第二章内力计算

合集下载

(施工手册第四版)第二章常用结构计算2-1 荷载与结构静力计算表

(施工手册第四版)第二章常用结构计算2-1 荷载与结构静力计算表

2 常用结构计算2—1 荷载与结构静力计算表2—1-1 荷载1.结构上的荷载结构上的荷载分为下列三类:(1)永久荷载如结构自重、土压力、预应力等.(2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。

(3)偶然荷载如爆炸力、撞击力等。

建筑结构设计时,对不同荷载应采用不同的代表值。

对永久荷载应采用标准值作为代表值。

对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。

对偶然荷载应按建筑结构使用的特点确定其代表值。

2.荷载组合建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。

对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。

γ0S≤R (2-1)式中γ0——结构重要性系数;S—-荷载效应组合的设计值;R—-结构构件抗力的设计值。

对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定:(1)由可变荷载效应控制的组合(2—2)式中γG——永久荷载的分项系数;γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数;S GK-—按永久荷载标准值G K计算的荷载效应值;S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者;ψci--可变荷载Q i的组合值系数;n—-参与组合的可变荷载数。

(2)由永久荷载效应控制的组合(2—3)(3)基本组合的荷载分项系数1)永久荷载的分项系数当其效应对结构不利时:对由可变荷载效应控制的组合,应取1.2;对由永久荷载效应控制的组合,应取1。

35;当其效应对结构有利时:一般情况下应取1。

0;对结构的倾覆、滑移或漂浮验算,应取0.9。

2)可变荷载的分项系数一般情况下应取1。

4;对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。

材料力学笔记(第二章)

材料力学笔记(第二章)

材料力学(土)笔记第二章 轴向拉伸和压缩1.轴向拉伸和压缩的概念拉(压)杆:作用于等直杆上的外力(或外力的合力)的作用线与杆件轴线重合变形特征是杆将发生纵向伸长或缩短2.内力法·截面法·轴力及轴力图2.1 内力内力:由外力作用引起的、物体内相邻部分之间分布内力系的合成 在物体内部相邻部分之间的相互作用的内力,实际上是一个连续分布的内力系分布内力系的合成(力或力偶),简称内力2.2 截面法·轴力及轴力图轴力:杆件任意横截面上的内力,其作用线与杆的轴线重合,即垂直于横截面并其通过形心 规定用记号N F 表示用截面法,内力N F 的数值由平衡条件求解,已知一端外力为F由平衡方程0=∑x F ,0=-F F N得F F N =规定引起纵向伸长变形的轴力为正,称为拉力规定引起纵向缩短变形的轴力为负,称为压力截面法包含以下三个步骤①截开:在需求内力的截面处,假想地将杆分为两部分②代替:将两部分上的任意一部分留下,吧弃去部分的作用代之以作用在截开面上的内力 ③平衡:对留下的部分建立平衡方程,根据已知外力来计算在截开面上的未知力截开面上的内力对留下部分而言已属外力静力学中的力(或力偶)的可移性原理,在截面法求内力的过程中是有限制的将杆上的荷载用一个静力等效的相当力来替代,也是有所限制的轴力图:用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,从而绘成表示周丽与截面位置关系的图线。

