图形均由棱线围成, 棱线又由其端点确定。 因此,平面立体的投影是由围成它的各平面图形的 投影表示的,其实质是作各棱线与端点的投影。
圆柱体的投影分析(回转轴垂直于H面)
正面投影的左、右边 线分别是圆柱最左、最右 的两条轮廓素线的投影, 这两条素线把圆柱分为前、 后两半,他们在W面上的投 影与回转轴的投影重合。
侧面投影的左、右边 线分别是圆柱最前、最后 的两条轮廓素线的投影, 这两条素线把圆柱分为左、 右两半,他们在V面上的投 影与回转轴的投影重合。
回转轴 母线
回转曲面的有关概念
O
素线:母线在曲面上
的任意位置都称为素
纬 圆 线。
纬圆:母线上任意点 的运动轨迹都是一个 垂直于回转轴且中心 在回转轴上的圆,这 轮廓素线 种圆就称为纬圆。 O1
3.2.3.1 圆柱及其表面点
OO’ AA’
圆柱的形成: 圆柱面是由两条相互平行的 直线,其中一条直线AA’ (称为直母线)绕另一条直 线OO’(称为轴线)旋转一 周而形成。圆柱体由两个相 互平行的底平面和圆柱面围 成。圆柱面上的与OO’平行 的直线,称为柱面上的素线, 每根素线都与轴线平行且等 距,而且任两根素线都互相平 行,当用一垂直于轴线的平 面截断圆柱面时,每个截断 面都是等直径的圆。
m'
纬圆法
m
§3-3 切割体的投影
一、切割体及截交线的概念
• 切割体——基本体被平面截切后的部分 • 截平面——截切立体的平面 • 截断面——立体被截切后的断面 • 截交线——截平面与立体表面的交线
3.1 投影实例 3.2 平面立体、曲面立 体的投影 3.3 平面截割立体 3.4 立体的相贯线
3.2.1 平面立体
平面立体简称平面体; 平面立体的特点:
各个表面都是平面图形,各平面图形均由棱线围成, 棱线又由其端点确定。 因此,平面立体的投影是由围成它的各平面图形的 投影表示的,其实质是作各棱线与端点的投影。
圆柱体的投影分析(回转轴垂直于H面)
正面投影的左、右边 线分别是圆柱最左、最右 的两条轮廓素线的投影, 这两条素线把圆柱分为前、 后两半,他们在W面上的投 影与回转轴的投影重合。
侧面投影的左、右边 线分别是圆柱最前、最后 的两条轮廓素线的投影, 这两条素线把圆柱分为左、 右两半,他们在V面上的投 影与回转轴的投影重合。
回转轴 母线
回转曲面的有关概念
O
素线:母线在曲面上
的任意位置都称为素
纬 圆 线。
纬圆:母线上任意点 的运动轨迹都是一个 垂直于回转轴且中心 在回转轴上的圆,这 轮廓素线 种圆就称为纬圆。 O1
3.2.3.1 圆柱及其表面点
OO’ AA’
圆柱的形成: 圆柱面是由两条相互平行的 直线,其中一条直线AA’ (称为直母线)绕另一条直 线OO’(称为轴线)旋转一 周而形成。圆柱体由两个相 互平行的底平面和圆柱面围 成。圆柱面上的与OO’平行 的直线,称为柱面上的素线, 每根素线都与轴线平行且等 距,而且任两根素线都互相平 行,当用一垂直于轴线的平 面截断圆柱面时,每个截断 面都是等直径的圆。
m'
纬圆法
m
§3-3 切割体的投影
一、切割体及截交线的概念
• 切割体——基本体被平面截切后的部分 • 截平面——截切立体的平面 • 截断面——立体被截切后的断面 • 截交线——截平面与立体表面的交线
《构成设计》3-平面构成走向立体构成

生活中的餐具形态
一.形体的意识
生活中的家具形态
二.立体形态的类型和特点
按立体形态的外貌表情来划分 按立体形态的虚实关系来划分
生活中的城市建筑形态
三.半立体浮雕构成
半立体浮雕的概念及特点 抽象浮雕 具象浮雕
一、形体的意识
什么是立体构成中形态?
