扫描电子显微镜SEM和能谱分析技术EDS课件

合集下载

扫描电子显微镜(SEM)-PPT课件

扫描电子显微镜(SEM)-PPT课件

特征X射线发射
五、特征X射线 (characteristic X-ray)
• 若这一能量以X射线形式放出,这就是该元素的K辐射, hc 此时X射线的波长为: K EK EL2 式中,h为普朗克常数,c为光速。对于每一元素,EK、EL2 都有确定的特征值,所以发射的X射线波长也有特征值, 这种X射线称为特征X射线。 K • X射线的波长和原子序数之间服从莫塞莱定律: 2 Z
三、吸收电子 (absorption electron)
• 入射电子进入样品后,经多次非弹性散射,能量 损失殆尽(假定样品有足够厚度,没有透射电子 产生),最后被样品吸收。 • 若在样品和地之间接入一个高灵敏度的电流表, 就可以测得样品对地的信号,这个信号是由吸收 电子提供的。 • 入射电子束与样品发生作用,若逸出表面的背散 射电子或二次电子数量任一项增加,将会引起吸 收电子相应减少,若把吸收电子信号作为调制图 像的信号,则其衬度与二次电子像和背散射电子 像的反差是互补的。
• 背散射电子是指被固体样品中的原子反弹回来的一部分入 射电子。 • 其中包括弹性背散射电子和非弹性背散射电子。 • 弹性背散射电子是指被样品中原子核反弹回来的散射角大 于90的那些入射电子,其能量基本上没有变化。 • 弹性背散射电子的能量为数千到数万电子伏。 • 非弹性背散射电子是入射电子和核外电子撞击后产生非弹 性散射而造成的,不仅能量变化,方向也发生变化。 • 如果有些电子经多次散射后仍能反弹出样品表面,这就形 成非弹性背散发固体产生的 四种电子信号强度与入射电子强度之间必然满足以下 关系: i0=ib+is+ia+it 式中:ip ib is ia it 是透射电子强度。
将上式两边同除以i0 η+δ+a+τ =1 式中:η= ib/i0 δ= is/i0,为二次电子发射系数; a = ia/i0 τ = it/i0,为透射系数。

《扫描电子显微镜》课件

《扫描电子显微镜》课件
《扫描电子显微镜》PPT 课件
欢迎来到本节课,本课程将为您介绍扫描电子显微镜(SEM)的发展历史、 工作原理、应用和操作技巧。
什么是扫描电子显微镜?
SEM是一种高分辨率的显微镜,能够对样品表面进行高清的成像和分析,是 材料科学、生命科学、环境科学和地球物理学等众多领域的研究必备工具。
SEM的工作原理
and applications [J]. Physics Reports, 2020, 891: 1-49. • Zhong B., Liu Y., Xie H., et al. Scanning electron microscopy techniques and
application to biological research [J]. Journal of Nanoscience and Nanotechnology, 2021, 21(3): 1443-1454.
电子束的生成和加速
SEM通过电子枪产生的电子束对样品表面进行 扫描,其中电子束的加速和缩聚使得SEM成像 的分辨率得到极大的提高。
样品表面的扫描和信号的采集
SEM扫描样品表面时需要从表面采集电子和信 号,经过放大和处理后形成图像。
图像的重建和显示
SEM的图像处理软件能够对采集到的信号进行 处理和重建,生成高质量的图像供研究员们进
SEM在地球物理学领域中可以用来 研究矿物形态、结构和物理化学性质
等问题。
SEM的操作注意事项
1 样品制备和处理
SEM样品的制备和处理是研究工作中必不可少的步骤,要保证样品表面平整、干净和稳 定。
2 SEM的操作和调试
SEM的使用经常进行调 试和保养。
生物学和医学
2
属、陶瓷、塑料和高分子等材料的成 分分析、微观结构观察和物理化学性