正值的轴力滑上侧,负值画下侧3.应力·拉(压)杆内的应力3.1 应力的概念应力:受力杆件某一横截面上分部内力在一点处的集度考察M 处的应力,在M 点周围取一微小的面积A ∆设A ∆面积上分布内力的合力为F ∆在面积A ∆上内力F ∆的平均集度为AF p m ∆∆=m p 称为面积A ∆上的平均应力 为表明分布内力在M 点处的集度,令微小面积A ∆无限缩小趋于零,则其极限值dAdF A F p A =∆∆=→∆0lim 即为M 点处的内力集度,称为截面m-m 上M 点处的总应力F ∆是矢量,总应力p 也是矢量,其方向一般既不与截面垂直,也不与截面相切通常将总应力p 分解为与截面垂直的法向分量σ和与截面相切的切向分量τ法向分量σ称为正应力切向分量τ称为切应力应力具有如下特征:①应力定义在受力物体的某一截面上的某一点处讨论应力必须明确是在哪一个截面上哪一点处②在某一截面上一点处的应力是矢量对于应力分量,通常规定离开截面的正应力为正,反之为负③应力的量纲为21--T ML ,应力单位为Pa1 Pa=1N/㎡,工程中常采用MPa ,1 MPa=610Pa④整个截面上各点处的应力与微面积dA 之乘积的合成,即为该截面上的内力3.2 拉压杆横截面上的应力与轴力相应的只可能是垂直于截面的正应力考察杆件受力后表面上的变形情况,由表及里地作出杆件内部变形情况的几何假设,再根据力与变形间的物理关系,得到应力在截面上的变化规律,然后再通过应力与dA 之乘积的合成即为内力的静力学关系,得到与内力表示的应力计算公式平面假设:假设原为平面的横截面在杆变形后仍为平面根据平面假设,拉杆变形后两横截面将沿杆轴线作相对平移拉杆在其任意两个横截面之间纵向线段的伸长变形是均匀的假设材料是均匀的,杆的分布内力集度由于杆纵向线段的变形相对应因而拉杆横截面上的正应力σ呈均匀分布,即各点处的正应力相等按应力与内力间的静力学关系A A d dA F AA N σσσ===⎰⎰ 即得拉杆横截面上正应力σ的计算公式AF N =σ 式中,N F 为轴力,A 为杆的横截面面积 对于轴向压缩的杆,上式同样适用这一结论实际上只在杆上离外力作用点稍远的部分才正确圣维南原理:力作用于杆端的方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响当等直杆受几个轴向外力作用时,由轴力图可求得其最大轴力max ,N F代入公式即得杆内得最大正应力为A F N max,max =σ最大轴力所在的横截面称为危险截面危险截面上正应力称为最大工作应力3.3 拉(压)杆斜截面上的应力与横截面成α角的任意斜截面k-k 上的应力用一平面沿着斜截面k-k 将杆截分为二,并研究左段杆的平衡得斜截面k-k 上的内力αF 为F F =α得到斜截面上各点处的总应力αpαααA F p =αA 是斜截面面积,αA 与横截面面积关心为ααcos /A A =代入可得ασααcos cos 0==A F p 其中AF =0σ即拉杆在横截面(0=α)上的正应力 总应力αp 是矢量,分解成两个分量:沿截面法线方向的正应力和沿截面切线方向的切应力 分别用ασ,ατ表示两个分量可以表示为ασασαα20cos cos ==p ασαταα2sin 2sin 0==p 其中角度α以横截面外向法线至斜截面外向法线为逆时针转向时为正,反之为负①当0=α时,0σσα=是ασ中的最大值,即通过拉杆内某点的横截面上的正应力,是通过该点的所有不同方位截面上正应力中的最大值②当o 45=α时,20στα=是ατ中的最大值,即与横截面呈45°的斜截面上的切应力,是拉杆所有不同方位截面上切应力中的最大值单元体:在拉杆表面任意一点A 处用横截面、纵截面及表面平行的面貌截取一各边长均为无穷小的正六面体应力状态:通过一点的所有不同方位截面上应力的全部情况单轴应力状态:在研究的拉杆中,一点处的应力状态由其横截面上的正应力0σ即可完全确定4.