在立体构成中,“形态”不等于“形状”。“形态”是 指立体物在实际的空间中占有实际的位置,是由无数个 角度和体面形成的形状构成,所以它并没有固定的轮廓。
城市景观雕塑
在艺术创作中,量感的体现能够使人对艺术作品产生高大、神 秘、茫然、恐惧、雄伟、庄严等感觉;将具有扩张、伸展和向 上的形态加以创造性的运用,可以使作品具有生命力。
第三节、用材料创造空间
材料是设计师或艺术家创造立体造型的载体,是立体构成不可或缺的部分,对材料的选择和运用是使 立体作品具有生命力的关键。立体造型依赖于物质材料来表现,物质材料的性能直接限制了立体构成的形 态塑造,同时,物质材料的视觉和触觉功能又赋予了材料肌理不同的心理效应。
半立体浮雕
1、半立体浮雕的概念及特点
浮雕,是在平面上雕刻出凹凸起伏形象的一种雕塑,是介于圆雕和绘画之间的艺术表现形 式。浮雕的空间构造既可以是三维的立体形态,也可以兼备某种平面形态,既可以依附于某种 载体,又可相对独立地存在。
浮雕墙面装饰
一般说来,浮雕为 了满足特定视点的 观赏需要或装饰需 要,往往具备形体 压缩后的二维特性 。浮雕的空间形态 是介于绘画所具有 的二维虚拟空间与 圆雕所具有的三维 实体空间之间的所 谓压缩空间。
2、增形加工
将简单形体破坏、拆散后的 材料重新组合与重建,创造 出一个新的整体的形态造型, 又称增形加工。
4、材料的再加工
工程制图课件——第3章 立体的投影

1′ 3′ a
⑵ 圆柱体的三视图
2′ 4′
⑶ 轮圆廓柱线面素的线俯的视投图影积分聚析成与一曲
⑷个 两 示圆个。圆面,方柱的在 向面可另 的上见两 轮取性个 廓点的视素判图线断上的分投别影以表
1(2)
a3(4)
O A
O1 A1 1″ 3″ a
2″ 4″
利用投影 的积聚性
已知圆柱表面上的点M及N正面投影m′和n′,求它们 的其余两投影。
• 平面与立体表面的交线,称为截交线; 当平面切割立体时,由截交线围成的平 面图形,称为断面。 • 用平面与立体相交,截去体的一部分—截切。
• 用以截切立体的平面——截平面。
五棱柱被切割后的三面投影
例1:求四棱锥被截切后的俯视图和左视图。
1 (4)2 3
4● ●1 ● 2 ● 3
ⅣⅠ
Ⅱ Ⅲ
4
●
3
三视图
(2)正面与侧面投影 是以轴线为对称线的、 大 小完全相同的矩形。
投影特性
圆
圆 锥
底 成下 看面 是底 成圆围 由圆面 是锥成 一柱围 由是。 直由成 一由圆 母圆。 直圆锥 线柱圆 母锥面面柱 线A面可和A面BB绕和看上可绕、
⑴ 棱柱的组成
由两个底面和若干侧棱面
组成。侧棱面与侧棱面的交线
叫侧棱线,侧棱线相互平行。
⑵ 棱柱的三视图
⑶ 棱在柱图示面位上置取时点,六棱柱
的点两的底可面见为性水规平定面:,在俯视 图中反若映由点实于所形棱在。柱的前的平后表面两面的侧都投棱 面影是是可正平见平面,面,点,所的其以投余在影四棱也个柱可侧的见棱; 面若是表平铅面面垂上的面取投,点影它与积们在聚的平成水面直平上线投, 影点都取的积点投聚的影成方也直法可线相见,同。与。六边形 的边重合。
机械制图 模块三 简单立体三视图

模块三 简单立体三视图
学习目标
掌握平面立体和曲面立体的投影特性及其视图的画法; 能对棱柱、棱锥进行投影分析和三视图绘制; 能对圆柱、圆锥、球的进行投影分析和三视图绘制; 掌握在平面立体和曲面立体表面.上取点、线的作图方法; 熟悉截交线的投影特性,掌握求作截交线的基本作图方法; 熟悉相贯线的投影特性,掌握求作相贯线的基本作图方法。培养空间想象能力与空间思维能力; 培养认真负责、一丝不苟、严谨专注精神。