(精品)扫描电子显微镜SEM和能谱分析技术EDS

(精品)扫描电子显微镜SEM和能谱分析技术EDS
背散射电子检测
EDS
能量分辨率:132eV 分析范围:Be-U
JEOL-6380/SEM的工作界面
颗粒
10,0000-Au 6,0000-纳米晶 金刚石
薄膜及涂层材料
昆虫
生物材料 头发
EDAX-EDS的工作界面---谱线收集
能谱谱线收集实例
Element CK OK AlK SiK MoL CrK MnK FeK
6 能谱仪(EDS)的结构
7 能谱仪(EDS)的特点
优点
1)快速并且可以同时探测不同能量的X-光能谱 2)接受信号的角度大。 3)仪器设计较为简单 4)操作简单
性能 分析时间 检测效果 谱鉴定 试样对检测影响 探测极限 定量分析精度
EDS 几分钟 100% 简单 较小
700ppm ±5-10%
缺点
1)能量解析度有限 2)对轻元素的探测能力有限
3)探测极限 4) 定量能力有限
8 仪器功能介绍及应用
型号 日本电子JEOL-6380LV 美国EDAX GENESIS 2000
SEM/EDS的主要性能指标
SEM
分辨率:高真空模式:3.0nm;低真空模式:4.0nm 低真空:1-270Pa 加速电压:0.5KV-30KV 放大倍数:5倍-30万倍 电子枪:W发卡灯丝式 检测器:高真空模式和低真空模式下的二次电子检测,
号,大小和极性相同,而对于形貌信
息,两个检测器得到的信号绝对值相
同,其极性相反。
Al
Sn
二次电子图像 VS. 背散射电子图像
4 扫描电镜对样品的作用--
物镜光栏、工作距离与样品之间的关系
物镜光栏的影响
工作距离的影响
5 能谱仪(EDS)的工作原理

扫描电子显微镜 射线能谱仪 SEM EDS

扫描电子显微镜 射线能谱仪 SEM EDS

扫描电子显微镜&X射线能谱仪应用介绍扫描电子显微镜/ X射线能谱仪(S E M & E D S)理论依据是电子与物质之间的相互作用。

如图1所示,当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征射线和连续谱X射线、背散射电子、以及在可见、紫外、红外光区域产生的电磁辐射。

原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。

S E M / E D S正是根据上述不同信息产生的机理,对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息,对x射线的采集,可得到物质化学成分的信息。

应用范围1.材料组织形貌观察,如断口显微形貌观察,镀层表面形貌观察,微米级镀层厚度测量,粉体颗粒表面观察,材料晶粒、晶界观察等;2.微区化学成分分析,利用电子束与物质作用时产生的特征X射线,来提供样品化学组成方面的信息,可定性、半定量检测大部分元素(Be4-PU94),可进行表面污染物的分析;焊点、镀层界面组织成分分析。

根据测试目的的不同可分为点测、线扫描、面扫描;3.显微组织及超微尺寸材料分析,如钢铁材料中诸如马氏体、回火索氏体、下贝氏体等显微组织的观察分析,纳米材料的分析;4.在失效分析中主要用于定位失效点,初步判断材料成分和异物分析。

主要特点1.样品制备简单,测试周期短;2.景深大,有很强的立体感,适于观察像断口那样的粗糙表面;3.可进行材料表面组织的定性、半定量分析;4.既保证高电压下的高分辨率,也可提供低电压下高质量的图像。

技术参数分辨率:高压模式:3 n m,低压模式:4 n m放大倍数:5~100万倍检测元素:Be4-PU94最大样品直径:200mm图象模式:二次电子、背散射图1 .电子激发物体表面图2.日立3400N+IXRF 典型图片图3. PCB铜箔相结构观察图4.金相结构分析- 304不锈钢图5.ENIG焊盘剥金后观察图6.金属断口分析-解理断口图7.颗粒形貌观察图8.微米级镀层厚度测量图9.SMT焊点界面成分分图10.表面异物分析。

扫描电子显微镜SEM和能谱分析技术EDS

扫描电子显微镜SEM和能谱分析技术EDS
背散射电子检测
EDS
能量分辨率:132eV 分析范围:Be-U
JEOL-6380/SEM的工作界面
颗粒
10,0000-Au 6,0000-纳米晶 金刚石
薄膜及涂层材料
昆虫
生物材料 头发
EDAX-EDS的工作界面---谱线收集
能谱谱线收集实例
Element CK OK AlK SiK MoL CrK MnK FeK
(3)粉末样品的制备:
导电胶--粘牢粉末--吸耳球--观察 悬浮液--滴在样品座上--溶液挥发--观察
(4)不导电样品:
通常对不导电样品进行喷金、喷碳处理或使用导电胶 形貌观察:喷金处理 成分分析:喷碳处理
样品制备注意事项
a 显露出所欲分析的位置 b 不得有松懈的粉末或碎屑 c 需耐热,不得有熔融蒸发的现象 d不能含有液状或胶状物质,以免挥发 e非导体表面需镀金或镀碳 f 磁性材料会影响聚焦,成像效果不好
阴极 控制极
阳极 电子束 聚光镜
试样
样品表面激发的电子信号
特征X射线
二次电子、背散射电子和特征X射线
二次电子
它是被入射电子轰击出来的样品核外电子.
背散射电子
它是被固体样品中原子反射回来的一部分 入射电子。
特征X射线
它是原子的内层电子受到激发之后, 在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射
6 能谱仪(EDS)的结构
7 能谱仪(EDS)的特点
优点
1)快速并且可以同时探测不同能量的X-光能谱 2)接受信号的角度大。 3)仪器设计较为简单 4)操作简单
性能 分析时间 检测效果 谱鉴定 试样对检测影响 探测极限 定量分析精度
EDS 几分钟 100% 简单 较小