拉(压)杆的变形·胡克定律设拉杆原长为l ,承受一对轴向拉力F 的作用而伸长后,其长度增为1l则杆的纵向伸长为l l l -=∆1杆件变形程度可以每单位长度的纵向伸长(l l /∆)来表示线应变:每单位长度的伸长(或缩短),用ε表示拉杆的纵向线应变为ll ∆=ε 拉杆的纵向伸长l ∆为正,压杆的纵向缩短l ∆为负 研究一点处的线应变,可围绕该点取一个很小的正六面体设所取正六面体沿x 轴方向AB 边的原长为x ∆变形后其长度的改变量为x δ∆对于非均匀变形比值x x ∆∆/δ为AB 边的平均线应变当x ∆无限趋于零时,其极限值称为A 点处沿x 轴方向的线应变dxd x x x x x δδε=∆∆=→∆0lim拉杆在纵向变形的同时将有横向变形设拉杆为圆杆,原始直径为d ,受力变形后缩小为1d则其横向变形为d d d -=∆1在均匀变形情况下,拉杆的横向线应变为dd ∆='ε 拉杆的横向线应变为负,即与其纵向线应变的正负号相反拉(压)杆的变形量与其所受力之间的关系与材料性能有关,只能通过实验来获得 当杆内应力不超过材料的某一极限值(比例极限)时杆的伸长l ∆与其所受外力F 、杆的原长l 成正比,与其横截面面积A 成反比AFl l ∝∆ 引进比例常数E ,则 EAFl l =∆ 由于N F F =,上式改写为 EAl F l N =∆ 此关系称为胡克定律,式子中比例常数E 称为弹性模量,其量纲为21--TML ,单位为PaE 的数值随材料而异,其值表征材料抵抗弹性变形的能力EA 称为杆的拉伸(压缩)刚度对于相等且受力相同的拉杆,其拉伸刚度越大拉杆变形越小将上述公式改写成 AF E l l N ⨯=∆1 可得胡克定律的另一种表达方式 E σε=它不仅适用于拉(压)杆,而且还可以更普遍地用于所有的单轴应力状态称其为单轴应力状态下的胡克定律对于横向线应变'ε,实验结果指出当拉(压)杆的应力不超过材料的比例极限时,它与纵向线应变ε的绝对值之比为一常数 此比值称为横向变形因数或泊松比,通常用υ表示,即εευ'= υ是量纲为一的量,其数值随材料而异,也是通过实验测定的纵向线应变与横向线应变的正负号恒相反,故有υεε-='Eσυε-=' 一点处横向线应变与该点处得纵向正应力成正比,但正负号相反例题2-5计算结点A 的位移为计算位移A ∆,假想地将两杆在A 点处拆开,并沿两杆轴线分别增加长度1l ∆和2l ∆ 分别以B 、C 为圆心,以两杆伸长后长度1BA ,2CA 为半径作园,交点''A 为A 点新位置3.拉(压)杆内的应变能应变能:伴随着弹性变形的增减而改变的能量在弹性体的变形过程中,积蓄在弹性体内的应变能εV 在数值上等于外力做功WW V =ε上式称为弹性体的功能原理,应变能εV 的单位为J (1 J=1 N ·m )推导拉杆应变能计算公式在静荷载F 的作用下,杆伸长l ∆力对该位移所作的功等于F 与l ∆关系图线下的面积弹性变形范围内F 与l ∆成线性关系,可得F 所做的功W 为l F W ∆=21 积蓄在杆内的应变能为 2222222121l lEA EA l F EA l F l F l F V N N ∆===∆=∆=ε 由于拉杆各横截面上所有点处的应力均相同故杆的单位体积内所积蓄的应变能就等于杆的应变能εV 除以体积V应变能密度:单位体积内的应变能,用εv 表示σεεε2121=∆==Al l F V V v 公式表明应变能密度可以视作正应力σ在其相应的线应变ε上作的功 2222εσεE E v == 应变能的单位为J/m ³只适用于应力与应变成线性关系的先弹性范围内能量法:利用应变能的概念可以解决与结构或构件的弹性变形有关的问题例题2-6εV P A =∆216.材料在拉伸和压缩时的力学性能6.1 材料的拉伸和压缩试验标距:圆截面标准试样的工作段长度l标准比例d l 10=和d l 5=万能试验机:使试样发生变形(伸长或缩短)并测定试样抗力变形仪:将微小变形放大,测量试样变形6.2 低碳钢试样的拉伸图及其力学性能低碳钢是工程上最广泛使用的材料拉伸图:横坐标表示试样工作段的伸长量l ∆,纵坐标表示试样承受的荷载F低碳钢在整个拉伸试验过程中其工作段伸长量与荷载间的关系大致可分为四个阶段 ①弹性阶段:试样变形时完全弹性的,全部卸除载荷后,试样将恢复原长低碳钢在此阶段内,其伸长量与荷载之间成正比,即胡克定律表达式②屈服阶段:试样的伸长量急剧地增加,而荷载读数在很小范围内波动屈服:试样的荷载在很小的范围内波动,而其变形却不断增大的现象屈服阶段出现的变形,是不可恢复的塑性变形滑移线:试样经过抛光,则在试样表面将可看到大约与轴线成45°方向的条纹,是由材料沿试样的最大切应力面发生滑移而引起的③强化阶段:试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断发生强化,因而试样中的抗力不断增长。

