盾构管片结构设计算例(英文版)

合集下载

隧道盾构英语、中文、日语对照

隧道盾构英语、中文、日语对照

送料 通路 通路ブラケット センターカッター センターライン センターシャフト センタースライドデッキ 集中潤滑システム 遠心ポンプ チェーン チェーンブロック チェーンリンク 室 チャージ(充電) 充電装置 装入ホッパー 図面 チェックバルブ 薬液注入 溝 回路 回路遮断機 グリッパー 粘土 洗浄機 洗浄ポンプ 洗浄注入孔 隙間(すきま) クレビス 閉塞 クラッチ 崩壊検出器 襟(えり) カラーディスプレイ コラム、カラム 部品 圧縮空気 エアコンプレッサー コンピュータ 接続ビーム 接続端子板を固定する 接続シャフト 接続支柱 接続ツール ジョイント コンセント 接触機 コントラファン コントロール/制御 コントロールボックス 制御室
球阀 嵌条 带 皮带 底座 梁 轴承 轴承座 轴承座挡块 轴承润滑装置 轴承垫 皮带 皮带输送机 皮带张紧油缸 弯管、弯头 粘合剂 叶片、刀片 废堵、盲塞 (阀)板、(阀)块 转向架、车轮 螺栓 起重臂 孔径 钻机 轮毂 支架 制动器 故障 断路器、开关(电) 通气孔;通风装置 虚线、点线 刷子、毛刷 刷子密封 铲斗、挖斗 内置式行程传感器 舱壁、隔板 衬套、轴瓦 蝶形阀 对接 按钮 电缆 电缆支架 电缆导管 电缆架 电缆卷盘 电缆桥架 电缆通道 带接头的电缆 凸轮 凸轮从动件 罐头 盖、帽 万向接头
车架 走道、过道、通道 走道支架 中心转刀 中心线 中轴 中间的移动平台 集中润滑系统 离心泵 链条 导链滑车 链节 室 装料、充电 装料设备、装(送)料机 装料料斗 图、图表 单向阀 化学灰浆 斜槽;滑槽 电路、回路 断路开关、回路遮断器 钳、夹紧 粘土 滤清器、清洗器 洗涤泵 清洗水注入孔 (机器零件之间的)间隙 弹簧钩、U形夹 堵塞 离合器 土体塌陷探测器 轴衬 彩显 立柱 部件 压缩空气 空气压缩机 计算机 联结双梁 联结销固定板 联结轴 联结支柱 联结工具 接头 插座 接触器、开关 逆流式通风机 控制 控制箱 控制室

38 盾构管片结构计算方法及应用实例

38 盾构管片结构计算方法及应用实例

盾构管片内力计算方法及应用实例陈飞成徐晓鹏卢致强【摘要】埋置于地下土层中的盾构管片结构,由于所受外荷载复杂及接头的存在,其内力计算方法根据不同力学假定,种类繁多。

本文对常用的自由变形圆环法、弹性多铰环法、弹性地基梁法进行了理论推导,并针对某软土地区地铁盾构区间三个断面进行了实例计算,通过对计算结果的对比分析,得出了一些有助于盾构管片结构设计的结论。

【关键词】盾构管片设计荷载结构法1 引言盾构法以其地层适应性强、施工速度快、施工质量有保证、对周边环境干扰少等优点,得到了越来越广泛的应用。

目前盾构管片结构的设计方法有:①经验类比法②荷载结构法③地层结构法④收敛限制法,常用荷载结构法和地层结构法。

荷载结构法将盾构管片视为埋置于土层中的混凝土结构,周围土体对管片的作用力为施加于结构上的荷载;而地层结构法认为盾构管片与埋置地层一起构成受力变形的整体,并可按连续介质力学原理来计算管片和周围土体的内力和位移,其特点是在计算盾构衬砌结构内力的同时也得到周边土层的应力。

地层结构法力学本构模型复杂,土性参数较难确定,计算过程中影响因素多,并且目前工程界还无太多可靠经验来评定其结果的准确性,因此对具体工程的盾构管片结构设计仍主要采用荷载结构法,计算图示如图1。

本文就是应用荷载结构法对盾构管片进行内力计算。

陈飞成(1980—),研究生,毕业于同济大学道路与铁道工程专业,现为设计部结构设计人员。

徐晓鹏(1979—),工程师,硕士,毕业于中国矿业大学结构工程专业,现任公司设计项目部项目经理。

卢致强(1974—),工程师,硕士,毕业于西南交通大学结构工程专业,现任公司设计部经理。

上覆荷载0图1 荷载结构法计算图示Fig.1 Load-Structure method2 荷载结构法设计理论用荷载结构法计算盾构管片内力,关键点有两个,一是对土层抗力的处理,二是对管片接头的处理。

对土层抗力的处理方法有:①不考虑土层抗力②土层抗力按假定分布于管环拱腰两侧③加土弹簧,用弹簧力来模拟土层抗力。

地铁区间隧道盾构管片衬砌结构设计

地铁区间隧道盾构管片衬砌结构设计

工程建设与设计Construction&Design For Project地铁区间隧道盾构管片衬砌结构设计Design of Shield Tunnel Segment Lining Structure in Metro Tunnel林坚(广州地铁设计研究院股份有限公可,广州510030)LIN Jian(Guangzhou Metro Design and Research Institute Co.Ltd.,Guangzhou510030,China)【扌商要】针对地铁区间隧道盾构管片衬砌结构设计过程中的计算模型不合理问题,结合工程实例,对管片衬砌结构设计方法进行了探讨,以供参考。

[Abstract]In order to solve the problem of unreasonable calculation model of tunnel lining structure design in metro section,this paper discusses the design method of p ipe lining structure design based on engineering examples for reference.【关键词】地铁;盾构隧道;管片[Keywords]subway;shield tunnel;segment【中图分类号】U452【文献标志码】A[DOI]10.13616/ki.gcjsysj.2019.07.234【文章编号11007-9467(2019)07-0072-021引言随着城市交通事业的快速发展,大量地铁工程得到了建设。

管片接头是地铁盾构隧道装配式衬砌管片结构的重要组成部分,在地铁盾构隧道设计期间,其对结构受力和配筋会产生重要的影响。

因此,在管片衬砌结构设计阶段,还应考虑接头作用等因素,实现结构的合理设计。

2地铁区间盾构隧道管片衬砌结构设计问题在地铁区间盾构隧道设计阶段,管片衬砌结构设计容易出现结构计算模型采用不合理的问题,造成管片配筋设计不科学,给管片预制和工程造价带来不良影响。