二、回转体的截交线
(3)球体的截交线
举例:如图3-24b,补 全开槽半圆球的水平和 侧面投影。
立体图
原题 作通槽的水平投影 作通槽的侧面投影
03 单元三 相贯线 02
一、平面立体与回转体的相贯线
平面立体与回转体的相贯线由若干平面曲线或直线组成,每一平面曲线或直线可以认为是平面立 体相应的棱面与回转体的截交线。所以求平面立体与回转体的相贯线,可归结为求截交线问题。 举例:如图3-26a、b所示,求四棱柱与圆柱的相贯线。
(2)平面与棱柱相交
立体图
作图步骤
侧面投影
二、回转体的截交线
(1)圆柱体的截交线
立 体 图
投 影 图
说 截平面平行于轴线,截交线为 截平面垂直于轴线,截交线为 截平面倾斜于轴线,截交线
明 矩形
圆
为椭圆
二、回转体的截交线
(1)圆柱体的截交线
立体图
作图步骤
截交线的投影
二、回转体的截交线
(2)圆锥体的截交线
由两个轮廓生成的放样立体
由多个轮廓生成的放样立体
三、立体的形成
(4) 扫掠形成立体 将轮廓沿着一条路径移动,其轮廓移动的轨迹构成立体,如图3-16。
扫掠形成立体
三、立体的形成
学习目标
掌握平面立体和曲面立体的投影特性及其视图的画法; 能对棱柱、棱锥进行投影分析和三视图绘制; 能对圆柱、圆锥、球的进行投影分析和三视图绘制; 掌握在平面立体和曲面立体表面.上取点、线的作图方法; 熟悉截交线的投影特性,掌握求作截交线的基本作图方法; 熟悉相贯线的投影特性,掌握求作相贯线的基本作图方法。培养空间想象能力与空间思维能力; 培养认真负责、一丝不苟、严谨专注精神。
二、回转体的截交线
(3)球体的截交线
举例:如图3-24b,补 全开槽半圆球的水平和 侧面投影。
立体图
原题 作通槽的水平投影 作通槽的侧面投影
03 单元三 相贯线 02
一、平面立体与回转体的相贯线
平面立体与回转体的相贯线由若干平面曲线或直线组成,每一平面曲线或直线可以认为是平面立 体相应的棱面与回转体的截交线。所以求平面立体与回转体的相贯线,可归结为求截交线问题。 举例:如图3-26a、b所示,求四棱柱与圆柱的相贯线。
(2)平面与棱柱相交
立体图
作图步骤
侧面投影
二、回转体的截交线
(1)圆柱体的截交线
立 体 图
投 影 图
说 截平面平行于轴线,截交线为 截平面垂直于轴线,截交线为 截平面倾斜于轴线,截交线
明 矩形
圆
为椭圆
二、回转体的截交线
(1)圆柱体的截交线
立体图
作图步骤
截交线的投影
二、回转体的截交线
(2)圆锥体的截交线
由两个轮廓生成的放样立体
由多个轮廓生成的放样立体
三、立体的形成
(4) 扫掠形成立体 将轮廓沿着一条路径移动,其轮廓移动的轨迹构成立体,如图3-16。
扫掠形成立体
三、立体的形成
第三章 平面立体的投影及线面投影分析-第一讲

侧垂线(垂直于W面,同时平行于H、V面的直线)
Z
a
b Z
a(b)
V
a
b ab
A B O W
X
O b YH
YW
X
a
Ha
b
Y
侧面投影积聚为一点;水平投 影及正面投影平行于OX轴,且 反映实长。
投影面垂直线的投影特性
投影面垂直线的投影特性可概括如下: (1)直线在它所垂直的投影面上的投影积聚成一点; (2)该直线在其他两个投影面上的投影分别垂直于相应 的投影轴,且都等于该直线的实长。 事实上,在直线的三面投影中,若有两面投影平 行于同一投影轴,则另一投影必积聚为一点;只要空间 直线的三面投影中有一面投影积聚为一点,则该直线必 垂直于积聚投影所在的投影面。
