SnSmOx-共沉淀法制备-实验报告
共沉淀法的原理和实验步骤

共沉淀法的原理和实验步骤导言:在化学实验中,有许多方法可以用来分离和纯化不同化合物。
共沉淀法是其中一种经常使用的技术之一。
本文将探讨共沉淀法的原理和实验步骤,从而更好地理解它的应用。
一、共沉淀法的原理共沉淀法是通过调节试样溶液中的pH值,使得溶液中的某些阴离子与阳离子形成不溶性的沉淀物,并与待分离物一起沉淀下来。
这种方法常用于分离和去除待分离物中的某些杂质。
共沉淀法的原理基于沉淀反应的性质。
当溶液中存在阴离子和阳离子时,它们会相互作用形成一种新的物质,即沉淀物。
这些沉淀物可以用过滤等方法进行分离和纯化。
在共沉淀法中,选择合适的沉淀剂非常重要,它能够与待分离物中的某些离子发生反应生成具有不溶性的沉淀物。
通过这种方式,可以有效地从溶液中富集待分离物,进一步提高其纯度。
二、共沉淀法的实验步骤1. 准备试样溶液:根据实验的要求,将待分离物溶解在适量的溶剂中。
2. 选择沉淀剂:根据待分离物的性质,选择合适的沉淀剂。
沉淀剂的选择应考虑其与待分离物中的某些离子形成不溶性沉淀物的能力。
3. 调节pH值:根据沉淀剂的性质,调节试样溶液的pH值,使得沉淀剂与待分离物中的某些离子发生反应并生成沉淀物。
这个步骤需要根据具体实验条件进行调整,确保系统达到最佳的沉淀效果。
4. 沉淀反应:将试样溶液缓慢滴加沉淀剂溶液,同时通过搅拌使两者充分混合。
在适当的条件下,沉淀剂与待分离物中的某些离子反应生成沉淀物。
这个过程需要一定的观察和实验经验,根据实验结果进行调整。
5. 沉淀分离:将反应后的溶液通过过滤等方法,将沉淀物和溶液分离。
过滤时,应选择合适的滤纸或其他滤料,以防止沉淀物渗透。
沉淀物可以用水洗涤,以去除一些残留的溶质。
6. 沉淀物的处理:将获得的沉淀物进行干燥或其他处理,以便进一步应用或分析。
三、共沉淀法的应用共沉淀法在实验室中被广泛应用于分离和纯化化合物。
它通常用于去除溶液中的杂质,从而增加待分离物的纯度。
此外,共沉淀法还可用于分析颉的沉淀物的成分。
实验7--沉淀法制备纳米氧化锌粉体[资料]
![实验7--沉淀法制备纳米氧化锌粉体[资料]](https://img.taocdn.com/s3/m/e5b57cc685254b35eefdc8d376eeaeaad1f31683.png)
实验七沉淀法制备纳米氧化锌粉体一、实验目的1、了解沉淀法制备纳米粉体的实验原理。
2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。
3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。
二、实验原理氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV。
近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。
氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。
通常的制备方法有蒸发法、液相法。
我们在这里主要讨论沉淀法。
沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH--,CO32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。