第二章内力与内力图详解

第二章内力与内力图详解

例:如左图,求n-n面的内力。 左半部分
Fx 0
FN FP
右半部分:
Fx 0 FN FP
左右两部分的力方向相反,但是同一内力, 因此规定内力由变形确定正负号,是标量。
§2-1 横截面上内力与内力分量
P2
P1
m
P4
P1
P2
m
P3 P2
P3
m P5
(a)
P1
y FR
m
M
C x
zm
(c)
P3
m
(b)
第二章 内力与内力图
§2-1 横截面上内力与内力分量 §2-2 轴向拉压杆的内力与内力图 §2-3 扭转圆轴的内力与内力图 §2-4 平面弯曲梁的内力与内力图 §2-5 平面刚架和曲杆的内力图
横截面上内力计算--截面法
截面法求内力步骤
❖ 将杆件在欲求内力的截面处假想的截断,取其中任一部分; ❖ 画出其受力图。所有外力,并在断面上画出相应内力; ❖ 由静平衡条件确定内力大小。
传动轴的扭矩图。
解:1)计算外力偶
MA
9549
PA n
9549 36 300
1146N.m
M B MC 350N.m;M D 446N.m
2)由外力偶分段,用截面法分别求每段
轴的扭矩即为1-,由
Mx 0
M B M x1 0 M x1 350N.m
B
C
A
350
700
446 x
D
扭矩图例2
10kN 30kN.m 20kN.m
A
2m B
10kN.m
D C
M x (kN.m)
10
A
B
20
C

福大结构力学课后习题详细答案(祁皑).. - 副本

福大结构力学课后习题详细答案(祁皑).. - 副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)(解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)[(c-1)(a)(a-1)(b)(b-1)*(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)!(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)~解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)[解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相(d )(e )(e-1)AB}AB (e-2)(f )(f-1)连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

第二章单层工业厂房排架计算2

第二章单层工业厂房排架计算2

4
yi 2.13
i=1
查表得折减系数β =0.9
Dmax,k=β∑yiPmax,k =387.23kN
Dmin,k=Dmax,kPmin,k/Pmax,k=75.02kN
Tk=1/4α(Qck+Qlk) =6.93kN
Tmax,k= β Tk ∑yi = 13.28kN
.
图2 .10 吊车梁反力影响线
.
(3) 铰接排架的横梁(屋架)的刚度很 大,受力后的轴向变形可忽略不计。排架受力
(4) 排架柱的高度由固定端算至柱顶铰 接处,排架柱的轴线为柱的几何中心线。当柱 为变截面时,排架柱的轴线为一折线,如图 2 .2(a)、(b)
(5) 排架的跨度以厂房的纵向定位轴线 为准,计算简图如图2 .2(c)所示。只需在变截 面处增加一个力偶M,M等于上柱传下的竖向力 乘以上下柱几何中心线间距离e
【解】(1) 查《ZQ1—62
吊车桥距lK=22.5m
吊车最大宽度B=5600mm
大车轮距K=4400mm
小车重Qlk=77.2kN;
吊车最大轮压Pmax,k=202kN
吊车最小轮压Pmin,k=60kN
.
(2) 确定吊车的最不利位置及柱支座 反力影响线,如图2 .8所示。
(3) 计算Dmax,k、Dmin,k、Tmax,k
用。对不上人屋面,其屋面均布活荷载 标准值为0.5KN/m2。
.
(2) 雪荷载
雪荷载是积雪重量,为积雪深度和
平均积雪密度的乘积。屋面雪荷载标准
值Sk
Sk=μrS0
Sk—雪荷载标准值
μr—屋面积雪分布系数, μr=1
S0—基本雪压(KN/m2)
基本雪压一般是根据年最大雪压进行统计