SEM扫描电子显微镜课件

SEM扫描电子显微镜课件

扫描电镜结构原理框图
扫描电镜结构 电子光学系统, 信号收集处理、图 像显示和记录系统, 真空系统, 三部分组成
扫描电镜结构原理
1、电子光学系统: 电子枪 电磁透镜(2个强磁1个弱磁)可使原来50μm电子束斑聚焦为6nm。 扫描线圈 样品室
电子束的滴状作用体积示意图
不同能量的电子束在样品中的作用模拟图
电子束在不同样品中的作用模拟图
但是,当电子束射入重元素样品中时,作用体积不呈滴状,而是半球状。电子束进入表面后立即向横向扩展,因此在分析重元素时,即使电子束的束斑很细小,也不能达到较高的分辨率。此时,二次电子的分辨率和背散射电子的分辨宰之间的差距明显变小。 由此可见,在其它条件相同的情况下(如信号噪音比、磁场条件及机械振动等),电子束的束斑大小、检测信号的类型以及检测部位的原子序数是影响扫描电子显微镜分辨率的三大因素。
五、特征X射线 当样品原子的内层电子被入射电子激发,原子就会处于能量较高的激发状态,此时外层电子将向内层跃迁以填补内层电子的空缺,从而使具有特征能量的X射线释放出来。 用X射线探测器测到样品微区中存在一种特征波长,就可以判定这个微区中存在着相应的元素。
六、俄歇电子 在特征x射线过程中,如果在原子内层电子能级跃迁过程中释放出来的能量并不以X射线的形式发射出去,而是用这部分能量把空位层内的另—个电子发射出去,这个被电离出来的电子称为~。 俄歇电子能量各有特征值,能量很低,一般为50-1500eV. 俄歇电子的平均白由程很小(1nm左右). 只有在距离表面层1nm左右范围内(即几个原子层厚度)逸出的俄歇电子才具备特征能量,因此俄歇电子特别适用于表面层的成分分析。
由于ZrO2相平均原子序数远高于Al2O3相和SiO2 相,所以图中白色相为斜锆石,小的白色粒状斜锆石与灰色莫来石混合区为莫来石-斜锆石共析体,基体灰色相为莫来石。

扫描电子显微镜SEM和能谱分析技术EDS

扫描电子显微镜SEM和能谱分析技术EDS

扫描电子显微镜SEM和能谱分析技术EDS 扫描电子显微镜(Scanning Electron Microscope,SEM)和能谱分析技术(Energy Dispersive X-ray Spectroscopy,EDS)是一种常用于材料科学和生物科学领域的先进工具,它们相互结合可以提供高分辨率的图像、元素成分分析以及相关属性的定量信息。