均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。
而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。
纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。
这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。
制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌。
常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。
一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。
均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。
反应如下:O H NH CO O H NH CO 23222223)(⋅+→+ (1)OH -的生成:-++→⋅OH NH O H NH 423 (2)CO 32-的生成:O H CO NH CO O H NH 223422322++→+⋅-+ (3)形成前驱物碱式碳酸锌的反应:()↓⋅⋅→+++--+O H OH Zn ZnCO O H OH CO Zn 2232232243 (4)热处理后得产物ZnO :()O H CO ZnO O H OH Zn ZnCO 22223232+↑+→⋅⋅ (5)本实验通过Zn(NO 3)2和NaOH 之间反应得到的Zn(OH)42-进行热分解反应制备了氧化锌纳米晶体。
共沉淀制备四氧化三铁纳米磁性材料

共沉淀法制备四氧化三铁纳米磁性材料纳米磁性材料是在20世纪70年代后逐渐产生、发展和壮大起来的一种新型磁性材料。
它不同于常规磁性材料的主要原因是关联于磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等于大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。
纳米磁性材料目前被广泛应用在磁性记忆材料、靶向药物载体、核磁共振造影增强剂及电化学生物传感器等方面。
一、实验目的1.掌握共沉淀法制备纳米磁性材料的基本原理2.掌握纳米磁性材料的表征方法二、实验原理将二价铁盐(Fe2+)和三价铁盐(Fe3+)按一定比例混合,加入沉淀剂(OH—),搅拌反应即得超微磁性Fe3O4粒子,反应式为:Fe2 + + Fe3 + + OH—→Fe (OH) 2 / Fe (OH) 3 (形成共沉淀)Fe (OH) 2 + Fe (OH) 3→FeOOH + Fe3O4(pH ≤7.5)FeOOH + Fe2 +→Fe3O4 + H+(pH ≥9.2)总反应为:Fe2 + + 2Fe3 + + 8OH—→Fe3O4 +4H2O实际制备中还有许多复杂的中间反应和副产物:Fe3O4 + 0.25O2 + 4.5H2O →3Fe (OH) 32Fe3O4 + 0.5O2→3Fe2O3所以实验中二价铁适当过量,即[Fe3+]:[Fe2+]=1.75:1此外,溶液的浓度、nFe2 +/Fe3 +的比值、反应和熟化温度、溶液的pH 值、洗涤方式等均对磁性微粒的粒径、形态、结构及性能有很大影响。
三、实验试剂与仪器试剂: FeCL3。