直线倾斜于投影面 投影比空间线段短 ab=ABcosα
直线的分类
直线与投影面的夹角,称为直线与投影面的倾角。对水平投影面的倾 角叫水平倾角,用α表示;对正立投影面的倾角叫正面倾角,用β表示; 对侧立投影面的倾角叫侧面倾角,用γ表示。 投影面垂直线
特殊位置直线 直 线 一般位置直线
直线在投影图上表现出来的特性,常与直线对投影面的倾斜状态有 关。根据直线与投影面的倾斜状态,直线分为三种类型:投影面平行线、 投影面垂直线、任意倾斜直线。
根据从属性判断点与直线的相对位置
V
n'
m'
N A
a'
M X B
n' b'
m'
a'
b'
X
O
O
b
n
m
a
H
a m b n
注意:对于侧平线还需考察侧面投影。
建筑制图与识图3立体的投影

3
3.3 切割体的投影
3.3.1 平面切割体的投影
(2)棱面法——面面交线法
将平面立体上参与相交的各棱面, 与截平面求交线,这些交线即围成所 求的平面立体截交线。
3.3 切割体的投影
3.3.1 平面切割体的投影
作图步骤:
1)空间分析及投影分析 a、截平面与立体的相对位置——确定截交线的形状 b、截平面,立体表面与投影面的相对位置——确定截交线的投影特性
PV2
6′ (7′) 7 ′′
例3-8:求作被截五棱柱的三面投影图
4′ (5′) 2′ ( 3′)
PV1
1′
5′′ 3 ′′
6′′
4′′ 2′′ 1′′
3 7(5)
1
2
6(4)
3.3 切割体的投影
3.3.2 曲面切割体的投影
截交线:一般为封闭的平面曲线,特殊情况为直线。 其形状取决于曲面立体的几何特征,以及截平面与曲面立体的相对位置。
c’ (2)绘出圆柱的顶面和底面。
(3)画出正面转向轮廓线和侧面转向轮廓线。
Z
a1’ c1’(d1’) d(d1)
a(a1) c(c1)
d1’
b1’
a1”(b1”) c1’’
c’d’ b’
V a’
D
A
d” B
a”b”
c”W
C
b(b1)
圆柱的投影
正面转向轮廓线 a1’
X
c1’d1’ A1 d(d1)
da11””(b1)”c1” C1b(b1)
曲面上可见与不可见的分界线称为回转面对该投影面的转向轮 廓线,在其他投影面不应画出。
圆柱体的投影
圆柱表面由圆柱面和上下两底面所组成。圆柱面是由一直母线绕与之 平行的轴线回转而成。圆柱上任意一条平行于轴线的直母线称之为素线。
3.3 切割体的投影
3.3.1 平面切割体的投影
(2)棱面法——面面交线法
将平面立体上参与相交的各棱面, 与截平面求交线,这些交线即围成所 求的平面立体截交线。
3.3 切割体的投影
3.3.1 平面切割体的投影
作图步骤:
1)空间分析及投影分析 a、截平面与立体的相对位置——确定截交线的形状 b、截平面,立体表面与投影面的相对位置——确定截交线的投影特性
PV2
6′ (7′) 7 ′′
例3-8:求作被截五棱柱的三面投影图
4′ (5′) 2′ ( 3′)
PV1
1′
5′′ 3 ′′
6′′
4′′ 2′′ 1′′
3 7(5)
1
2
6(4)
3.3 切割体的投影
3.3.2 曲面切割体的投影
截交线:一般为封闭的平面曲线,特殊情况为直线。 其形状取决于曲面立体的几何特征,以及截平面与曲面立体的相对位置。
c’ (2)绘出圆柱的顶面和底面。
(3)画出正面转向轮廓线和侧面转向轮廓线。
Z
a1’ c1’(d1’) d(d1)
a(a1) c(c1)
d1’
b1’
a1”(b1”) c1’’