SEM是一种利用电子束扫描样品表面并形成二维或三维显微图像的技术。

与传统光学显微镜相比,SEM具有更高的分辨率和放大倍数,可以观察到微米级的细节。

SEM的工作原理是在真空或高真空环境中,通过加速电子束轰击样品表面,激发出一系列相互作用过程产生的信号。

这些信号包括次级电子(SE)和反射电子(BSE)等,它们与样品的形貌和组成有关。

SEM采用特殊的电子透镜和探测器系统,可以将这些信号转化为电子显微图像。

与SEM相结合的EDS能谱分析技术可以提供关于样品元素组成的定性和定量信息。

EDS是一种通过分析样品中X射线的能量和强度,来确定其元素成分的方法。

在SEM中,当电子束与样品相互作用时,会激发样品中的原子内层电子跃迁,产生特定能量的特征X射线。

EDS探测器可以测量这些X射线的能量,通过能量的定量分析,可以确定样品中的元素种类和相对含量。

EDS技术的定量分析需要校正和标定,校正是指校正探测器的能量响应,以准确测量X射线的能量;标定是指使用已知组成和浓度的实验样品进行这些校正和定量分析。

EDS技术对元素的检测范围和限量有一定的限制,对于轻元素的检测灵敏度较低,同时在多元素样品和复杂衬底的情况下,定量分析的精度也会受到影响。

SEM和EDS技术的结合可以提供更为全面和细致的样品分析。

SEM提供了样品的形貌和组织信息,可以观察到样品的微观结构和表面特征。

通过SEM观察到的微观特征,可以帮助解释材料的性能和行为。

而EDS的能谱分析可以提供关于样品成分的定性和定量信息,对材料的组成和标识也具有重要的作用。

扫描电子显微镜SEM和能谱分析技术EDS

扫描电子显微镜SEM和能谱分析技术EDS

扫描电子显微镜SEM和能谱分析技术EDS 扫描电子显微镜(SEM)和能谱分析技术(EDS)是现代材料科学和纳米技术研究领域中常用的重要工具。

SEM通过扫描样品表面,利用高能电子束与样品表面相互作用产生的信号,从而获得样品高分辨率的图像。

而EDS则是一种能够定性和定量分析分布于材料样品中的元素种类以及其含量的分析技术。

SEM和EDS是相辅相成的技术,常常同时应用于样品的表征和分析。

SEM技术可以提供高分辨率的样品表面形貌信息。

通过SEM观察,我们可以了解材料表面的微观形貌、颗粒大小以及形态等。

SEM显微图像的分辨率通常达到纳米级别,这使得我们可以观察到许多微观细节。

此外,SEM还可以提供样品的三维形貌信息,通过倾斜样品或者旋转样品,可以获得不同角度的视图,从而形成立体效果。

通过SEM可以观察到各种不同材料的显微结构,如金属、陶瓷、聚合物等,因此被广泛应用于材料科学、能源材料、生物医学和纳米科技等领域。

然而,单纯的SEM观察只能提供样品形貌信息,并不能直接获得元素成分信息。

这时候EDS技术就派上用场了。

EDS技术利用特殊的X射线探测器,测量和分析样品表面上从中散射出的X射线,从而获得样品的化学元素成分及其含量信息。

当高能电子束作用在样品表面时,样品原子会被激发并跳跃到一个高能级,当原子从高能级退跃到低能级时会释放出能量,这个能量对应的就是一定能量的特定频率的X射线。

通过测量和分析这些特定频率的X射线,可以得到样品中各种元素的数据。

除了定性分析元素成分外,EDS还可以用于定量分析元素含量。

SEM和EDS技术的结合,可以实现样品表面形貌与元素成分的高分辨率综合分析。

通过SEM观察到的微观形貌结构可以与EDS获取的元素成分信息相印证,从而更全面地理解样品的特性。

比如,在材料科学中,研究人员可以通过SEM观察到材料的孔隙结构和相界面形貌,而通过EDS分析,可以确定材料中各个相的元素成分,进而推断材料的组成和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)能量解析度有限 2)对轻元素的探测能力有限
3)探测极限 4) 定量能力有限
8 仪器功能介绍及应用
型号 日本电子JEOL-6380LV 美国EDAX GENESIS 2000
SEM/EDS的主要性能指标
SEM
分辨率:高真空模式:3.0nm;低真空模式:4.0nm 低真空:1-270Pa 加速电压:0.5KV-30KV 放大倍数:5倍-30万倍 电子枪:W发卡灯丝式 检测器:高真空模式和低真空模式下的二次电子检测,
号,大小和极性相同,而对于形貌信
息,两个检测器得到的信号绝对值相
同,其极性相反。
Al
Sn
二次电子图像 VS. 背散射电子图像
4 扫描电镜对样品的作用--
物镜光栏、工作距离与样品之间的关系
物镜光栏的影响
工作距离的影响
5 能谱仪(EDS)的工作原理
能谱仪(EDS)是利用X光量子有不同 的能量,由Si(li)探测器接收后给出电脉 冲讯号,经放大器放大整形后送入多道 脉冲分析器,然后在显像管上把脉冲数 -脉冲高度曲线显示出来,这就是X光 量子的能谱曲线。
Wt% 07.29 04.55 01.51 02.13 05.55 04.29 74.69
At% 23.57 11.03 02.17 02.94 06.96 01.40 51.93
EDAX-EDS的工作界面---面扫描
面扫描实例-Cu网