6 H2O FeSO4.7H2O NaOH十二烷基苯磺酸钠 PH试纸无水乙醇仪器:恒温水浴箱真空干燥箱 FA1604型电子天平激光粒度分布仪电子扫描显微镜 X射线分析仪离心机(强磁磁铁)100ml容量瓶、锥形瓶、烧杯、玻璃棒等玻璃仪器四、实验步骤1.称取13.90g FeSO4.7H2O,用一定的蒸馏水溶解,于100ml的容量瓶中配制Fe2+的溶液,置于65。
沉淀制备实验报告

一、实验目的1. 了解沉淀反应的基本原理和过程;2. 掌握沉淀制备实验的基本操作和注意事项;3. 学习通过沉淀反应制备特定化合物的方法。
二、实验原理沉淀反应是指溶液中两种或两种以上离子相互反应,生成难溶于水的固体沉淀物的过程。
本实验通过沉淀反应制备硫酸亚铁铵,反应原理如下:FeSO4 + (NH4)2SO4 → FeSO4·(NH4)2SO4·6H2O三、实验仪器与试剂1. 仪器:烧杯、锥形瓶、移液管、滴定管、滤纸、漏斗、蒸发皿、石棉网、水浴锅、电子天平、研钵、研杵等。
2. 试剂:硫酸铁(FeSO4·7H2O)、硫酸铵(NH4)2SO4、盐酸(HCl)、蒸馏水、硫酸(H2SO4)、氢氧化钠(NaOH)、氨水(NH3·H2O)等。
四、实验步骤1. 准备实验材料:称取硫酸铁和硫酸铵,按照一定比例溶解于蒸馏水中,制备成一定浓度的溶液。
2. 配制沉淀剂:取适量氢氧化钠溶液,用滴定管滴加至硫酸铁溶液中,直至溶液中出现沉淀为止。
3. 沉淀分离:将沉淀物用漏斗过滤,并用蒸馏水洗涤沉淀物,直至洗涤液中无硫酸铁离子。
4. 结晶:将洗涤后的沉淀物转移至蒸发皿中,加入少量蒸馏水,用石棉网覆盖,置于水浴锅中加热蒸发至浓缩。
5. 冷却结晶:将浓缩后的溶液冷却至室温,使其结晶。
6. 收集与干燥:用滤纸过滤结晶,收集纯净的硫酸亚铁铵晶体,置于干燥器中干燥。
五、实验结果与分析1. 实验结果:成功制备出硫酸亚铁铵晶体,外观呈白色,无杂质。
2. 分析:实验过程中,沉淀剂氢氧化钠的加入量对沉淀效果有较大影响。
加入量过多会导致沉淀不完全,过少则沉淀效果不佳。
本实验中,氢氧化钠的加入量控制在适量,使沉淀效果较好。
六、实验总结1. 通过本实验,掌握了沉淀反应的基本原理和过程,了解了沉淀制备实验的基本操作和注意事项。
2. 学会了通过沉淀反应制备特定化合物的方法,为今后实验研究提供了有益的参考。
3. 在实验过程中,需要注意实验操作的安全性,避免发生意外事故。
医学免疫学沉淀反应实验报告

医学免疫学沉淀反应实验报告一、实验目的1、掌握沉淀反应的基本原理和操作方法。
2、熟悉琼脂扩散试验和免疫比浊法的应用。
3、观察沉淀反应的结果,理解抗原抗体反应的特异性和定量关系。
二、实验原理沉淀反应是指可溶性抗原与相应抗体在特定条件下结合,形成肉眼可见的沉淀物的反应。
根据反应介质和检测方法的不同,沉淀反应可分为液相沉淀反应和凝胶内沉淀反应。
液相沉淀反应包括絮状沉淀试验和免疫浊度测定。
絮状沉淀试验是将抗原和抗体溶液混合,在电解质存在的条件下,抗原抗体结合形成絮状沉淀物。
免疫浊度测定则是通过测量溶液中抗原抗体复合物形成导致的浊度变化,来定量检测抗原或抗体的含量。
凝胶内沉淀反应常用的是琼脂扩散试验,包括单向琼脂扩散试验和双向琼脂扩散试验。
单向琼脂扩散试验是将一定量的抗体混入琼脂凝胶中,制成琼脂板,然后在板上打孔,加入抗原,抗原在凝胶中向四周扩散,与抗体形成沉淀环。
沉淀环的直径与抗原浓度成正比,可通过测量沉淀环的直径来计算抗原的含量。
双向琼脂扩散试验是将抗原和抗体分别加入琼脂凝胶的不同孔中,两者在凝胶中扩散,形成沉淀线,用于检测抗原和抗体的特异性以及它们之间的相对分子量。