第二章 杆件的内力·截面法讲解

第二章 杆件的内力·截面法讲解

F
FN (+)FN
F
F
FN (-)FN
F
轴力图: 轴力沿轴线变化的图形
F
F
FN
轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系; ② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F、 FD= F 的力,方向如图,试求各段内力并画出杆 的轴力图。
应变
一、正应变(线应变)定义
av

Du Ds
棱边 ka 的平均正应变
lim
Du k点沿棱边 ka 方向的正应变
Ds0 Ds
正应变特点
1、 正应变是无量纲量 2、 过同一点不同方位的正应变一般不同
二、切应变定义 微体相邻棱边所夹直角的
改变量 g ,称为切应变
切应变量纲与单位
切应变为无量纲量 切应变单位为 弧度(rad)
BC
D
FN 2 FB FC FD 0
FB
FC
FD
FN2= –3F,
求BC段内力:
FN3
C
D
Fx 0 FN3 FC FD 0 FN3= 5F,
FC
FD
FN4
D
求CD段内力:
Fx 0 FN 4 FD 0
FN4= F
FD
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
M
M
取左段为研究对象:
M 0, T M 0 M x
Tx
T M
取右段为研究对象:

《结构力学习题集》2-静定结构内力

《结构力学习题集》2-静定结构内力

第二章 静定结构内力计算一、是非题1、 静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。

2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。

3、静定结构的几何特征是几何不变且无多余约束。

4、图示结构||M C =0。

aa5、图示结构支座A 转动ϕ角,M AB = 0, R C = 0。

BCaaAϕ2a26、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。

7、图示静定结构,在竖向荷载作用下, AB 是基本部分,BC 是附属部分。

ABC8、图示结构B 支座反力等于P /2()↑。

9、图示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。

AB10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。

11、图示桁架有9根零杆。

12、图示桁架有:N 1=N 2=N 3= 0。

aaaa13、图示桁架DE 杆的内力为零。

a a14、图示对称桁架在对称荷载作用下,其零杆共有三根。

15、图示桁架共有三根零杆。

16、图示结构的零杆有7根。

17、图示结构中,CD 杆的内力 N 1=-P 。

a 418、图示桁架中,杆1的轴力为0。

4a19、图示为一杆段的M 、Q 图,若Q 图是正确的,则M 图一定是错误的。

图M Q 图二、选择题1、对图示的AB 段,采用叠加法作弯矩图是:A. 可以;B. 在一定条件下可以;C. 不可以;D. 在一定条件下不可以。

2、图示两结构及其受载状态,它们的内力符合:A. 弯矩相同,剪力不同;B. 弯矩相同,轴力不同;C. 弯矩不同,剪力相同;D. 弯矩不同,轴力不同。

PPP2 l ll l3、图示结构M K(设下面受拉为正)为:A. qa22;B. -qa2;C. 3qa22;D. 2qa2。

2a4、图示结构M DC(设下侧受拉为正)为:A. -Pa;B.Pa;C. -Pa;D. Pa。

a a5、在径向均布荷载作用下,三铰拱的合理轴线为:A.圆弧线;B.抛物线;C.悬链线;D.正弦曲线。

理论力学第二章(2)

理论力学第二章(2)