盾构常用英语

盾构常用英语

盾构机英语词汇English German Chinese accumulator 蓄能器adjacent switch 接近开关agitator 搅拌机air bubble 气泡air-buffer 气体缓冲器air cleaner 空气滤清器air-compressor 空气压缩机air-conditioner 空调air filter 空气过滤器air-lock 气闸air outlet 放气,排气air pump 气泵air tank 空气箱air valve 气阀air vent 气孔align cylinder 校正油缸allowed variation 容许偏差alternator 交流发电机angle 角度antenna 天线anti-rotation device 反转装置,防止旋转装置anti-wear plate 耐磨板arm 臂arm retainer 臂固定架articulation cylinder 关节油缸articulation jack 铰接千斤顶articulation jack pin 铰接千斤顶连接销articulation lip seal 关节法兰盘密封articulation rubber sponge seal 关节海绵橡胶密封assembly 装配,组装auto grease lubricator 自动滑脂润滑器auto oil lubricator 自动注油器automatic control 自动控制automatic drain 自动放泄阀valve 自动排水阀automatic feed water pump 自动供水泵automatic oil lubrication 自动润滑auxiliary cutter bit 辅助切削刀auxiliary transformer 辅助变压器back filling injection device 壁后注浆装置back filling injection port 壁后注浆孔backlash 间隙,齿隙back up 后配套装置balancing value 平衡阀ball joint 球窝接头ball tap 球形旋塞ball valve 球阀band 嵌条base plate 底座beam 梁bearing 轴承bearing house 轴承座bearing house stopper 轴承座挡块bearing lubrication unit 轴承润滑装置bearing pad 轴承垫belt 皮带belt tensioning cylinder 皮带张紧油缸bend 弯管,弯头binder 粘合剂blade 叶片,刀片blind plug 废堵,盲塞block (阀)板,(阀)块bogie 转向架,车轮bolt 螺栓boom 起重臂bore diameter 孔径boring machine 钻机boss 轮毂bracket 托架,支柱brake 制动器breakdown 故障breaker 断路器,开关(电)breather 通气孔;通风装置broken line 虚线,点线brush 刷子,毛刷brush seal 刷子密封bucket 铲斗,挖斗built-in stroke sensor 内置式行程传感器bulkhead 舱壁,隔板bush 衬套,轴瓦butterfly valve 碟型阀butt joint 对接button 按钮cable 电缆cable bearer 电缆支架cable rack 电缆架cable reel 电缆卷盘cable tray 电缆桥架cable way 电缆通道cable with connector 带接头的电缆cam follower 凸轮从动件can 罐头cap 盖,帽cardan joint 万向接头carriage 车架cat walk 走道,过道,通道cat walk bracket 走道支架center cutter 中心转刀center line 中心线center shaft 中轴center slide deck 中间的移动平台centralized grease system 集中润滑系统centrifugal pump 离心泵chain 链条chain block 导链滑车chain link 链节chamber 室charge 装料;充电charger 装料设备,装(送)料机charging hopper 装料料斗chart 图,图表check valve 单向阀chemical grouting 化学灰浆chute 斜槽;滑槽circuit breaker 断路开关clamp 钳,夹紧clay 粘土cleaner 滤清器cleaning pump 洗涤泵cleaning water injection port 清洗水注入孔clearance (机器零件之间的)间隙clevis 弹簧钩,U形夹clogging 堵塞clutch 离合器collapse detector 土体塌陷探测器collar 轴衬colour display 彩显column 立柱component 部件compressed air 压缩空气compressor 空气压缩机computer 计算机connecting beam 联结双梁connecting pin fixing plate 联结销固定板connecting shaft 联结轴connecting stay 联结支柱connection tool 联结工具connector 接头consent 插座contactor 接触器,开关contra fan 逆流式通风机control 控制control box 控制箱control panel 控制面板control room 控制室controlled inlet valve 可控进给阀controlled outlet valve 可控压力阀controller 控制装置cooling water pump 冷却水泵copy cutter 仿形刀copy cutter bit 仿形刀刀片copy cutter jack 仿形刀千斤顶coupler 联结器coupling 联结器coupling for cutter detector 刀盘探测器的联结器cover 盖子cover plate 盖板current 电源current failure 断电,停电curve 曲线cushion rubber 缓冲橡胶cutting edge 切消刃cutter bit 刀盘切割刀,硬质合金刀cutter bit hold 切削刀刀架,硬质合金刀刀架cutter chamber 刀盘隔仓cutter driving motor 刀盘驱动马达cutter drive power 刀盘驱动电源cutter driving unit 刀盘驱动装置cutter drum 刀具盘体cutter head 刀盘刀头cutter head gear motor 刀盘减速箱cutter ring 刀圈cutter spoke 刀盘轮辐cutter tooth 刀齿cutter torque 刀盘扭矩cutter motor 刀盘驱动马达cycle 周期,循环cylinder 油缸cylinder guide ring 油缸导向环data 数据deck 平台;面板deck handrail 平台扶手deck stand 平台架子deck stand support 平台支柱dedusting system 除尘系统delay time 延期detail 细节detector 探测器dewatering 排水dewatering pump 排水泵diagram 图表diameter 直径digger 挖掘机disc cutter 盘形滚刀discharge valve 放泄阀,排气阀discharge hopper 卸料斗displacement 位移displacement detector 位移传感器distribution 分配distribution valve 分配阀distributor 配电器drainage water lifting pump 排水提升泵drawing 图纸drill equipment 钻头装置drill machine 钻机drive 驱动drive system 驱动系统driving motor 驱动马达driving motor cooling system 驱动马达冷却系统drum 滚筒double arm 双臂(式)double blade 双刀片double gate 双闸门double nut 双螺母dust wiper 除尘器earth collapse detector 土体勘查装置earth and sand destruction 土砂破坏检测装置detection deviceearth and sand seal 土砂密封earth load gauge 土压测量计earth pressure balance shield 土压平衡盾构earth pressure detector 土压勘查装置elastic ring 弹性圈elbow joint 弯管接头electric motor 电动马达electric valve 电磁阀eletronic component 电气元件elongation capacity 延性end plate 端板emergency dewatering hose 紧急排水软管emergency light 应急灯emergency break 紧急制动器emergency stop 紧急停机encoder 编码器engineering plastic knob 工程塑料捏手equalizer 平衡器equipment 设备erector 拼装机erector grip assembly 拼装机夹紧装置erector torque 拼装机扭矩excavation 开挖excavation diameter 开挖直径excavation face 开挖面excavation speed 开挖速度expansion tank 油枕extend-retract 伸缩extension 伸extension jack 伸缩油缸extension port 延伸出口eye plate 眼板eye bolt 带圈螺栓fan 风扇,风机fault 故障feed 供给;送料feed valve 进给阀feeder hopper 加料器feeder hopper 进料斗filter 过滤器fishtail cutter 鱼尾形切削刀fixing plate 固定板flange 法兰flapper 铰链板flapper 有铰链大门float switch 浮动开关floor drain 地面排水flow 流量flow control valve 流量控制阀flow conveyor 流动输送机(输送水泥用)flow-meter 流量计flow ing carriage 后续车架flow rate 流量flow pipe 输送管flow sheet 流程图fluorescent light 荧光灯foam 泡沫force 力frame 支架front trunk 前壳体full bore ball valve 球阀(四面都带接头)fuse 保险丝grantry 台架gap 空隙gasket 垫片gate 闸门gate plate 闸门板gear 齿轮gear box 齿轮箱,减速器gear box with brake 带制动器的减速箱generator 发电机gland 电缆封头;密封套globe valve 球(形)阀gouging 表面切割governor 调节器,调速器grease 油脂grease gun 润滑脂枪,牛油枪grease lubrication 滑脂润滑grease pump 油脂泵grease seal 润滑脂密封grip 夹具,把手grip bolt 夹紧螺栓grip cylinder 夹紧油缸gripper 夹具装置gripper shoe 夹具撑靴ground 地面guide pipe 导管guide rod 导杆guide roller 导向滚筒gyro 陀螺仪half coupling 半联结器hammer 锤handle 摇柄handrail 栏杆,扶手hanger 吊钩hand-operating device 手动操作hexagon head bolt 六角头螺栓hexagon nut 六角螺母hexagon socket screw 内六角螺栓high density slurry shield 高密度泥水盾构high-pressure VCB panel 高压VCB配电板hinge 铰链hob 齿轮滚刀hoist 葫芦hoist beam 起吊运输梁hoist rail 起吊运输轨道holder 刀架hole 孔hollow shaft 空心轴hook 弯钩;吊钩hood 盖,套;防护罩hopper 料斗horizontal thrust 水平方向hose 软管hose clamp 软管夹hose rack 软管托架H.V cable reel 高压电缆卷筒H.V cell 高压电池hydraulic 液压hydraulic control unit 液压控制系统hydraulic drive 液压驱动hydraulic oil tank 油箱hydraulic motor 液压马达indicator 指示灯injection 加注injection hole 注入孔injection pipe 注浆管injection pump 注浆泵inlet valve 进给阀inner diameter 内径inner tube 内壳体inside diameter 内径inspection 检查inspection cover 观测盖板,检查盖inspection hole 检查孔inspection lamp 检修(用)灯inspection window 观察窗installation 安装installation board 安装板interlock 联锁interlock pin 联锁销intermediate beam 中间梁intermediate bearing 中间轴承intermediate coupling device 中间联结(藕合)装置intermediate shaft 中间轴inverter 变换器,倒相器jack 油缸,千斤顶jet valve 喷射阀jib 旋臂jib crane 旋臂起吊装置jig 夹具joint 接头junction valve 连接阀key 键key plate 止转板kit 工具箱knock pin 定位销lap 搭接;重叠laser 激光laser beam 激光束laser sensor 激光传感器leader pin 导销leak 泄漏left 左level 水平,水位level gauge 液位计lever sensor 水平传感器lifetime 使用寿命lift 升降机;电梯lift cylinder 提升油缸lift jack 提升油缸lifting beam 提升梁lifting piece 吊攀lifting rod 提升杆light 光,灯光lighting 照明lime 石灰limit 限制limiter 限制器limit switch 限位开关line filter 