三、实验材料1、试剂抗原:人血清白蛋白(HSA)、羊抗人血清白蛋白抗体(抗HSA)。
生理盐水。
琼脂糖。
巴比妥缓冲液。
2、器材载玻片。
打孔器。
移液器。
分光光度计。
四、实验步骤(一)絮状沉淀试验1、取两支试管,分别标记为“抗原管”和“对照管”。
2、在“抗原管”中加入 05ml 抗原溶液(HSA),在“对照管”中加入05ml 生理盐水。
3、向两支试管中分别加入05ml 抗体溶液(抗HSA),轻轻摇匀。
4、室温放置 10-20 分钟,观察两支试管中溶液的变化。
(二)单向琼脂扩散试验1、制备琼脂板:称取一定量的琼脂糖,加入巴比妥缓冲液,加热溶解,制成 1%的琼脂糖溶液。
将溶液倒入载玻片上,使其均匀铺开,形成厚度约 2-3mm 的琼脂板,待琼脂凝固后打孔。
实验沉淀反应实验报告

一、实验目的1. 理解沉淀反应的基本原理和过程。
2. 掌握沉淀反应的实验操作方法。
3. 学习如何通过沉淀反应来分离和提纯物质。
二、实验原理沉淀反应是指两种溶液中的离子相互结合,形成难溶于水的固体沉淀物的化学反应。
沉淀反应的原理基于溶解度积(Ksp)的概念,即难溶电解质在溶液中的离子浓度乘积等于其溶解度积常数。
当离子浓度乘积大于溶解度积时,难溶电解质将沉淀出来。
三、实验材料1. 实验仪器:试管、烧杯、滴管、玻璃棒、滤纸、漏斗等。
2. 实验试剂:氯化钠、硝酸银、氢氧化钠、硫酸铜、氯化钡等。
四、实验步骤1. 准备实验材料,将氯化钠、硝酸银、氢氧化钠、硫酸铜、氯化钡等试剂分别称量,并放入试管中。
2. 在试管中加入适量的水,用玻璃棒搅拌使其溶解。
3. 观察溶液颜色,判断是否为无色。
4. 分别向各试管中加入适量的氢氧化钠、硫酸铜、氯化钡等试剂。
5. 观察沉淀反应现象,记录沉淀的颜色、形状、大小等。
6. 使用滤纸和漏斗将沉淀过滤,收集沉淀物。
7. 将沉淀物用蒸馏水洗涤,去除杂质。
8. 将沉淀物烘干,称量其质量。
五、实验现象及结果1. 向氯化钠溶液中加入硝酸银,观察到白色沉淀生成。
2. 向氢氧化钠溶液中加入硫酸铜,观察到蓝色沉淀生成。
3. 向氯化钡溶液中加入硫酸铜,观察到白色沉淀生成。
4. 沉淀物经过洗涤和烘干后,质量为0.5g。
六、实验结果分析1. 实验结果表明,沉淀反应是一种有效的分离和提纯方法。
2. 沉淀物的颜色、形状、大小等特征可以用来判断沉淀物的种类。
3. 沉淀物的质量可以作为实验结果的定量指标。
七、实验结论1. 通过本实验,我们了解了沉淀反应的基本原理和过程。
2. 掌握了沉淀反应的实验操作方法,能够熟练进行沉淀反应实验。
3. 学会了如何通过沉淀反应来分离和提纯物质。
八、实验注意事项1. 实验过程中要严格遵守实验操作规程,确保实验安全。
2. 实验过程中要注意观察现象,记录数据,以便进行实验结果分析。
3. 实验结束后,要清理实验场地,回收实验器材和试剂。
沉淀反应实验报告

沉淀反应实验报告沉淀反应实验报告引言:沉淀反应是化学实验中常见的一种反应类型,通过溶液中的离子相互作用形成固态沉淀物。
本次实验旨在通过观察和分析沉淀反应的过程和结果,探究反应条件对沉淀形成的影响。
实验目的:1. 理解沉淀反应的基本原理和过程;2. 掌握沉淀反应的实验操作技巧;3. 研究不同条件下沉淀反应的变化规律。
实验材料和仪器:1. 实验材料:氯化银(AgCl)、氯化钡(BaCl2)、硝酸银(AgNO3)、硫酸钡(BaSO4)、盐酸(HCl)、硝酸(HNO3)、蒸馏水;2. 实验仪器:试管、滴管、玻璃棒、烧杯、热水浴。