c’d’ b’
V a’
D
A
d” B
a”b”
c”W
C
b(b1)
圆柱的投影
正面转向轮廓线 a1’
X
c1’d1’ A1 d(d1)
da11””(b1)”c1” C1b(b1)
曲面上可见与不可见的分界线称为回转面对该投影面的转向轮 廓线,在其他投影面不应画出。
圆柱体的投影
圆柱表面由圆柱面和上下两底面所组成。圆柱面是由一直母线绕与之 平行的轴线回转而成。圆柱上任意一条平行于轴线的直母线称之为素线。
第3-1章棱柱及其表面点的投影

提问突出介绍波浪线和双线展示挂图信息反馈
教学环节
教学内容
教师活动
学生活动
时间
教学内容
边画图边讲解作图方法与步骤。
总结正棱柱的投影特征:当棱柱的底面平行某一个投影面时,则棱柱在该投影面上投影的外轮廓为与其底面全等的正多边形,而另外两个投影则由若干个相邻的矩形线框所组成。
(2)棱柱表面上点的投影
方法:利用点所在的面的积聚性法。(因为正棱柱的各个面均为特殊位置面,均具有积聚性。)
制造业通用能力目标
培养学生的读图能力
学习重点
1、棱柱的种类及其三视图画法。
2、在棱柱表面取点的作图方法
学习难点
立体表面求点
教法学法
教法:
1.讲授法、任务引领法(用教学模型辅助讲解)
2.讲授与课堂演示、举例相结合
学法:
听授法、课堂练习法
教学媒体
1.口头表达
2.板书
教学学习准备
教师:
1.基本体模型:三棱柱、四棱柱、五棱柱、六棱柱等
2.尺寸注法、小尺寸、简化法的挂图
学生:
教材、练习册、绘图工具
自制的三投影面体系模型、简单几何体模型
@@@@@学院理论课教案首页
教学环节
教学内容
教师活动
学生活动
时间
一、复习旧课
二、引入新课题
三、教学内容
一、复习旧课
结合作业复习直线和平面投影变换的作图方法和步骤。
二、引入新课题
机器上的零件,不论形状多么复杂,都可以看作是由基本几何体按照不同的方式组合而成的。
平面立体表面上取点实际就是在平面上取点。首先应确定点位于立体的哪个平面上,并分析该平面的投影特性,然后再根据点的投影规律求得。
教学环节
教学内容
教师活动
学生活动
时间
教学内容
边画图边讲解作图方法与步骤。
总结正棱柱的投影特征:当棱柱的底面平行某一个投影面时,则棱柱在该投影面上投影的外轮廓为与其底面全等的正多边形,而另外两个投影则由若干个相邻的矩形线框所组成。
(2)棱柱表面上点的投影
方法:利用点所在的面的积聚性法。(因为正棱柱的各个面均为特殊位置面,均具有积聚性。)
制造业通用能力目标
培养学生的读图能力
学习重点
1、棱柱的种类及其三视图画法。
2、在棱柱表面取点的作图方法
学习难点
立体表面求点
教法学法
教法:
1.讲授法、任务引领法(用教学模型辅助讲解)
2.讲授与课堂演示、举例相结合
学法:
听授法、课堂练习法
教学媒体
1.口头表达
2.板书
教学学习准备
教师:
1.基本体模型:三棱柱、四棱柱、五棱柱、六棱柱等
2.尺寸注法、小尺寸、简化法的挂图
学生:
教材、练习册、绘图工具
自制的三投影面体系模型、简单几何体模型
@@@@@学院理论课教案首页
教学环节
教学内容
教师活动
学生活动
时间
一、复习旧课
二、引入新课题
三、教学内容
一、复习旧课
结合作业复习直线和平面投影变换的作图方法和步骤。
二、引入新课题
机器上的零件,不论形状多么复杂,都可以看作是由基本几何体按照不同的方式组合而成的。
平面立体表面上取点实际就是在平面上取点。首先应确定点位于立体的哪个平面上,并分析该平面的投影特性,然后再根据点的投影规律求得。