线路滤波器liner 衬套,衬垫lining 衬板,衬垫link chain 扁节链,平环链lip seal 唇形密封load 载荷lubricating unit 润滑装置machine plane 机加工面main bearing 主轴承maker 生产厂家,制造厂商manhole lid 人行孔盖manifold 阀板man lock 人行闸manipulator 操纵装置,机械手material 材料measure 测量;量度measure stroke sensor 测量行程传感器middle beam 中间梁mode 模式molten metal 熔融金属monitored automatic control system 监督自动控制系统monkey trap 活动扶梯motor 马达,电动机motor pump 电动泵motor switch 电动机开关mounting plate 安装板mouting pin 安装销movable bearing 可动轴承movable deck 可动平台moving 移动name plate 名牌needle valve 针筒neoprene 氯丁橡胶(人造橡胶)net 网nipple 管接头,螺纹接套nipple nut 管接头螺母nut 螺母nut collar 螺母垫圈oil 油oil clearner 滤油器oil cooler 油冷却器oil cup 油杯oil drain pump 泄油泵,排油泵oil bearing 注油式轴承oil feeder 注油器oil filter 屡油器oil gear pump 齿轮油泵oil hole 注油孔oil level gauge 油位计oil meter 油量计oil pump 油泵oil seal 油封oil tank 油箱oil tank cover 油箱盖over arm 横杆;悬臂,横臂over charge 超载,超负荷over cut 超挖over cutter 超挖刀overload 过载,超载overload protector 过载保护器overload valve 超负荷调节阀oxygen 氧气oxygen sensor 氧气传感器packing 密封,衬垫packing ring 密封圈,填密环packing seal 填料密封pad 垫板panel 仪表板parts 零件,部件pat(ral car)light 室内信号灯performance 性能,特性pilot check valve 单向控制阀pilot lever 控制手柄pilot pin 导销pilot piston 导向活塞pin 销pin stopper 销止转板pinion 小齿轮pinion cover 小齿轮端盖pipe 管路,管pipe bend 管弯头,弯管接头pipe duct 管道,导管pipe joint 管接头pipe line 管线,管道pipe plug 管塞piston 活塞piston pin 活塞销piston pump 活塞泵piston rod 活塞杆pitch 节距pitch sensor 螺距传感器plate 平板plug 螺塞,闷头pneumatic valve 气压阀poppet valve 提升阀positioning pin 定位销position sensor 位置传感器power 电源power cylinder 动力油缸power panel 配电盘,仪表板power pump 动力泵power unit 动力装置preparation 预备,准备pressure 压力pressure control 压力控制pressure drop 压力下降pressure gauge 压力表pressure plate 压板pressure relief valve 压力溢流表pressure sensor 压力传感器pressure switch 压力开关pressure transmitter 压力传送器printer 打印机probe 探头program 程序program control 程序控制protector 护板,保护装置protection 保护protective device 保护装置pump 泵pump unit 泵站radial roller 径向滚柱radius 半径rail 轨道rated folw 额定流量rated load 额定载荷rated pressure 额定压力reamer 饺刀;扩孔reamer bolt 饺螺栓rear scaffold 后部拼装平台rear scaffold assembly 后部拼装平台安装rear trunk 后壳体receiver 接收器receiver tank 储浆罐;储气罐recovery 恢复reducer 减压器reducing valve 减压阀reduction gear 减速箱reduction gear ratio 减速齿轮速比reel 卷盘reference 参考,参照regulation ring 调整环regulator 调整器,调节器regulator valve 调节阀reinforcing plate 加强板,筋板relay 继电器relief valve 溢流阀remark 备注remote control 遥控return pipe 回油管ring 环,圈ring guarder 支承环梁rod 杆,棒roller 导轮roller chain 滚轴链rolling 滚压,回转rolling stopper fixing boss 固定于凸台上的止转挡板rolling stopper 止转装置rolling stopper mounting jig 止转装置安装夹具rolling stopper pin 止转销rotary 旋转,转换rotary encoder 转速编码器rotary feeder of screw 螺旋机旋转进给rotary hopper 旋转料斗rotary joint 旋转接头rotation direction 旋转方向rotational ring cover 旋转环端盖rotary seal 旋转密封rotary torque 转矩,扭转rotation axis 回转轴rotation ring 旋转环saddle 座,滑动座架,支管架safety gate 安全门safety load 安全荷重safe nut 安全螺母safe pad 安全垫safe pin 安全销safety pressre 安全压力safe ring 安全环safe rod 安全杆safety switch 安全开关safety system 安全系统safety valve 安全阀sample 样器,试件sand 砂子scaffold 工作台scaffold main 拼装台主体scale 比例尺scale sensor 刻度传感器schedule 进度,日程scraper 刮板screw 螺杆,螺钉screw conveyor 螺旋机screw coupling 螺旋式联结器screw gate 螺旋机舱门screw gate jack 螺旋机门油缸screw joint 螺纹接头screw pump 螺旋泵screw rotation 螺旋机旋转seal 密封垫seal case 密封盖(盒)seal retainer 密封护圈seal ring 密封圈seam 焊缝,接缝section 截面,剖面sediment seal 土砂密封圈segment 管片segment adjuster 管片调整装置,整园器segment conveyor 管片输送机segment feeder 管片进给装置segment handling hoist 管片操纵葫芦segment ring 分隔环selection switch 选择开关self-lubrication 自动润滑self-oil feeder 自动供油装置sensor 传感器sequence 程序,顺序sequence valve 顺序(动作)阀set 装置;安装;调整settlement 沉降shackle 钩环shackle pin 钩环销shaft 轴shaft bearing 轴承shaft fixing plate 车轮轴安装板sheath hermo-couple 壳体上的热电偶shield 盾构shield excavation 盾构开挖shield jack 盾构千斤顶,推进油缸shield machine 盾构机signal 信号shackle 钩环shackle pin 钩环销shim 垫片shute 斜道shute gasket 斜道衬垫shutoff valve 截流阀,断流阀shuttle belt conveyor 梭式带型运输机side beam 侧梁sight glass 观察窗silent contra fan 静音送风式通风机size 尺寸skin plate (盾构机的)壳板slag 熔渣sleeve 管接头,套筒slewing 旋转slewing joint 旋转接头slewing ring 回转环slide 位移,滑动距离slide gate 滑动闸门slide guide plate 滑动导向板slide jack 滑动油缸slide jack clevis 导向油缸U形夹slide plate 滑板sliver 长条slope 斜面slurry 泥水,泥浆slurry shield 泥水盾构slurry tank 加泥箱smooth 平滑,光滑snap pin 开口销socket 管套solenoid valve 电磁阀solid line 实心线spacer 垫片,衬垫spanner 扳手spatter 喷溅speed sensor 速度传感器spherical joint 球形接头split pin 开尾销spreader 撑板spreader cushion rubber 撑板用缓冲橡胶垫spreader of thrust jack 推进油缸的撑板spreader main body 撑板主体spring pad 弹簧垫spring wire 弹簧钢丝spring washer 弹簧垫圈sprocket 链轮stair 梯子stanchion 支柱stand 台,座,架standard 标准standard tool box 标准工具箱strainer 滤网,过滤器start 启动stator 定子step 台阶,踏板stone 岩石stopper 挡块,制动器stroke 行程stroke meter installation 行程测量计的安装stud bolt 双头螺栓sucking pump 抽气泵sucking valve 抽气阀suction filter 吸滤器stud bolt 柱头螺柱,双头螺栓support guide 支撑导杆support jack 支撑油缸support ring 支撑环support beam 支撑梁suppressing board 压板surrounding stop stopper 止板挡块swing check valve 回转止回阀switch 开关tail brush 盾尾刷tail seal device 盾尾密封装置tail grease 盾尾油脂tail grease pump 盾尾油脂泵tank 箱体tank cover 箱盖tape 卷尺,胶带taper pin 锥形销taper plug 锥形塞taper roller bearing 锥形滚柱轴承taper washer 锥形垫圈tapping screw 车丝螺钉,放液螺钉temperature gauge 温度计temperature sensor 温度传感器terminal 接线端,接头test 测试,实验test run 试运行thermometer 温度计thickness 厚度threshold 临界(状态)throttle valve 节流阀thrust brake 推力制动器thrust bush 推力衬套thrust collar 止推轴环thrust cylinder 推进油缸thrust jack 推进油缸,推进千斤顶thrust jack sensor 推进油缸传感器thrust pad 推进垫板thrust plate 止推板thrust power 推力功率,推马力thrust shaft 止推轴T joint T形接头tool 工具tooth form 齿形tooth pitch gauge 齿距量轨tooth point 齿顶,齿尖tooth surface 齿面tooth thickness 齿厚top face 顶面torque 扭矩torque control 力矩调节towing beam 牵引梁towing beam support 牵引梁支座towing jack 牵引油缸towing rod 牵引杆towing rod bracket 牵引杆安装支架track 轨道transformer 变电器translation cylinder 行走油缸transmitter 发报机,发送器travel 行程,移动量,位移transport 运输tray 托盘,托架treating segment weight 使用(实际)管片重量trim 调整,修整trim holder 调整架throchoid 余摆线(齿轮)泵trough 输送槽trunnion 耳轴tube 管,套tunnel 隧道turn buckle (松紧)螺丝扣turning ring 回转环ultimate load 最大载荷ultrasonic beam 超声波束under carriage 起落架uninterfered space 有效空间uninterrupted feed 连续供给unit 单位,单元unit control 单位控制unload 卸载,卸荷unload chute 卸斜槽unloader lifter 卸载起重机unloading 卸载unloading relief valve 卸荷溢流阀unloading torque 空载力矩unloading valve 卸载阀unlock 不连锁vacuum 真空vacuum manometer 真空压力计vacuum pad 真空垫板vacuum pump 真空泵vacuum switch 真空开关valve 阀valve bolck 给油(水)阀组valve cap 阀盖,气门盖valve control panel 阀的控制面板valve code 阀心,气门芯valve gate 阀门valve pin 阀销valve seat 阀座,气门座valve stem 阀杆,气门杆vent 通气孔ventilation 通风,风管verticality 垂直,垂直度volumetric sensor 容积传感器walking deck 滑动平台,行走平台washer 垫圈water level indicator 水位计water pump 水泵water tank 水箱water treatment device 水处理设备weight 重量welding 焊接weldment 焊件wheel 车轮wheel bracket 车轮支架wheel shaft 轮轴wire 钢丝,铁丝,金属丝wire brush 钢丝刷wire net 金属网wrench 扳手。