实验步骤:1. 实验前准备:清洗实验仪器,准备所需试剂;2. 实验一:向两个试管中分别加入等量的氯化银溶液和硝酸银溶液,观察并记录反应结果;3. 实验二:向两个试管中分别加入等量的氯化钡溶液和硫酸钡溶液,观察并记录反应结果;4. 实验三:在一试管中加入氯化银溶液,滴加盐酸,观察并记录反应结果;5. 实验四:在一试管中加入氯化银溶液,滴加硝酸,观察并记录反应结果;6. 实验五:在一试管中加入氯化银溶液,加热至沸腾,观察并记录反应结果。
实验结果和分析:1. 实验一中,氯化银溶液与硝酸银溶液反应后生成白色沉淀,即氯化银(AgCl)。
这是因为氯化银溶液中的氯离子与硝酸银溶液中的银离子发生反应,生成不溶于水的氯化银沉淀。
2. 实验二中,氯化钡溶液与硫酸钡溶液反应后生成白色沉淀,即硫酸钡(BaSO4)。
这是因为氯化钡溶液中的钡离子与硫酸钡溶液中的硫酸根离子发生反应,生成不溶于水的硫酸钡沉淀。
3. 实验三中,氯化银溶液与盐酸反应后生成白色沉淀,即氯化银(AgCl)。
这是因为盐酸中的氯离子与氯化银溶液中的银离子发生反应,生成不溶于水的氯化银沉淀。
此外,盐酸的加入使反应溶液的酸碱度增加,促进了沉淀反应的进行。
4. 实验四中,氯化银溶液与硝酸反应后生成白色沉淀,即氯化银(AgCl)。
这是因为硝酸中的硝酸根离子与氯化银溶液中的银离子发生反应,生成不溶于水的氯化银沉淀。
共沉淀法制备镁铝水滑石实验报告

共沉淀法制备镁铝水滑石实验报告哎呀,今天咱们来聊聊一个有趣的实验,叫做共沉淀法制备镁铝水滑石。
听起来好复杂,实际上就是个化学小魔术,让我们从中搞明白一些科学的奥秘。
想象一下,一个厨房,里面全是化学试剂,仿佛在煮一锅魔法汤,咱们这次可不是要吃的。
好啦,言归正传,让我们进入这个化学的世界。
准备工作得做好。
我们需要镁盐、铝盐和氢氧化钠,这些东西看起来就像在超市里能买到的调料。
拿到这些材料,感觉自己像个小科学家,心里那个激动啊。
然后呢,咱们就把镁盐和铝盐溶解在水里,搅拌搅拌,像在给汤里加调料,搅拌得越均匀,最后的效果越好。
看着水变得透明,心里那个美啊,简直像看到一幅画。
要把氢氧化钠溶液慢慢倒入镁铝溶液中。
注意,别心急,像倒茶一样,慢慢来,避免搅得一团糟。
咕噜咕噜的声音响起,原本透明的液体慢慢变得浑浊,就像魔法一般。
这个过程真是让人心潮澎湃,觉得自己在创造什么伟大的东西。
哦,别忘了,这时候得保持一定的温度,太高或太低可都不行,控制得当就像在做美食,火候掌握得好,才不会失败。
在这浑浊的液体里,慢慢地,咱们能看到白色沉淀物开始出现。
那一瞬间,感觉就像看到宝藏一样,心里真是乐开了花。
这种沉淀物就是咱们的镁铝水滑石,还得把它收集起来,别让它跑掉。
用过滤器把液体过滤掉,留下沉淀,就像捞出锅里的美食一样。
哈哈,真是越做越有成就感。
过滤完之后,咱们得洗一洗这些沉淀,别让它带着杂质。
这就像洗衣服一样,越洗越干净。
洗的时候,水流要温和,别把沉淀给冲散了。
想象一下,洗完后的沉淀像个新生儿一样干干净净,心里那个满意啊,真是倍儿爽。
洗完之后,要把它晾干。
晾的过程就像等美食出锅,忐忑又兴奋。
干燥之后,咱们得到的镁铝水滑石,简直像是实验室的明星,真是让人爱不释手。
拿在手里,摸一摸,感觉质地细腻,心里想:“嘿,这可是我亲手做的哦!”得给它做个分析,看看自己做得怎么样。
借助一些仪器,咱们可以测量它的性质。
像是考试一样,看看成绩如何。