合力FR 的大小等于原力系的主矢
合力FR 的作用线位置
MO FR
小结:平面任意力系简化结果讨论
主矢
FR 0
FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最后结果
说明
合力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心的位置无关
平衡
与简化中心的位置无关
21
简化为一个力:
c os (FR
,
i)
Fx FR
,
cos(FR ,
j)
Fy FR
原力系的主矢与简化中心O的位置无关
主矩: 原力系中各力对简化中心O之矩的代数和称为原力
系对点O的主矩。
n
M O M O (F1) M O (F2 ) ...... M O (Fn ) M o (Fi ) i 1
主矩与简化中心的选择有关
称点O为简化中心 F1’、F2’、….Fn’平面汇交力系,合力为FR’
M1、M2、….Mn平面力偶系,合力偶矩为MO
10
1、主矢和主矩
FR’=F1’+F2’+….+Fn’=F ’= F
主矢:量(简平称面为力主系矢中)所有各力的矢量和FR′称为该力系的主矢
主矢FR′的大小和方向余弦为:
FR (Fx )2 (Fy )2
11
平面任意力系向作用面内一点简化
一般力系(任意力系)向一点简化汇交力系+力偶系
(复杂力系)
(两个简单力系)
汇交力系 力偶系
力,FR‘(主矢) , (作用在简化中心)
力偶 ,MO (主矩) , (作用在该平面上)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴:以扭转为主要变形的构件称为轴 (以圆截面等直 Me Me 杆为主)。 扭水龙头
用钥匙扭转开门
酒瓶软木塞的开瓶器 小轿车的方向盘工作 自行车的脚蹬工作 机器轴的转动
主轴 主轴
改锥上螺丝钉
Mechanics of Material
材料力学
杆件内力计算
一传动轴,转速为 n(转/min) ,轴传递功率由主动
Mechanics of Material
材料力学
杆件内力计算
Me n Me • x
由 M x 0,
T Me 0
n
得 T=M e
T称为截面n-n上的 扭矩(torsion)。
Me
T
• x Me • T
Mechanics of Material

x
材料力学
杆件内力计算
扭矩的正负号规定:
右手螺旋法则
右手拇指指向外法线方向为 正(+),反之为 负(-)
Mechanics of Material
材料力学
杆件内力计算
扭矩图:沿杆件轴线各横截面扭矩变化规律的图线。 目 ①扭矩变化规律; 强度计算(危险截
的 ②|T|max值及其截面位置 面)。
注意
用截面法求扭矩时,建议均假设各截面扭矩T 为正,由结果符号确定最终正负号。正的扭矩
材料力学
注意
杆件内力计算
外力不能沿作用线移动。对变形体而言,力是定位矢量。 截面不能切在外力作用点处,因为实际的力只可能作 用于一定微小面积内。
轴力图(Axial force diagram):用 平行于杆轴线的坐标 表示横 截面的位置,绘出表示轴力与横截面位置关系的图线,将正 的轴力画在上侧,负的画在下侧。
轮输入,由从动轮输出。若功率为 P千瓦(kW) 。
P M e n
30
M e 9549 P P (N m) 9.55 (kN m) n n
若传递功率单位为马力(PS)时, 由于1PS=735.5N· m/s
P P M e 7024 (N m) 7 (kN m) n n
确定出最大轴力的数值及其所在横截面的位置,即确 定危险截面位置,为强度计算提供依据。
Mechanics of Material
材料力学
杆件内力计算
一直杆受力如图示,试求1-1和2-2截面上的轴力。 20kN 1 40kN 2
20kN
1 20kN 20kN
2
FN1 0
20kN
20kN
40kN
FN 2 40kN
FAy
FSx
到自由端部分为研究对象, 可省略求支反力
1 ql qx 2 ( F ql ) x Fl 2 2
Mechanics of Material
材料力学
P a q
杆件内力计算
练习:计算下列各图中特 殊截面上的内力
a
P
a
a
a M=qa2
q
a a
P=2qa
Mechanics of Material
材料力学
杆件内力计算
火车轮轴简化
Mechanics of Material
材料力学
杆件内力计算
M
F 0
x
FN 0
FN
FAy FN M
FS
F F
y
0
Mc
0 FS剪力Shear- force 平行 于横截面的内力系合力
M弯矩bending- moment
FS FAy F1 M FAy x F1 ( x a)
轴线பைடு நூலகம்
•弯曲变形后轴线变成对称面内的平面曲线
Mechanics of Material
材料力学
常见构件的纵向对称面
杆件内力计算
Mechanics of Material
材料力学
杆件内力计算
非对称弯曲 :梁不具有纵向对称面,或具有纵向对称面, 但外力并不作用在纵向对称面内
尽管外力作用在形心上,截 面弯曲同时产生扭转
材料力学
杆件内力计算
q
a
2a
P=qa
a
a
a M=qa2
Mechanics of Material
材料力学
杆件内力计算
将剪力和弯矩沿梁轴线的变化情况用图形表示 出来,称为剪力图和弯矩图 剪力、弯矩方程法
第一,求支座反力。 第二,根据截荷情况分段列出FS(x)和M(x)方程。 分段点为集中力(包括支座反力) 、集中力偶和分布 载荷的起止点处。 第三,求控制截面内力,作FS、M图。一般每段的 两个端点截面为控制截面。在有均布载荷的段内,FS=0 的截面处弯矩为极值,也作为控制截面求出其弯矩值。 并注明 FS max 和 M max 的数值。
Mechanics of Material
材料力学
杆件内力计算
例 如图所示的悬臂梁,求截面C及距A端为x处截面 的内力。
解:1.求支反力
MA
F