盾构机实用英语

盾构机实用英语

盾构机实用英语1、shield body:盾构2、front body inner shield assembly following parts were pre-assembled in front body inner shield:以下部件安装在前盾壳体内3、front body inner shield assembly:前盾壳体总成4、packing case on bulk head:散装箱,隔板包装箱BULK HEAD:土舱壁,隔板5、inspection rod on bulk head:舱壁检查杆6、M20 SET SCREW ON FRONT BODY INNER:M20 前盾固定螺钉7、PACKING CASE FOR INSPCTION ROD ON BULK HEAD:舱壁检查杆包装箱8、name plate-1 for grease injection:注油(脂)板-1,注脂铭牌-1()name plate:铭牌,标牌;grease injection:注脂9、fitting wire for name plate:铭牌安装线10、squeezing rod for front body:前盾挤压杆11、guide for bearing:轴承导向装置12、seal retainer :密封护圈13、accessorings on bulk head:舱壁配件14、ball joint:球窝接头15、cutter drum:刀盘16、cutter pinion gear:切齿小齿轮17、slewing bearing:回转支承18、fixing bolt for slewing bearing:回转轴承固定螺栓19、seal for cutter drive:主驱动密封20、cutter driving gear reducer & inverter motor:主驱动齿轮减速器&变频电机21、fixing bolt for cutter reducer:主驱动减速机固定螺栓1-0021、articulation seal:铰接密封件2、hydraulic motor with reduction gear for segment erector:带减速器的液压马达,用于管片拼装机3、flange for main port :主端口法兰4、female-male socket with bonded seal:带粘合密封件的阴-阳插座5、shield jack manifold in TBM:盾体千斤顶歧管6、sol. directional valve unit in TBM:索尔,掘进机换向阀装置7、proportional reducing valve unit IN TBM:比例减压阀IN TBM8、check valve(with nipple):止回阀、单向阀(带螺纹接头)9、stop valve(with nipple)in TBM:截止阀(带螺纹接头)10、relief valve(with nipple)in TBM:安全阀(带螺纹接头)11、multi-type SOL. directional valve IN TBM:多类型溶胶.TBM中的定向阀;TBM中的SOL.多路换向阀12、erector rotating manifold in TBM :TBM中的拼装机旋转体管汇13、erector sliding & expansion Jack manifold in TBM:拼装机伸缩千斤顶管汇14、erector yawing Jack manifold in TBM:TBM中的拼装机偏转千斤顶管汇15、erector grip Jack manifold in TBM:TBM中的拼装机抓取千斤顶管汇16、counter valance valve unit in TBM:TBM中的计数平衡阀装置17、manually directional valve unit in TBM:TBM中的手动换向阀18、copy cutter manifold in TBM:TBM中的仿形割刀管汇19、P.C.flow control valve unit in TBM:TBM中的P.C.流量控制阀单元20、relief valve manifold on trailer truck:拖车上的溢流阀总管21、relief valve unit on trailer truck:拖车上的溢流阀单元22、reducing valve SP unit on trailer truck:拖车上的减压阀SP (set point 设定值)单元23、screw bypass manifold unit on trailer truck:拖车上的螺旋旁路管汇装置24、screw SOL. pilot directional valve unit on trailer truck:拖车SOL.螺丝(机械式)先导换向阀导向阀装置25、stop valve on trailer truck:拖车上的截止阀26、throttle check valve on trailer truck:拖车上的节流止回阀27、stop valve for accumulator on trailer truck :拖车上蓄能器的截止阀28、solenoid valve unit on trailer truck:拖车上的电磁阀装置29、proportional flow control unit on trailer truck:拖车比例流量控制装置30、manually directional valve SP unit on trailer truck:拖车上的手动方向阀SP装置31、amplifier (for K3VG pump):放大器(用于K3VG 系列斜盘形轴向柱塞泵)32、amplifier (for PRBP valve):放大器(用于PRBP 川崎液压阀)33、amplifier (for 2FRE valve):放大器(用于2FRE 系列比例流量阀)1-0031、hose reel for segment erector:管片拼装机软管卷盘()2、line filter in TBM:TBM中的线路滤波器3、filter blement as spare:备用滤芯4、cable reel for sement erector :管片拼装机电缆卷盘5、pull cord switch for belt conveyor:皮带输送机拉线开关6、vinyl coated wire rope:乙烯基包覆电缆7、long eye bolt for pull code switch:拉码开关长眼螺栓8、wire clip:线夹9、flexible joint for rotary joint:旋转接头的柔性接头10、flasher for segment erector:管片拼装机闪烁开关(报警灯)11、siren for segment erector :管片拼装机警报器12、urethane foam for rotary joint:包装旋转接头用的聚氨酯泡沫13、adhesive for rotary joint:旋转接头用的粘合剂14、adhesive for o ring:o形圈粘合剂15、worm gear type limit switch for segment erector:蜗轮式限位开关16、slip ring on copy cutter:仿形刀集电环(滑环)17、coupling for slip ring:滑环联轴器18、proximity swicth for copy cutter:仿形刀接近开关19、magnet for proximity swicth:接近开关磁铁20、distribution valve for grease pump:油脂泵分配阀21、Y strainer Rc3/8:Y型过滤器Rc3 / 822、centraized grease lubrication pump:集中式油脂润滑泵23、accumulator unit:蓄能器24、N2 gas charge tool set:氮气充气工具箱25、oil cooler for hydraulic equipment:液压设备油冷却器26、rotary joint ASS'Y(with following individual parts):ASS'Y旋转接头(包括以下单个零件)27、M20 HEX,socket head bolt:M20内六角螺栓28、M20 spring washer :M20弹簧垫圈(C形)29、o ring :o型圈30、flange:法兰31、snap ring :卡环;弹性挡圈32、seal retainer:密封护圈33、rubber seal :橡胶密封件34、2B nipple:2B螺纹接头35、2B female male elbow:2B阴阳弯头36、2B ball valve:2B球阀37、back up ring:密封支撑环38、M22 hexagon bolt:M22六角螺栓39、M22 spring washer:M22弹簧垫圈40、cover:罩子41、M4 set screw:M4固定螺钉42、M8 push bolt:M8推力螺栓43、hydraulic motor for screw conveyor:螺旋输送机液压马达44、accessories for hydraulic motor :液压马达配件2-0061、CC-LINK I/F unit for cutter inverter:刀盘变频器CC-LINK I / F单元2、control power backup unit:3、casing for additive injection port:4、retainer for casing:5、rubber packing for casing:6、M10 low head bolt for casing:7、slow return check valve:低速回程单向阀8、bolt for erector rolling sliding&expansion Jack MF:管片安装机旋转体伸缩千斤顶MF用的螺栓9、P.C. flow control valve unit:P. C.流量控制阀装置10、throttle valve:节流阀11、oil hydraulic pump for grout injection equipment:12、bell housing for grout injection pump:13、with coupling and element :14、chain:15、attachment for chain:16、bolt for shield pump:17、set screw:18、articulate jacks pump:19、spring washer:20、holt for erection rotation pump:21、oil hydraulic pump for screw drive:22、screw conveyor pump:23、oil hydraulic pump for screw gate:24、oil circulating pump:25、common base for circulating pump:26、coupling guard :30、long eye bolt31、wire clip:32、siren33、adhesive for O ring:34、worm gear type limit switch :35、slip ling :36、controller37、dust seal38、VD seal39、rotary encorder40、detector for inclination meter41、pitching:42、rolling:43、amplfilter inclination meter44、earth pressure detector45、amplifier46、hydraulic pressure transmitter47、flow control detector:48、suction filter to be installed on trailer truck:安装在拖车上的吸滤器49、line filter:线路滤波器50:filter element for VLF08R as spare:VLF08R备用滤芯51、spare element:备用元件52、inverter unit:逆变器单元53、accessories for inverter unit:逆变器配件54、AC reactor:交流电抗器盾构机英语词汇English Chineseaccumulator 美[?'kjumj?let?] 蓄能器adjacent switch 美[?'d?esnt] 接近开关agitator 美['?d??tet?] 搅拌机air bubble 美['b?bl] 气泡air-buffer 气体缓冲器air cleaner 空气滤清器air-compressor 空气压缩机air-conditioner 空调air filter 空气过滤器air-lock 气闸air outlet 放气,排气air pump 气泵air tank 空气箱air valve 气阀air vent 气孔align cylinder 校正油缸allowed variation 容许偏差alternator 交流发电机angle 角度antenna 天线anti-rotation device 反转装置,防止旋转装置anti-wear plate 耐磨板arm 臂arm retainer 臂固定架articulation cylinder 关节油缸articulation jack 铰接千斤顶articulation jack pin 铰接千斤顶连接销articulation jack pin mounting jig 铰接油缸连接销安装夹具articulation lip seal 关节法兰盘密封articulation rubber sponge seal 关节海绵橡胶密封assembly 装配,组装auto grease lubricator 自动滑脂润滑器auto oil lubricator 自动注油器automatic control 自动控制automatic drain 自动放泄阀valve 自动排水阀automatic feed water pump 自动供水泵automatic oil lubrication 自动润滑auxiliary cutter bit 辅助切削刀auxiliary transformer 辅助变压器back filling injection device 壁后注浆装置back filling injection port 壁后注浆孔backlash 间隙,齿隙back up 后配套装置balancing value 平衡阀ball joint 球窝接头ball tap 球形旋塞ball valve 球阀band 嵌条base plate 底座beam 梁bearing 轴承bearing house 轴承座bearing house stopper 轴承座挡块bearing lubrication unit 轴承润滑装置bearing pad 轴承垫belt 皮带belt conveyor 皮带输送机belt tensioning cylinder 皮带张紧油缸bend 弯管,弯头binder 粘合剂blade 叶片,刀片blind plug 废堵,盲塞block (阀)板,(阀)块bogie 转向架,车轮bolt 螺栓boom 起重臂bore diameter 孔径boring machine 钻机boss 轮毂bracket 托架,支柱brake 制动器breakdown 故障breaker 断路器,开关(电)breather 通气孔;通风装置broken line 虚线,点线brush 刷子,毛刷brush seal 刷子密封bucket 铲斗,挖斗built-in stroke sensor 内置式行程传感器bulkhead 舱壁,隔板bush 衬套,轴瓦butterfly valve 碟型阀butt joint 对接button 按钮bogie 台车cable 电缆cable bearer 电缆支架cable duct 电缆导管cable rack 电缆架cable reel 电缆卷盘cable tray 电缆桥架cable way 电缆通道cable with connector 带接头的电缆cam follower 凸轮从动件can 罐头cap 盖,帽cardan joint 万向接头Cartridgecarriage 车架cat walk 走道,过道,通道cat walk bracket 走道支架center cutter 中心转刀center line 中心线center shaft 中轴center slide deck 中间的移动平台centralized grease system 集中润滑系统centrifugal pump 离心泵chain 链条chain block 导链滑车chain link 链节chamber 室charge 装料;充电charger 装料设备,装(送)料机charging hopper 装料料斗chart 图,图表check valve 单向阀chemical grouting 化学灰浆chute 斜槽;滑槽circuit 电路circuit breaker 断路开关clamp 钳,夹紧clay 粘土cleaner 滤清器cleaning pump 洗涤泵cleaning water injection port 清洗水注入孔clearance (机器零件之间的)间隙clevis 弹簧钩,U形夹clogging 堵塞clutch 离合器collapse detector 土体塌陷探测器collar 轴衬colour display 彩显column 立柱component 部件compressed air 压缩空气compressor 空气压缩机computer 计算机connecting beam 联结双梁connecting pin fixing plate 联结销固定板connecting shaft 联结轴connecting stay 联结支柱connection tool 联结工具connector 接头consent 插座contactor 接触器,开关contra fan 逆流式通风机control 控制control box 控制箱control cabin 控制室control panel 控制面板control room 控制室controlled inlet valve 可控进给阀controlled outlet valve 可控压力阀controller 控制装置cooling water pump 冷却水泵copy cutter 仿形刀copy cutter bit 仿形刀刀片copy cutter jack 仿形刀千斤顶coupler 联结器coupling 联结器coupling for cutter detector 刀盘探测器的联结器cover 盖子cover plate 盖板current 电源current failure 断电,停电curve 曲线cushion rubber 缓冲橡胶cushion valve 缓冲阀cutting edge 切消刃cutter bit 刀盘切割刀,硬质合金刀cutter bit hold 切削刀刀架,硬质合金刀刀架cutter chamber 刀盘隔仓cutter driving motor 刀盘驱动马达cutter drive power 刀盘驱动电源cutter driving unit 刀盘驱动装置cutter drum 刀具盘体cutter head 刀盘刀头cutter head gear motor 刀盘减速箱cutter ring 刀圈cutter seal 刀盘密封cutter spoke 刀盘轮辐cutter tooth 刀齿cutter torque 刀盘扭矩cutter motor 刀盘驱动马达cycle 周期,循环cylinder 油缸cylinder guide ring 油缸导向环data 数据deck 平台;面板deck handrail 平台扶手deck stand 平台架子deck stand support 平台支柱dedusting system 除尘系统delay time 延期detail 细节detector 探测器dewatering 排水dewatering pump 排水泵diagram 图表diameter 直径digger 挖掘机disc cutter 盘形滚刀discharge valve 放泄阀,排气阀discharge hopper 卸料斗displacement 位移displacement detector 位移传感器distribution 分配distribution valve 分配阀distributor 配电器drain 排出口drainage water lifting pump 排水提升泵drawing 图纸drill equipment 钻头装置drill machine 钻机drive 驱动drive system 驱动系统driving motor 驱动马达driving motor cooling system 驱动马达冷却系统drum 滚筒double arm 双臂(式)double blade 双刀片double gate 双闸门double nut 双螺母dust wiper 除尘器earth collapse detector 土体勘查装置earth and sand destruction 土砂破坏检测装置detection deviceearth and sand seal 土砂密封earth load gauge 土压测量计earth pressure balance shield 土压平衡盾构earth pressure detector 土压勘查装置elastic ring 弹性圈elbow joint 弯管接头electric motor 电动马达electric valve 电磁阀eletronic component 电气元件elongation capacity 延性end plate 端板emergency dewatering hose 紧急排水软管emergency dewatering pump 紧急排水泵emergency light 应急灯emergency break 紧急制动器emergency stop 紧急停机encoder 编码器engineering plastic knob 工程塑料捏手equalizer 平衡器equipment 设备erector 拼装机Erector extension cylinder 拼装机延伸油缸Erector slide cylinder 拼装机滑动油缸erector grip assembly 拼装机夹紧装置erector torque 拼装机扭矩excavation 开挖excavation diameter 开挖直径excavation face 开挖面excavation speed 开挖速度expansion tank 油枕extend-retract 伸缩extension 伸extension jack 伸缩油缸extension port 延伸出口eye plate 眼板eye bolt 带圈螺栓fan 风扇,风机fault 故障feed 供给;送料feed valve 进给阀feeder hopper 加料器feeder hopper 进料斗filter 过滤器fishtail cutter 鱼尾形切削刀fixing bolt 紧固螺栓fixing plate 固定板flange 法兰flapper 铰链板flapper 有铰链大门float switch 浮动开关floor drain 地面排水flow 流量flow control valve 流量控制阀flow conveyor 流动输送机(输送水泥用)flow-meter 流量计flowing carriage 后续车架flow rate 流量flow pipe 输送管flow sheet 流程图fluorescent light 荧光灯foam 泡沫force 力frame 支架front trunk 前壳体full bore ball valve 球阀(四面都带接头)fuse 保险丝grantry 台架gap 空隙gasket 垫片gate 闸门gate plate 闸门板gear 齿轮gear box 齿轮箱,减速器gear box with brake 带制动器的减速箱gear pump 齿轮泵generator 发电机gland 电缆封头;密封套globe valve 球(形)阀gouging 表面切割governor 调节器,调速器grease 油脂grease gun 润滑脂枪,牛油枪grease lubrication 滑脂润滑grease pump 油脂泵grease seal 润滑脂密封grip 夹具,把手grip bolt 夹紧螺栓grip cylinder 夹紧油缸gripper 夹具装置gripper shoe 夹具撑靴ground 地面guide pipe 导管guide rail 导轨guide rod 导杆guide roller 导向滚筒gyro 陀螺仪half coupling 半联结器hammer 锤handle 摇柄handrail 栏杆,扶手hanger 吊钩hand-operating device 手动操作hexagon head bolt 六角头螺栓hexagon nut 六角螺母hexagon socket screw 内六角螺栓high density slurry 高密度泥浆high density slurry shield 高密度泥水盾构high-pressure VCB panel 高压VCB配电板hinge 铰链hob 齿轮滚刀hoist 葫芦hoist beam 起吊运输梁hoist rail 起吊运输轨道holder 刀架hole 孔hollow shaft 空心轴hook 弯钩;吊钩hood 盖,套;防护罩hopper 料斗horizontal thrust 水平方向hose 软管hose clamp 软管夹hose rack 软管托架H.V cable reel 高压电缆卷筒H.V cell 高压电池hydraulic 液压hydraulic control unit 液压控制系统hydraulic drive 液压驱动hydraulic oil tank 油箱hydraulic motor 液压马达indicator 指示灯injection加注injection hole 注入孔injection pipe 注浆管injection pump 注浆泵injection valve 喷射阀;注浆阀inlet valve 进给阀inner diameter 内径inner tube 内壳体inside diameter 内径inspection 检查inspection cover 观测盖板,检查盖inspection hole 检查孔inspection lamp 检修(用)灯inspection window 观察窗installation 安装installation board 安装板interlock 联锁interlock pin 联锁销intermediate beam 中间梁intermediate bearing 中间轴承intermediate coupling device 中间联结(藕合)装置intermediate shaft 中间轴inverter 变换器,倒相器jack 油缸,千斤顶jet valve 喷射阀jib 旋臂jib crane 旋臂起吊装置jig 夹具joint 接头junction valve 连接阀key 键key plate 止转板kit 工具箱knock pin 定位销ladder 梯子lap 搭接;重叠laser 激光laser beam 激光束laser sensor 激光传感器leader pin 导销leak 泄漏left 左level 水平,水位level gauge 液位计lever sensor 水平传感器lifetime 使用寿命lift 升降机;电梯lift cylinder 提升油缸lift jack 提升油缸lifting beam 提升梁lifting piece 吊攀lifting rod 提升杆light 光,灯光lighting 照明lime 石灰limit 限制limiter 限制器limit switch 限位开关line filter 线路滤波器liner 衬套,衬垫lining 衬板,衬垫link chain 扁节链,平环链lip seal 唇形密封load 载荷lubrication 润滑lubricating unit 润滑装置leisure / lie fallow 休闲machine plane 机加工面main bearing 主轴承maker 生产厂家,制造厂商manhole lid 人行孔盖manifold 阀板man lock 人行闸manipulator 操纵装置,机械手material 材料measure 测量;量度measure stroke sensor 测量行程传感器middle beam 中间梁mode 模式molten metal 熔融金属monitored automatic control system 监督自动控制系统monkey trap 活动扶梯motor 马达,电动机motor pump 电动泵motor switch 电动机开关mounting plate 安装板mouting pin 安装销movable bearing 可动轴承movable deck 可动平台moving 移动millimeter 毫米(mm)name plate 名牌needle valve 针阀neoprene 氯丁橡胶(人造橡胶) net 网nipple 管接头,螺纹接套nipple joint 螺纹接头,管接头nipple nut 管接头螺母nut 螺母nut collar 螺母垫圈oil 油oil clearner 滤油器oil cooler 油冷却器oil cup 油杯oil drain pump 泄油泵,排油泵oil bearing 注油式轴承oil feeder 注油器oil filter 屡油器oil gear pump 齿轮油泵oil hole 注油孔oil level gauge 油位计oil meter 油量计oil pump 油泵oil seal 油封oil tank 油箱oil tank cover 油箱盖over arm 横杆;悬臂,横臂over charge 超载,超负荷。