Cu
Al
SEI扫描图
线扫描实例-Cu网
Kcnt
120
AlK
背反射电子:产生范围在100nm-1μm深度
能量较高,小于和等于入射电子能量E0
产 率
原子序数
特征X射线:在试样的500nm-5 μm深度 能量随元素种类不同而不同
3扫描电镜的主要构造
扫描电镜由六个系统组成 (1) 电子光学系统(镜筒) (2) (3) 信号收集系统 (4) 图像显示和记录系统 (5) (6) 电源系统
背散射电子检测
EDS
能量分辨率:132eV 分析范围:Be-U
JEOL-6380/SEM的工作界面
颗粒
10,0000-Au 6,0000-纳米晶 金刚石
薄膜及涂层材料
昆虫
生物材料 头发
EDAX-EDS的工作界面---谱线收集
能谱谱线收集实例
Element CK OK AlK SiK MoL CrK MnK FeK
扫描电子显微 镜 SEM 和能 谱分析技术
EDS
主要内容
扫描电镜(SEM)
能谱仪(EDS)
扫描电镜的作用 扫描电镜的工作原理 扫描电镜的主要构造 扫描电镜对样品的作用
能谱的工作原理 能谱的结构 能谱的特点 JEOL-6380SEM和EDAX
EDS的主要功能 样品的制备
(3)粉末样品的制备:
导电胶--粘牢粉末--吸耳球--观察 悬浮液--滴在样品座上--溶液挥发--观察
(4)不导电样品:
通常对不导电样品进行喷金、喷碳处理或使用导电胶 形貌观察:喷金处理 成分分析:喷碳处理
样品制备注意事项
a 显露出所欲分析的位置 b 不得有松懈的粉末或碎屑 c 需耐热,不得有熔融蒸发的现象 d不能含有液状或胶状物质,以免挥发 e非导体表面需镀金或镀碳 f 磁性材料会影响聚焦,成像效果不好
CuK
100
80
60
40
20
0
-20
-50
0
50 100 150 200 300 350
Distence
9 电镜样品的制备
(1)基本要求:
送检样品为干燥的固体 一定的化学、物理稳定性 不会挥发或变形 无强磁性、放射性和腐蚀性
(2)块状试样的制备:
用导电胶把待测试样粘结在样品座上 样品直径和厚度一般从几毫米至几厘米 样品高度不宜超过30mm,样品最大宽度不能超过100mm
Wt % 50.85 16.58 09.92 00.25 01.92 01.82 00.22 18.44
At % 70.14 17.17 06.09 00.15 00.33 00.58 00.07 05.47
EDAX-EDS的工作界面---区域分析
区域分析实例-颗粒
Element CK OK AlK SiK PK SnL FeK
1 扫描电镜的作用:
显微形貌分析:
应用于材料、医药以及生物等领域。
成分的常规微区分析:
元素定性、半定量成分分析
2 扫描电镜的工作原理
电子源 电磁透镜聚焦
扫描 电子信号 探测信号 屏幕显像
阴极 控制极
阳极 电子束 聚光镜
试样
样品表面激发的电子信号
特征X射线
二次电子、背散射电子和特征X射线
二次电子
3
信号收集
收集二次电子时,为了提高收集有效立体角,常在收集器前端栅网上加 上+250V偏压,使离开样品的二次电子走弯曲轨道,到达收集器。这样 就提高了收集效率。 收集背散射电子时,背散射电子仍沿出射直线方向运动,收集器只能收 集直接沿直线到达栅网上的那些电子。
4 扫描电镜对样品的作用--
加速电压、电子束与样品之间的关系
4 扫描电镜对样品的作用--
二次电子与背散射电子之间的区别
二次电子 当样品中存在凸起小颗粒或尖角时对 二次电子像衬度会有很大影响,其原 因是,在这些部位处电子离开表层的 机会增多 。
成分有差别, 成分无差别
形貌无差别
形貌有差别
背散射电子
成分形貌都有差别
由一对硅半导体组成,对于原子序数
信息来说,进入左右两个检测器的信
它是被入射电子轰击出来的样品核外电子.
背散射电子
它是被固体样品中原子反射回来的一部分 入射电子。
特征X射线
它是原子的内层电子受到激发之后, 在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射
SEM: 二次电子 背散射电子
EDS: 特征X射线
二次电子:产生范围在5-50nm的区域
能量较低,约50 eV
谢 谢!
6 能谱仪(EDS)的结构
7 能谱仪(EDS)的特点
优点
1)快速并且可以同时探测不同能量的X-光能谱 2)接受信号的角度大。 3)仪器设计较为简单 4)操作简单
性能 分析时间 检测效果 谱鉴定 试样对检测影响 探测极限 定量分析精度
EDS 几分钟 100% 简单 较小
700ppm ±5-10%
缺点
相关文档
最新文档