x
0, FAx 0
FAx
FAy
ql Fy 0, FAy F 2
3ql 2 M ( F ) 0, M A Fl A 8
画在x轴上方,负的扭矩画在x轴下方。
Mechanics of Material
材料力学
杆件内力计算
例 试绘制图示圆轴的扭矩图
Mechanics of Material
材料力学
杆件内力计算
一传动轴,其转速 n = 300r/min ,主动轮输入的功率为 有
P1 = 500 kW 。若不计轴承摩擦所耗的功率,三个从动轮输
Mechanics of Material
M
x
CB
材料力学
杆件内力计算
在某一段上若无载荷作用,剪力图为一水平 线,弯矩图为一斜直线。 集中力作用处剪力图有突变,变化值等于集 中力的大小,弯矩图上无突变,但斜率发生突变, 折角点
Mechanics of Material
材料力学
a
M
杆件内力计算
b
图示简支梁C点受集中力偶作用。 x2 B
Mechanics of Material
材料力学
杆件内力计算
车削工件
Mechanics of Material
材料力学
杆件内力计算
Mechanics of Material
材料力学
杆件内力计算
对称弯曲------可用梁的轴线代替梁。
纵向对称面
•具有纵向对称面 •外力都作用在此面内
变形后的轴线
A B
FS
Fb / l
Fa / l
Fab / l
FAy=Fb/l
FBy=Fa/l


x
AC
FS x1 =Fb / l 0 x1 a M x1 =Fbx1 / l 0 x1 a FS x2 = Fa / l a x2 l M x2 =Fal x2 / l a x2 l
Mechanics of Material
材料力学
杆件内力计算
1. 确定支反力 Fy 0
FAy FBy 2F
M
FAy FBy
A
0
FBy 3a Fa 2F a
F FBy 3
2. 用截面法求内力
FS ME FAy
5F FAy 3
F FS FAy 2F 3 3a a 3Fa M E FAy 2 F 2 2 2
Mechanics of Material
材料力学
杆件内力计算
9KN 4KN
3KN 2KN
F 2F
4KN
5KN
2KN
Mechanics of Material
材料力学
杆件内力计算
50kN
50kN
3m
4m
4m
150kN
3m
150kN
Mechanics of Material
材料力学
注意
杆件内力计算
FS x1 =M / l
FBy= -M / l
在集中力偶作用处,弯矩图上发生突变,突 变值为 mb ma 0 0 m0 , l l 而剪力图无改变。
M
FBy
c
0
M M C ( FBy ) M C (F1 ) M C (F2 )
Mechanics of Material
材料力学
杆件内力计算
剪力对所取的一段梁上任意一 点的矩为顺时针转向时,剪力 为正(顺为正,逆为负)。
所有向上的外力产生正弯矩; 左顺右逆的外力偶产生正弯 矩;
建议:求截面FS和M时,均按规定正向假设,这样 求出的内力为正号即表明该截面上的内力为正的, 如为负号则表明为负的内力。
2
ql 2 / 2
M
4
M max=ql / 2
1885年,俄国人别斯帕罗夫开 始使用弯矩图;被认为是历史上第 一个使用弯矩图的人
2
ql / 8
2

x
Mechanics of Material
材料力学
a
F
杆件内力计算
b
A
FAY
x1
C x2
l
B
FBY
图示简支梁C点受集中力作用。
解:
M =0, M =0
材料力学
计算简图:
杆件内力计算
活塞杆
拉杆
压杆 Mechanics of Material
材料力学
(1)截开
(2)代替 (3)平衡
杆件内力计算
Ⅰ Ⅱ
相关文档
最新文档