盾构机部件英语翻译

盾构机部件英语翻译

Designation 名称HYDRAULIC MOTOR 液压马达,液压发动机HYDRAULIC CYLINDER 液压油缸DOUBLE ACTION BREAK V ALVE 双档制动阀LOWERING BRAKE V ALVE 下引制动阀SWITCH ELEMENT 开关元件V ALVE BLOCK 阀块PISTON PUMP 活塞泵PRESSURE GAUGE 压力计BRACKET 支架PRESSURE SWITCH 压力开关PROTECTIVE CAP 保护帽V ALVE 阀CASING PRESSURE SCALE 称重传感器BASE FRAME PRESSURE SCALES 称重传感器底座V ALVE PLATE 阀板NON-RETURN V ALVE 单向阀BLOCK BALL VALVE 球阀ENTRY PLATE 入口板PLATE 板INNER PLATE 内板ASSEMBL Y KIT 装配组件SCREW 螺杆SEALING NUT 密封螺母MOUNTING FRAME 安装架STEEL PLATE HOT-ROLLED 热轧钢板STEEL TUBE SEAMLESS 无缝钢管MAINTENANCE UNIT 保持装置TANK 水箱DRILLING HAMMER 钻头SEALING KIT 密封件SHANK ADAPTER 柄适配器CONVERSION KIT转换套件TOOLS 工具CYLINDER 气缸SEAL 密封SCRAPER 刮刀PIPE 管ROUND BAR BRASS 圆条黄铜PISTON 活塞PISTON ROD 活塞杆PRESSURE SPRING 压力弹簧SCREW CONNECTION 螺纹接口SOUND ABSORBER 消声器DIRT TRAP 排尘器PUMP WITH HYDRO MOTOR 泵水力马达SEALING SET 密封装置GAMMA PUMP 伽马泵PRESSURE CONTROLER 压力控制器PRESSURE GAUGE 压力表DIRECTIONAL CONTROL V ALVE 定向控制阀PIPING HOUSING 管路CHECK V ALVE 止回阀FRAME 框架CONSOLE 操纵台ANGLE STEEL BAR UNEQUAL LEG 角钢筋不平等腿PRECISION STEEL TUBE WELDED 精密钢管焊接CLAMP 钢丝钳HEX.HEAD SCREW 头螺钉WASHER 垫圈MOUNTING RAIL NUT GALV ANIZED 安装轨电镀螺母CONNECTION PLATE FOR V ALVE 连接板阀PRESSURE TRANSDUCER STANDARD 压力传感器平台SENSOR 传感器ROTARY SENSOR 旋转传感器MAX PRESSURE PROTECTION 最大压力保护COVER 封皮SPACER BLOCK 垫块DISTANCE PLATE 隔板O-RING 橡胶圈HIGH PRESSURE FILTER 高压滤油器DIFFERENTIAL PRESSURE SWITCH 压差开关ELECTRIC MOTOR 电动机V ARIABLE DISPLACEMENT 可调泵COIL FOR DIRECTIONAL V ALVE 定向阀线圈FLANGE BALL VALVE 法兰球阀DIRECTIONAL SEAT VALVE 定向座阀SOLENOID COIL 螺丝管COUPLING ROTEX 耦合测速发电机PUMP SUPPORT 泵支架DAMPING RAIL 缓冲槽COUPLING 耦合GEAR RING 齿圈HYDRAULIC ENGINE 液压发动机BASIC MODULE 基础模块CURRENT REGULATION V ALVE 电流调节阀门CARTRIDGE 管壳PRESSURE V ALVE WITHOUT ADJUSTMPROPORTIONAL PRESSURE RELIEF 比例减压阀MAGNETIC DIRECT CURRENT 电磁直流电SEAL SET PRESSURE LIMITING V AL 密封限制压力瓦尔DIRECTIONAL SEAT VALVE 方向控制阀DIRECTIONAL CONTROL SLIDE V ALV 换向阀滑动PROPORTIONAL V ALVE MODULE 比例阀模块STEERING V ALVE 导向阀DOUBLE COUNTER BALANCE V ALVE 双反平衡阀LOWERING BRAKE HOLD V ALVE CARTRBRAKE HYDRAULIC BLOCK 液压刹车模块CHOKE V ALVE CARTRIDGE 插装式节流阀SHUTTLE V ALVE CARTRIDGE 插装式换向阀V ALVE INSERT 阀密封垫PLANETARY GEAR 行星齿轮LINE BREAKING SAFETY FUSE 保险丝SOLENOID COIL 电磁阀芯PROPORTIONAL V ALVE 比例阀REDUCTION 减少ROUND STEEL BAR HOT-ROLLED 圆钢筋热轧TELESCOPIC UNIT ERECTOR 拼装机收缩单元PROPORTIONAL V ALVE MODULE 比例阀模块STEERING V ALVE 导向阀INTERMEDIATE PLATE 中间板ONE-WAY RESTRICTOR ZP zp型单向节流阀DIRECTIONAL CONTROL V ALVE 方向控制阀PRESSURE REDUCING V ALVE ZP zp型减压阀SHIELD ARTICULATION CYLINDER 盾构机铰接油缸CONTROL BLOCK SCHIELD ARTICULAADAPTER PLATE 垫板MAGNET 磁铁HYDRAULIC BLOCK 液压锁PLANETARY GEARBOX 行星齿轮箱AIR VESSEL 空气罐PASSINGPOWER UNIT 供电装置CHECK V ALVE ZP zp型单向阀CURRENT REGULATING V ALVE BLOCK 当前调节阀块TRACTION CYLINDER 动力缸ONE-WAY RESTRICTOR ZP zp型单向节流阀BLOCK BALL VALVE 球阀组BLADDER ACCUMULATOR 蓄能器SLIDE BLOCK 滑块ROTARY SHAFT LIP TYPE SEAL 转轴唇形密封PLANET CARRIER 行星齿轮架RETAINING RING 弹簧卡环PIN 栓CYLINDER HEAD SCREW 汽缸盖螺丝ROLLER BEARING 滚珠轴承WHEEL 轮子JUNCTION PLATE 连接板GROOVED BALL BEARING 带槽球轴承AXIAL PISTON PUMP 轴向活塞泵FILTER 过滤CLOGGING INDICATOR 油滤阻塞指示器GAUGE SLIDE 游标卡尺NOZZLE 喷嘴GAS ACCUMULATOR 气体积蓄器HIGH PRESSURE FILTER 高压滤芯DIFFERENTIAL PRESSURE SWITCH 压差开关CAP OF CLAMPING BOX 帽夹盒BOTTOM PART OF CLAMPING BOX 夹盒底部JUNCTION PLATE FOR ELECTRIC 电动连接板GROUT PUMP 砂浆泵V ALVE DISC 蝶阀THRUST RING 止推环PISTON GUIDE 活塞导承SLURRY PISTON 泥浆泵用活塞GUIDE BUSH FOR PUMP KSP ksp泵的直导套STROKE COUNTER 冲程计数器BRIDGE 连接桥PROXIMITY SWITCH 接近开关SPARE PART备件HAND LEVER 手制动柄DAMPING RAIL 缓冲槽GUIDE BUSHING 导套MOBIL DIRECTIONAL V ALVE 美孚换向阀DOUBLE CHECK V ALVE 双止回阀FLOW DIVIDER V ALVE 分流阀REPLENISH-VENTILATION FILTER 通风过滤器VENTILATION FILTER 过滤器SCREW PUMP AGGREGA T 螺杆泵动力单元AXIAL FACE SEAL 轴向面密封SCREW SPINDEL PUMP 螺杆泵ADJUSTMENT BUSH 调整套DEEP GROOVE BALL BEARING 深槽滚珠轴承LEVEL WATCHDOG液位电子狗RESISTANCE THERMOMETER 电阻温度计THERMOMETER 温度计PROTECTION PIPE 管路AQUA SENSOR 湿度传感器LEVEL SENSOR 液位传感器REDUCING CONNECTION PIECE 减少连接块PRESSURE GAUGE 压力表COMPRESSED AIR TANK 压缩空气罐STEEL TANK 金属结构块SHUTTING GATE 关闭门SAFETY V ALVE 安全阀SWITCHING HANDLE 手柄开关FORGING BALL V ALVE 锻造球阀PRESSURE LIMITING V ALVE 限压阀MAINTENANCE DISPLAY OPTICAL 维修光电显示器SOLENOID V ALVE 电磁阀V ALVE CONE 锥形阀GASKET 垫圈PLATE HEAT EXCHANGER 板式换热器ADAPTER 秆尾DISTRIBUTOR 分配阀FLOW LIMITER 下限位GREASE PUMP 油脂泵DRIVE MOTOR PNEUMATIC 气动马达DAM RING 止水环CA TCHER 捕捉器AXIS 轴REPAIR KIT 维修工具BEARING 轴承RETAINING SCREW 固定螺丝PRESSURE CYLINDER 压力缸PACKING 填充物TENSION PIN 绷紧空心销SPRING-TYPE STRAIGHT PIN 弹簧直销FIXING DEVICE 固定装置TOGGLE 开关SEQUENCE PLATE 序列板TWO POST RAM 双联内存GROOVED RING 槽环GLASS 玻璃REGULATOR 调节器BUTTON 按钮PROXIMITY SWITCH INDUCTIVE 接近感应开关MANOMETER 压力表CENTERING BOLT 定心螺栓NEEDLE VALVE 针阀MEMBRANE 薄膜SNAP RING 卡环BALL VALVE WITH PNEUM. 带气球阀MAINTENANCE INDICATION 维修说明THREE-PHASE MOTOR 三相电机WOODRUFF KEY 半圆键SCREW WHEEL 螺旋齿轮PNEUM. SWIVEL DRIVE 气动万向扳手NIPPLE 铜头SEGMENT DISTRIBUTOR SIXFOLD 六叶的配电器电扇PISTON DETECTOR 活塞式探测器2WAY V ALVE 2通阀WATER FILTER 水滤芯FILTER BAG 滤芯带PRESSURE RING 耐压环COMPRESSOR 压缩机SHAFT 轴SHAFT SLEEVE 轴套CLAW PIECE 爪型器CENTRIFUGAL PUMP UNIT 离心泵装置PARALLEL KEY 平面键V-RING 密封圈CASING WEAR RING 泵壳密封圈HOSE 胶皮管COMPENSATOR 自耦变压器TEMPERATURE SENSOR 温度传感器FLOWMETER 流量计WATER TANK PRESSURELESS 无压水箱SEAL INSPECTION OPENING 密封检测口RETURN FLOW INHIBITOR 回流抑制剂LEVER 拉杆BOA COMPACT V ALVE 蟒蛇紧凑型阀SHUT-OFF DAMPER 关闭闸板HEX.HEAD SCREW ZP zp型头螺钉HEAT EXCHANGER 热交换器DRUM 鼓NOZZEL 喷嘴EXHAUSTER WITH LOCK 有锁的排风机QUICK ASPIRATOR 快速抽吸机AIR INFLOW INTERLOCK 空气流入连锁AXIAL CONE NOZZLE 轴向锥喷嘴CLEANER 清洁器SLEEVE COUPLING 套筒联轴节LIP SEAL 唇形密封T-PIECE T型块FEATHER KEY 导向键ANGULAR CONTACT BALL BEARING 向心推力球轴承LINK CLAMP 连接夹JOINT SHAFT 接轴LINK SLEEVE 袖口钮ROTOR 转子STA TOR 定子NUT 螺母JOINT BOLT 连接螺栓SEPARATEL Y DRIVEN FAN 分别驱动风扇ECCENTRIC SCREW PUMP 偏心泵GEAR MOTOR 齿轮马达MECHANICAL SEAL 机械密封PLUG SCREW 堵头螺钉LIQUID LEVEL INDICATOR 液位计AMPLIFIER 放大器FREQUENCY CARD 频谱COIL 线圈BELL 铃QUENCH FLUID VESSEL 淬火液容器STEEL JACKET PUMP UNIT 钢管泵机组GASKET SUCTION SIDE 垫片吸力面CASING PUMP 套管泵CENTRIFUGAL WHEEL 离心叶轮SPECTACLES 眼镜LABYRINTH 迷宫LUBRICATOR NIPPLE 注油器接头GREASE RETAINER 护脂圈ROLLER BEARING 滚珠轴承ADAPTER 适配器THREADED PIN 螺纹销BEARING BLOCK 轴承座CONICAL SPRING W ASHER 锥形弹性垫圈COMPRESSED AIR PUMP 空压机泵HEX.NUTV ALVE BALL NEOPRENE 橡胶球阀BUMPER缓冲器CONVEYANCE COMPARTMENTMEMBRANE NEOPRENE 橡胶模DIAPHRAGM SHAFT 薄膜连接器SILENCER 消声器GASKET 垫圈AIR V ALVE 气动球阀SUBMERSIBLE MOTOR DRIVEN PUMP 水下电机驱动泵FLOAT SWITCH 浮动开关SPINDLE 轴PNEUMA TIC DRIVE 气动传动装置ANNUNCIATOR 报警器SIGHT GLASS 视镜EXHAUST VENTILATION PLUG 排风机插头REGULATOR 校准器CABLE SOCKET FOR CONNECTOR 电缆线插座的连接器HOSE 软管SLIDER 滑动器REGULATOR SUPPL Y AIR 空气补给调节DIRT TRAP 排尘器SUCTION FILTER 吸滤器FEED WHEELS 进料轮STRIP CHART RECORDER DOUBLE 条形图标记录器CASSETTE 风筒SILENCER 消声器ATTENUATOR 衰减器DIFFUSER 扩散器ROLLER 滚轴ROPE CLAMP SYSTEM 缆绳紧锁单元V ACUUM FILTER 真空过滤器FILTER CARTRIDGE 滤芯V ACUUM PUMP 真空泵RAM 随机存储器TAPPET KEY 控制杆ELECTROV ALVE 电磁阀。