每一次实验都有它的乐趣,尽管有时会遇到挫折,但最终的结果总会让人欣喜若狂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共沉淀法制备Sn-Sm-O x复合氧化物催化剂
姓名:
一.实验目的/原理
1.纯Sm2O3样品制备:将Sm2O3溶于15%的硝酸制成Sm(NO3)3饱和溶液,在磁力搅拌
条件下缓慢加入NH3·H2O(浓氨水:水=1:1),抽滤分离得沉淀,经干燥、焙烧,获取纯Sm2O3样品。
2.Sn-Sm-O x复合氧化物制备:将Sm2O3溶于15%的硝酸制成Pr(NO3)3饱和溶液,加入
事先配置的SnCl4·5H2O饱和溶液,在磁力搅拌条件下缓慢加入NH3·H2O(浓氨水:水=1:
1),抽滤分离得沉淀,经干燥、焙烧,获取所需复合氧化物。
二.实验仪器与试剂
仪器:电子天平、磁力搅拌器、抽滤瓶、真空泵、干燥箱、马弗炉、管式炉
药品:SnCl4·5H2O(白色)、Sm2O3(淡黄色)、68%的浓硝酸、浓NH3·H2O、AgNO3
三.实验步骤
1.配制溶液:取ax mol SnCl4·5H2O固体置于250 ml烧杯中,加蒸馏水之恰好溶解。
同
样取0.5x mol Sm2O3溶于15%的HNO3溶液,搅拌均匀,形成饱和Sm(NO3)3,溶液呈现淡黄色半透明溶液。
所得两种溶液分别记有a、b。
2.纯Sm2O3样品制备:
将Sm2O3溶于15%的硝酸制成Sm(NO3)3饱和溶液,在磁力搅拌条件下缓慢加入NH3•H2O(浓氨水:水=1:1),抽滤分离得沉淀,经干燥、焙烧,得纯Sm2O3样品。
3.Sn-Sm-Ox复合氧化物制备:
1)共沉淀:将溶解好的a 中缓慢加入b 溶液,形成澄清半透明状淡黄色溶液,将盛有
混合溶液的烧杯于磁力搅拌器上搅拌5分钟后,逐滴加入稀释后的NH3·H2O,有白色絮状沉淀生成;继续滴加NH3·H2O,澄清溶液逐渐变浑浊,形成白色悬浮液。
随着NH3·H2O 的加入悬浊液渐渐变成粘稠状,在瞬间达最大粘度的时候,即到达该溶液NH3·H2O滴定的等电点。
此时继续滴加NH3·H2O。
直至在上层清液中加入微量NH3·H2O不产生沉淀,停止加NH3·H2O。
放通风厨里静置数小时,抽滤。
2)抽滤:将所得沉淀转移到抽滤瓶中进行真空抽滤。
得到淡绿色滤饼。
3)洗涤:用去离子水将滤饼洗涤数次,用AgNO3检测滤液,直至无Cl-存在,可证明该
过程洗涤完全。
4)干燥:将洗涤后沉淀放入真空干燥箱内,在100 C下干燥数小时,干燥完全后,放
在电子天平秤称重。
5) 焙烧:把干燥后的沉淀分成三等份,分别置于600 ︒C 、800 ︒C 、1000 ︒C 下焙烧6h,称量。
四.实验结果和数据处理 1. 实验前相关计算
1. 考虑到制备过程中存在损耗,纯Sm 2O 3样品制备4 g ,复合氧化物制备8 g 。
已知:M(Sm 2O 3) = 348.8 g/mol, M(SnO 2) = 150.69 g/mol ,M(SnCl 4·5H 2O)= 350.58 g/mol ,M [Sm (NO 3)3·6H 2O]= 444.4g/mol
设需制备复合氧化物Sn/Sm=a mol, Sm 为x mol 348.8*0.5x+150.69ax=8 得a
69.1504.1748
x +=
浓硝酸用量 xml ml g x
mol g x
V 65.6668
.0*/39.1*/63W
*M 3HNO HNO 3==
=ρ
氨水用量约为:
ml x
a =+310*67
.6)43( 所需药品用量计算如下:
共沉淀法所得的所有样品统计:。