地铁盾构隧道设计英文

地铁盾构隧道设计英文

A Design of Shield Tunnel Lining1. Function of TunnelThe planned tunnel is to be used as a subway tunnel. 2. Design Condition2.1 Dimensions of Segment Type of segment: RC, Flat typeDiameter of segmental lining:D 0=11mRadius of centroid of segmental lining: Rc=5275mm Width of segment: b=1500mm Thickness of segment: t=450mm 2.2 Ground Condition Overburden: H=13.5mGroundwater table: G .L.+0.8m=13.5+0.8=14.3m N Value: N=50 Unit weight of soil: γ=18kN/m3Submerged unit weight of soil: 'γ=8kN/m3 Angle of internal friction of soil:φ=31oCohesion of soil: C=0 kN/m2Coefficient of reaction: k=60MN/m3Coefficient of lateral earth pressure: k=0.4 Surcharge: P 0=35kN/m2 Soil condition: Sandy 3.Design MethodHow to check member forces: (1)Elastic equation method or(2)Bedded frame model(Beam element with elastic support)constant of rotation spring for positive moment at joint=18070 0P K =/kN m rad ⋅ constant of rotation spring for negative moment at joint=32100 0N K =/kN m rad ⋅How to calculate reinforcement for segmental lining: Limit state method(1) Based on the national code GB50010-2002 for reinforcement concrete design. (2) Please choose the grade of concrete and the type of steel rebars.Bolt: yield strength 2240/By f MN m = shear strength 2150/B MN m τ=4. Load conditionDead load:1.526.50.4517.89/c g b t kN m γ==××=where ,c γ=unit weight of RC segment356.5/kN m =Reaction of dead load at bottom:56.20/g p g kN mπ==Vertical pressure at tunnel crown:Earth pressure:10() 1.5(35813.5)214.5/e p b p H kN m γ′=+=×+×=212(1)40.2159.073/2c e c cR p R kN R m πγγ′−′′===Water pressure: 1 1.51014.3214.5/w w w p b H kN m γ==××=1111438.07/e e w p p p p kN m ′=++=Vertical pressure at tunnel bottom:21494.27/g p p p kN m=+=Lateral pressure at tunnel crown:Earth pressure: 10[(/2)]86.88/e q b p H t kN m λγ′=++= Water pressure: 1(/2)217.88/w w w q b H t kN m γ=+=111304.76/e w q q q kN m =+=Lateral pressure at tunnel bottom:Earth pressure: 200[(/2)]137.52/e q b p H D t kN m λγ′=++−= Water pressure: 20(/2)376.12/e w w q b H D t kN m γ=+−=222513.64/e w q q q kN m =+=5. Computation of Member ForceThe member force are computed by software:“同济曙光盾构隧道设计与分析”. 5.1 Model for Computation of Member Force: (see Fig 1 and Fig 2)节点编号 轴力 剪力 弯矩284341.046208.26379.856 304345.904252.43356.807 443723.467-11.597-462.926 424109.798109.61-566.565.2 Result of ComputationAt first we should choose the grade of concrete and the type of steel rebars.C50 concrete(223.1/c f N mm =21.89/t f N mm =25.0/v f N mm =23.454/c E e N m =m ) andHRB335 (2300/y y f f N mm 225/s E e N mm =′==)were used.Table 1 shows the result of computation of member forces of segmentallining.Table 1 Member Forces of Segmental LiningCritical Condition NodeM(kNm)N(kN)2max ()As mm +Max 28 379.856 4341.046 2469.847 Segment-Max 42 -566.56 4109.798 3240.67330 356.807 4345.904+Max28(*0.6) 227.9136 4341.046 2469.847 44 -462.9263723.4674528.443Joint-Max 42(*0.6) -339.936 4109.798max S max 573.221S kN38=Computer the As with Excel:NUM M Nc e0 ei kesi1kesi2aita1 379.856 4341.046 87.50333107.5033 1.32 566.56 4109.798 137.8559157.8559 1.3 3 356.807 4345.904 82.10191102.1019 1.3 4 227.9136 4341.046 52.50272.502 1.35 462.926 3723.467 124.3266144.3266 1.3 6 339.936 4109.798 82.71355102.7136 1.3Large Eccentric Compression ho=400mm aita*ei-0.3ho e kesi B x=kesiB*ho As' As 1.277543348 314.7543 0.550.22-8041.022469.847 1.93212701 380.2127 0.550.22-6172.123240.673 1.207324773 307.7325 0.550.22-8317.092453.653 0.822526009 269.2526 0.550.22-9922.212469.8471.756245827362.62460.550.22-8194.764528.4431.215276206308.52760.550.22-8977.943240.673In case the safety of the joint is checked, the bigger moment of the maximum moment of the joint, and 60% of the maximum moment of the segment is adopted.Fig 3 shows the arrangement of bars in the segment and bolted joint.6. Check the Safety of Segmental Lining6.1 Check against shear forcemax 0/(0.7)573.2211000/(0.7 1.50.4)1.365 5.0v S bh Mpa f Mpaτ==××=<=×mwhere max 0573.221, 1.5,0.4S kN b m h ===5.0v f Mpa = is the shear strength of concrete.6.2 Check of bolt6.2.1 Check of bolt between A-type segments and between A-type segment and B-type segmentmax 1/()115.8150BP S n A Mpa Mpa τ==<wheremax S =Maximum shear force among joints=shear force at Node 38=573.221 kN 1n = Number of bolts = 7,BP A = Area of one bolt (M30) = 706.9 2mm6.2.2 Check of fall of K-type segment (Fig.4)2111(,/)/292.05/b W Max p p b p b kN mm === whereb p =Pressure of backfill grouting /1.5=20/kN mm12(/360)726.00B c S R W b kN πθ=×××=23/()57.3150B BP BR S n A n A Mpa Mpa τ=+=<OKWhere =Number of bolts=14, = Number of bolts=2, 2n 3n BR A = Area of one bolt (M42) = 1385.4 2mm 6.2.3 Check of fall of segmental ring (Fig.5)10225150.26c W W R b R g kN π=×××+×××= where102W R ×××b =Force acting one segmental ringby pressure of backfill grouting2c R g π×××=Weight of one segmental ring4/(2)132.8150BR W n A Mpa Mpa τ==<OK.。

Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground

Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground

Three-dimensional numerical simulation of a mechanized twin tunnels in softgroundNgoc-Anh Do a ,d ,Daniel Dias b ,⇑,Pierpaolo Oreste c ,Irini Djeran-Maigre aaUniversity of Lyon,INSA of Lyon,Laboratory LGCIE,Villeurbanne,France bGrenoble Alpes University,Laboratory LTHE,Grenoble,France cPolitecnico of Torino,Department of Environmental,Land and Infrastructural Engineering,Italy dHanoi University of Mining and Geology,Department of Underground and Mining Construction,Faculty of Civil Engineering,Hanoi,Viet Nama r t i c l e i n f o Article history:Received 8April 2013Received in revised form 15January 2014Accepted 2February 2014Available online 25February 2014Keywords:Numerical modelling Twin tunnelSegmental lining Lining response Settlementa b s t r a c tThe increase in transportation in large cities makes it necessary to construct of twin tunnels at shallow depths.Thus,the prediction of the influence of a new tunnel construction on an already existing one plays a key role in the optimal design and construction of close parallel shield tunnels in order to avoid any damage to the existing tunnel during and after excavation of the new tunnel.Most of the reported cases in the literature on parallel mechanized excavation of twin tunnels have focused on the effects of the ground condition,tunnel size,tunnel depth,surface loads,and relative posi-tion between the two tunnels on tunnel behaviour.The numerical investigation performed in this study,using the FLAC 3D finite difference element programme,has made it possible to include the influence of the construction process between the two tunnels.The structural forces induced in both tunnels and the development of the displacement field in the surrounding ground have been highlighted.The results of the numerical analysis have indicated a great impact of a new tunnel construction on an existing tunnel.The influence of the lagged distance between the two tunnels faces has also been high-lighted.Generally,the simultaneous excavation of twin tunnels causes smaller structural forces and lin-ing displacements than those induced in the case of twin tunnels excavated at a large lagged distance.However,the simultaneous excavation of twin tunnels could result in a higher settlement above the two tunnels.Ó2014Elsevier Ltd.All rights reserved.1.IntroductionIn recent years,many tunnels have been built in urban environ-ments;this often involves the construction of twin tunnels in close proximity to each other.In addition,in many cases,the new tunnel is often excavated adjacent to an already existing one.Thus,the prediction of the influence of new shield tunnel construction on the existing tunnel plays a key role in the optimal design and construction of close parallel shield tunnels in order to avoid any damage to the existing tunnel during and after excavation of the new tunnel.Interactions between closely-spaced tunnels were studied in the past using a variety of approaches:physical model testing,field observations,empirical/analytical methods and finite element modelling.Kim et al.(1996,1998)performed physical tests to investigate the response of the first tunnel lining on the approaching of the second shield.The results of their model tests showed that the interaction effects are greater in the spring line and crown of the existing tunnel.Chapman et al.(2007)described results from a series of small-scale (1/50)laboratory model tests carried out in a kaolin clay which focused on studying the short-term ground movements associated with closely spaced multiple tunnels.The influence of tunnel distance,tunnel depth and tunnel number were highlighted.The results showed asymmetrical settlement troughs,greater settlement above the second of the twin tunnels con-structed.Their study also demonstrated that the commonly used semi-empirical method to predict the short-term settlement above twin tunnels,using the summation of Gaussian curves,can give inaccurate results.In the study by Choi and Lee (2010),the influ-ence of the size of an existing tunnel,the distance between tunnel centres and the lateral earth pressure factor on mechanical behav-iour of the existing and new tunnels was investigated by quantify-ing the displacement and crack propagation during the excavation/10.1016/j.tust.2014.02.0010886-7798/Ó2014Elsevier Ltd.All rights reserved.⇑Corresponding author.Tel.:+33476635135;fax:+33476825286.E-mail address:daniel.dias@ujf-grenoble.fr (D.Dias).of a new tunnel constructed near an existing tunnel.A series of experimental model tests was performed and analysed.It was found that the displacements decreased and stabilized as the dis-tance between the tunnel centres increased,depending on the size of the existing tunnel.Suwansawat and Einstein(2007)introduced interestingfield measurement results on ground movements induced by parallel EPB tunnels excavated in soft ground in Bangkok.They showed that the operational parameters,such as face pressure,penetration rate,grouting pressure andfilling,have significant effects on the maximum settlement and extent of the settlement trough.They also showed that the maximum settlement for twin tunnels is not usually located over the midpoint between the two tunnels and that the settlement trough is often asymmetric.Chen et al.(2011)presentedfield measurements conducted on parallel tunnels using EPB shields in silty soil.Their results showed a great dependence of the ground movements on the distance be-tween the second tunnel face and the monitored section.They also indicated that the two settlement troughs caused by the construc-tion of thefirst and the second tunnel had similar shapes.However, the second tunnel trough was shallower and wider than that of the first tunnel.Thefirst tunnel made the symmetric axis of thefinal trough of the parallel tunnels incline towards thefirst tunnel.In the study by Ocak(2012),thirty longitudinal monitoring sections, obtained through EPB tunnelling,were used to determine the interactions of the longitudinal surface settlement profiles in shal-low twin tunnels.He et al.(2012)carried outfield and model tests, based on Chengdu Metro Line1in China,to study the surface set-tlement caused by twin parallel shield tunnelling in sandy cobble strata.The surface settlement mechanism and the effect of tunnel distance on the surface settlement were also studied using the dis-crete element method(DEM).They showed that when the spacing between two tunnels is higher than twice the tunnel diameter,an independent collapsed arch can form.However,in any of the above studies,the resulting structural forces induced in the tunnel lining were not mentioned.Field observations remain the key to understanding the interac-tion between adjacent tunnels.Unfortunately,however,field data are often incomplete.It is clear that model testing can only be used to study limited interaction behaviour.Empirical and analytical methods,using the superposition technique(e.g.Wang et al., 2003;Hunt,2005;Suwansawat and Einstein,2007;Yang and Wang,2011),have been used on the basis of the prediction of each individual excavation in order to obtain thefinal accumulated set-tlement trough.Generally,superposition method cannot take into account rigorously the effect of an existing tunnel and the repeated unloading of the ground caused by the previous excavation of the first tunnel and,therefore,the settlement curves do not represent thefinal displacement very well(Divall et al.,2012).Furthermore, empirical and analytical methods also introduce drawbacks for those cases in which complex geological conditions(e.g.multilayer strata)are expected.The use of afinite element model seems to be a promising way of addressing this issue.Leca(1989),Addenbrooke and Potts(1996),Yamaguchi et al. (1998),Sagaseta et al.(1999),Hefny et al.(2004),Ng et al. (2004),Karakus et al.(2007),Hage Chehade and Shahrour(2008), Afifipour et al.(2011),Chakeri et al.(2011),Ercelebi et al.(2011), Mirhabibi and Soroush(2012),Hasanpour et al.(2012)have all car-ried out numerical analysis of this interaction problem.Most of these studies focused on considering the effect of the ground con-dition,tunnel size,tunnel depth,surface loads,and relative posi-tion between two tunnels on the surface settlement.Their results were similar in that the influence of the second tunnel on the pre-viously installed lining of thefirst one has been shown to depend on the relative position of the tunnel and on the spacing between the two tunnels.The literature reviewed above clearly indicates that an exten-sive amount of research has been conducted on tunnel interactions between parallel tunnels.Most of this research has focused on the influence of twin tunnels on ground deformation.However,less work has been devoted to the influence of the interaction between tunnels on the structural forces induced in a tunnel lining.Ng et al.(2004)performed a series of three dimensional(3D) numerical simulations to investigate the interactions between two parallel noncircular tunnels constructed using the new Austrian tunnelling method(NATM).Special attention was paid to the influence of the lagged distance between the excavated faces of the twin tunnels(L F)and the load-transfer mechanism between the two tunnels.It was found that L F has a greater influence on the horizontal movement than on the vertical movement of each tunnel and that the magnitude of the maximum settlement is inde-pendent of L F.They showed that the distributions of the bending moment induced in the tunnel lining are similar in shape,but different in magnitude in the two tunnels.In the study by Liu et al.(2008),the effect of tunnelling on the existing support system(i.e.shotcrete lining and rock bolts)of an adjacent tunnel was investigated through full3Dfinite element calculations,coupled with an elasto-plastic material model.It was concluded that the driving of a new tunnel significantly af-fects the existing support system when the advancing tunnel face passes the existing support system and has less effect when the face is far from the system.It was also pointed out that the effects of tunnelling on the existing support system depend to a great extent on the relative position between the existing and new tunnels.In order to investigate the influence of new shield tunnel exca-vation on the internal forces and deformations in the lining of an existing tunnel,Li et al.(2010)presented a series of3D numerical simulations of the interaction between two parallel shield tunnels and parametric analyses.Unfortunately,the existence of the joints in the segmental lining,the construction loads induced during shield tunnelling,such as face pressure,jacking force, grouting pressure,were not simulated in this numerical model. The impact of the new tunnel excavation on the existing tunnel during the advancement of the new tunnel was not considered either.The purpose of a numerical mechanized tunnelling(TBM) model is to take into consideration the large number of processes that take place during tunnel excavation.In order to conduct a rigorous analysis,a3D numerical model should be used.Obviously, there is not a full3D numerical simulation for mechanized twin tunnels in soft ground that allows both ground displacement and structural lining forces to be taken into consideration.The main purpose of this study was to provide a full3D model which would allow the behaviour of the interaction of mechanized twin tunnels to be evaluated,in terms of structural forces induced in the tunnel lining and ground displacement surrounding the two tunnels.Most of the main elements of a mechanized excavation can be simulated in this model:the conical geometry of the shield, the face pressure,the circumferential pressure acting on the cylin-drical surface of the excavated ground in the working chamber be-hind the tunnel face,the circumferential pressure caused by the migration of the grout acting on the excavated ground at the shield tail,the grouting pressure acting simultaneously on the excavated ground and on the tunnel structure behind the shield tail,progres-sive hardening of the grout,the jacking force,the weight of the shield machine,the weight of the back-up train behind the shield machine and the lining joint pattern,including the segment joints, the ring joints and their connection condition.The CYsoil model, which is a strain hardening constitutive model,has been adopted. The Bologna–Florence high speed railway line has been adopted in this study as a reference case.N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–51412.Numerical model2.1.Three-dimensional numerical modelThe numerical model,the 3D simulation procedure of a single tunnel and the parameter calibration of the CY soil model were described in Do et al.(2013a).Therefore,only a short overview is given here.However,the numerical model introduced by Do et al.(2013a)has been improved and some other components of the tunnelling process have been simulated in the present study.It includes the weight of the shield machine and the weight of the back-up train behind the shield machine.The tunnel construction process is modelled using a step-by-step approach.Each excavation step corresponds to an advance-ment of the tunnel face of 1.5m,which is equal to the width of a lining ring.A schematic view of the present model is provided in Fig.1.Face pressure has been estimated depending on the horizontal stress induced in the ground in front of the tunnel face (Mollon et al.,2013).This face pressure has been modelled by applying a pressure distribution to the excavation face using a trapezoidal profile in order to account for the slurry density.Owing a slight overcutting,a possible slurry migration could occur over a short distance behind the cutting wheel.Therefore,in addition to the pressure acting on the tunnel face,a pressure,caused by the slurry solution,has also been applied to the cylindrical surface just be-hind the tunnel face.The shield machine has been simulated using ‘‘fictive’’shield introduced by Mollon et al.(2013),Dias et al.(2000)and Jenck and Dias (2004).The geometrical parameters of the shield are presented in Fig.1.The self-weight of the shield is simulated through the vertical loads acting on the grid points of the ground mesh at the tunnel bottom region over an assumed range of 90°in the cross-section and over the whole shield length,as can be seen in Figs.1and 2.In this study,a shield weight value of 6000kN,which refers to a tunnel diameter of 9.4m (JSCE,1996),has been adopted.The distribution of the jacking force has been assumed to be lin-ear over the height of the tunnel.The jacking forces were set on each segment,considering three plates located at 1/6,1/2,and 5/6of the segment length.A total jacking force of about 40MN was adopted in the present model on the basis of the theoretical method proposed by Rijke (2006).The grouting action is modelled in two phases:(1)the liquid state (state 1)represented by a certain pressure acting on theground surface and on the tunnel lining;(2)the solid state (state 2).The distributional radial pressure has been used to simulate this kind of pressure.The grouting pressure has been estimated depending on the ground overburden pressure at the crown of each tunnel (Mollon et al.,2013).The grout was simulated by adopting a uniform pressure which was applied to both the cylin-drical surface of the excavated ground and the external surface of the tunnel lining.As for the face pressure,the annular void be-tween the outside surface of the shield and the excavated ground made the migration of some grout towards the shield possible.This migration was simulated by means of a triangular pressure over the length of one ring (1.5m).The grout was assumed to harden beyond this length and was simulated by means of volume ele-ments with perfect elastic behaviour,and with the elastic charac-teristics E grout =10MPa and m grout =0.22(Mollon et al.,2013).In the present model,the tunnel segments have been modelled using a linear-elastic embedded liner element.The segment joints have been simulated using double node connections.The stiffness characteristics of the joint connection have been represented by a set composed of a rotational spring (K h ),an axial spring (K A )and a radial spring (K R )(Do et al.,2013a,2013b ).In the same way as for the segment joint,the ring joint has also been simulated using double connections.In this study,the rigidity characteristics of the ring joint connection have been represented by a set composed of a rotational spring (K h R ),an axial spring (K AR )and a radial spring (K RR ).The interaction mechanism of each spring is the same as that applied for a segment joint.Once the TBM back-up train enters the excavated tunnels dur-ing the excavation process,it is necessary to take its self-weight into consideration.In a study performed by Lambrughi et al.F a c e p r e s s u r eShieldCutting wheelSegmental liningFresh groutHardened groutGrouting pressure Jacking force1.5m 1.5m7.5m1.5m1.5m1.5cm2.5cm 12.5cm9.1mShield weightBack-up train weightyout of the proposed TBM model (not scaled).42N.-A.Do et al./Tunnelling and Underground Space Technology 42(2014)40–51(2012),this weight was simulated by artificially increasing the density value of the concrete lining.Kasper and Meschke(2004, 2006)instead modelled the back-up train using an assumed load-ing scheme along the tunnel axis.In the present study,a total weight of3980kN for the back-up train has been simulated through the distribution loads which act on the lining elements at the tunnel bottom region over an assumed angle of90°in the cross-section and over a tunnel length of72m behind the shield tail(Kasper and Meschke,2004)(see Fig.1).2.2.Simulation procedure of mechanized twin tunnelsThe twin tunnel excavation sequence was modelled as follows: (i)excavation of thefirst tunnel(left);(ii)excavation of the second tunnel(right)with a lagged distance L F behind the face of thefirst tunnel.The plan view and typical cross section of the twin tunnel excavation procedure is illustrated in Figs.3and4.In this work,two different lagged distances(i.e.,L F=0D and 10D)that correspond to L F=0and7.875L S,in which L S is the shield length(L S=12m in the present model),between the tunnel on the left and the one on the right have been adopted and analysed.The case of L F=0D corresponds to the situation in which two tunnel faces are excavated simultaneously in parallel.The case of L F=10D means that the second(new)tunnel is excavated when the lining structure behaviour and ground displacement caused by thefirst(existing)tunnel excavation appear to have reached a steady state.The latter case usually occurs in reality.The twin tun-nels in the Bologna–Florence railway line project presented in this paper is a typical example.In fact,the distance between the two tunnels in the Bologna–Florence railway line project is15m (Croce,2011).However,in order to highlight the influence of the excavation process of a new tunnel on an existing tunnel,a dis-tance from centre to centre of11.75m(1.25D)has been adopted in this study.A full model of the twin tunnels considering a height of60m and a width of131.75m has been adopted.The mesh length of the model is equal to120m.The nodes at all the sides of the model werefixed in the horizontal directions on the x–z and y–z planes (i.e.y=0,y=120,x=À71.75and x=60),while the nodes at the base of the model(z=À40)werefixed in the vertical(z)direction. The perspective view of the developed numerical model,which is composed of around1,100,000grid points and900,000zones,is presented in Fig.5.The positions of the segment joints in each ring are presented in Table1.Finally,it should be mentioned that the average time nec-essary for one calculation is approximately340h when a2.67GHz core i7CPU ram24G computer is used.3.Numerical results and discussionIn order to understand the behaviour of twin tunnels during the excavation process of the new tunnel(right),this section presents variations in the structural lining forces induced in the existingMeasured ring (30) First tunnel (left)Second tunnel (right)Tunnel faceY MSTunnelling directionyx ShieldSegmental lining BL FL SL S ShieldFig.3.Plan view of the twin tunnels(not scaled).Fig.5.Perspective view of the developed numerical model introduced into FLAC3D.N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–5143the ground displacement duringstructural forces in the newbeen extracted at the sectionwhich hereafter is called the measured negligible at this section.In Figs.7–9,11and13,and Table2,the Y MS value presents the distance from the new tunnel face(right) to the measured section.In Figs.10,12and14,and Table3,the Y FT value presents the distance from the faces of the two tunnels, which are excavated simultaneously,to the measured section.In Tables2–4,the R values present the ratios between the results ob-tained in the case of twin tunnels with L F=0D or10D and the cor-responding one obtained in the case of a single tunnel.The influence of the tunnel length advancement on the mea-sured lining ring(ring30)has been evaluated for a single tunnel, which corresponds to the tunnel construction on the left before interacting with the tunnel on the right,considering the instanta-neous variation in structural forces between two successive steps (Do et al.,2013a).The numerical results show that the instanta-neous variation in the structural force induced in the measured lin-ing ring between two excavation steps,which correspond to the installation of rings54and55,is approximately zero.This means that the structural forces determined at this excavation step canRing 1Ring 2Fig.6.Considered lining models.Table1Location of the segment joints in a ring h(degree)(measured counter clockwise fromthe right spring line)(see Fig.6).Joint location0;60;120;30;90;Fig.7.Surface settlements above the twin tunnels.44N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–51Fig.7a shows the development of the surface settlement trough in the transverse section during the face advancement of the new tunnel on the right in the case of L F =10D.This figure shows that the twin tunnels cause an increase in the surface settlement.This could be explained by the accumulated loss of the ground in both two tunnels.In the considered case,the maximum settlementmeasured above the twin tunnels is 47.4%higher than that devel-oped above a single tunnel.In addition,the settlement profile is asymmetric.This means that the maximum settlement is not located over the mid-point between the two tunnels.During the new tunnel advancement (right),the settlement trough shifts gradually from the left to the right.An asymmetric profile of the settlement trough has also been observed through field measure-ments obtained at shield tunnelling sites (Suwansawat and Einstein,2007;Chen et al.,2011),analytical results using the superposition technique (Suwansawat and Einstein,2007)and laboratory model tests (Chapman et al.,2006;2007).Fig.7b shows that the two settlement troughs caused by the construction of the tunnels on the left and right have a similar shape.The settlement trough above the new tunnel (right)is deter-mined on the basic of the final settlement trough of the twin tun-nels minus the one developed above the existing tunnel (left)before it interacts with the new tunnel.However,the settlement trough caused by the excavation of the new tunnel is shallower and wider than the one caused by the existing tunnel.These con-clusions are in good agreement with field observations made by Chen et al.(2011),and He et al.(2012)during the excavation of twin tunnels through respectively silty and sandy soil.The volume loss ratios,determined at the final state as the ratio of settlement trough area developed on the ground surface to the cross-section area of the tunnel,of the existing tunnel and new tunnel are sim-ilar and equal to about 0.92%and 0.79%,respectively,and the total volume loss above the twin tunnels is equal to 1.71%.Above result are however different from the laboratory results obtained from the work of Chapman et al.(2007)conducted in clay.Their work showed a greater settlement above the second tunnel.This differ-ence could be attributed to the influence of the soil type or due to the undrained behaviour of soils.Fig.7b also presents a comparison of the final settlement troughs for the different construction procedures (L F =0D and 10D).The maximum settlement above the twin tunnels of about 43.8mm (0.47%D)(Table 4)and the volume loss ratio of 1.81%are observed in the L F =0D case.These results are 109%and 106%higher than the corresponding ones for the L F =10D case.However,the widths of the settlement troughs are similar in both cases.InFig.8.Horizontal displacements between the twin tunnels,for the L F =10D case.Fig.9.Normal displacement in measured lining ring 30of the existing (left)tunnel,for the L F =10D case.displacement in measured lining ring 30of the tunnel case.Space Technology 42(2014)40–5145addition,as expected for the L F=0D case,the settlement troughs that develop during tunnel face advancement are always symmet-rical over the two tunnels.3.2.Horizontal ground displacementThe variations in the horizontal displacement along the PC axis, which is located at the centreline of the two tunnels,during the advancement of the single tunnel on the left are shown in Fig.8a.First,the soil mass between the tunnel crown and the in-vert moves outwards due to the thrust effects of the face pressure in the working chamber.Then,the ground moves toward the tun-nel,due to the convergence displacement over the length of shield. The ground again moves outward at the shield tail,due to the ac-tion of the grouting pressure.These outward movements continue until the steady state is reached because of the grout consolidation and the low value of lateral earth pressure factor(K0=0.5).The maximum horizontal displacement is about6.0mm(0.064%D)at the ground surface.Fig.8b presents the effect of the advancement of the new tunnel on the right on the lateral displacement of the ground between the two tunnels.When the face of the new tunnel approaches theNormal force and longitudinal force of the existing(left)tunnel lining during the advancement of the new(right)tunnel,for force and longitudinal force of the tunnel lining on the left during the simultaneous advancement of the double tunnel faces, 46N.-A.Do et al./Tunnelling and Underground Space Technology42(2014)40–51measured section,a soil mass movement towards the new tunnel caused by the convergence displacement along the length of the shield of the new tunnel is observed.These movements,whichreach a peak value towards the new tunnel,correspond to the mo-ment in which the shield tail of the new tunnel passes over the measured section (see line Y MS =1.3D from the measured section in Fig.8b).When the shield in the new tunnel passes over the mea-sured section,a ground movement towards the existing tunnel on the left can be observed due to the action of the grouting pressure,the grout consolidation,and the low lateral earth pressure factor value (K 0=0.5).The horizontal displacements at the measured sec-tion appear to have reached a steady state when the face of the new tunnel passes over the measured section at about 49.5m,which corresponds to an Y MS value of 5.3D.It is necessary to mentioned that,compared to a corresponding 8.05mm (0.86%D)inward movement at the spring line of a single tunnel (see the ‘‘single tunnel on the left’’line in Fig.8b),the twin tunnel construction results in a 42%reduction in lateral movement at the PC axis between the two tunnels.At the final state,the dis-placement of the soil mass zone below the tunnel base is almost zero.On the basis of the above analyses on the surface settlement and lateral displacement,it is reasonable to conclude that,in the region between the two tunnels,the soil mass is subject to more vertical settlements and less horizontal displacements than a sin-gle tunnel.The same conclusion can be found through field obser-vations obtained at a shield tunnelling site (see for example,Chen et al.,2011).For the case of the faces of two tunnels advancing simulta-neously (L F =0D),as expected,the lateral displacements between the two tunnels are equal to zero.Bending moment in measured lining ring 30of the existing 10D case.Table 2Development of the structural forces and deformation in measured ring 30of the existing tunnel (left)and surface settlement during the new tunnel advancement (right)(for the L F =10D case).ParametersSingle tunnel Distance Y MS (m)Tunnel on the right –À1D 0 1.3D 3D 4.5D 5.3D –Max.pos.bending moment (kN m/m)71.982.2162.8348.1343.9347.2348.165.8R M+(%)100.0114.2226.2483.8478.0482.5483.891.5Min.neg.bending moment (kN m/m)À93.8À107.4À279.5À498.1À481.6À481.2À480.6À89.9R M À(%)100.0114.5297.8530.7513.1512.8512.095.8Max.normal force (kN/m)14901598209618591948193119271491R N (%)100.0107.2140.7124.8130.8129.6129.3100.1Max.longitudinal force (kN/m)17451966186117191736180917981667R LN (%)100.0112.7106.698.599.5103.6103.095.5Max.normal displacement (mm) 5.69 6.729.2813.1814.3315.0915.42 5.24R disp+(%)100.0118.2163.1231.8252.0265.3271.292.1Min.normal displacement (mm)À2.78À3.40À5.80À9.86À9.00À8.70À8.65À2.51R disp À(%)100.0122.2208.6354.5323.8312.9310.890.1Max.settlement (mm)À27.4À28.6À31.3À36.4À39.0À39.9À40.3–R set (%)100.0104.4114.5133.0142.6145.9147.4–Table 3Development of the structural forces and deformation in measured ring 30of the tunnel on the left and surface settlement during the simultaneous advancement of twin tunnels (for the L F =0D case).ParametersSingle tunnel Distance Y FT (m)–1.3D2.55D3.8D 5.3D Max.pos.bending moment (kN m/m)71.919.1101.3108.9109.9R M+(%)100.026.5140.8151.3152.7Min.neg.bending moment (kN m/m)À93.8À15.0À85.1À95.6À97.4R M À(%)100.016.090.6101.8103.8Max.normal force (kN/m)14901669171517261730R N (%)100.0112.0115.1115.9116.1Max.longitudinal force (kN/m)17452081165219132057R LN (%)100.0119.294.7109.6117.8Max.normal displacement (mm) 5.69 1.77 6.428.649.39R disp+(%)100.031.2112.9151.9165.1Min.normal displacement (mm)À2.78À0.22À3.34À4.41À4.74R disp À(%)100.08.1120.0158.4170.6Max.settlement (mm)À27.4À33.4À40.4À42.8À43.8R set (%)100121.9147.4156.2159.9N.-A.Do et al./Tunnelling and Underground Space Technology 42(2014)40–5147。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
¾ How to check the safety of lining? Limit state method based on the national code GB50010-2002 is used to check the safety of lining.
(3) Geometric Design of Shield Lining
KθP = 18070 kN ⋅ m / rad (if inside part of lining is tensile) KθN = 32100 kN ⋅ m / rad (if outside part of lining is tensile) Design Method
¾ How to compute member forces? Force method (Part Two) and Elastic equation method (Part Three) are used respectively to calculate member forces.
¾ Lateral resistance pressure
δ =(2 p1 − p3 − p3+4 + πp5 )Rc4 /[24(ηEI + 0.0454KRc4 )]
= (2×420.623-272.918-445.891+π×14.976) ×103×4.554/[24×(0.8 ×3.0×104×106×6.4×10-3+0.0454×60×106×4.554)]
A Design of Shield Tunnel Lining
Part One: Design Data
(1) Function of Tunnel
The planned tunnel is to be used as a subway tunnel.
(2) Design Conditions Dimensions of Segment
(2) Computation of Member Forces
Figure 4 shows the simplified model of the segmental lining.
Figure 4 Simplified model diagram for calculation
¾ Calculation data
Materials
¾ The grade of concrete: C30 Nominal strength: fck=20.1N/mm2 Allowable compressive strength: fc=14.3N/mm2 Allowable tensile strength: ft=1.43N/mm2 Elastic modules: E=3.0×104N/mm2
tan 31°
8.227
8.227
= 24.986m > H = 12.3m
So the designed tunnel is a shallow tunnel.
Load Types and Partial Factors
Table 1 shows the loads should be considered in the design and corresponding partial factors.
The shield lining is fitted with 9 segmental pieces (one Key-type segment, two B-type segments and six other segments) as shown in Figure 1. Central angle of each segment piece is 40 degrees.
¾ Coefficients Calculation
n = n1 + n2 + n3 + n4 = 1 + 1 + 1 + 2 = 5
Note: if the joint just located at 180 degree of the half-ring lining, then its stiffness contribution to the whole structure should be considered as half of the total value.
Water pressure
1.2
Computation of Loads
Computation element is a 1.2 meter (width of segment) part along the longitudinal direction, and Figure 3 shows the load condition to compute member forces of the segmental lining.
¾ Lateral pressure at tunnel crown Earth pressure:
qe1
=
λ(
pe1
+
1.2bγ
'
t) 2
=
0.4× (208.392
+
1.2 × 1.2 ×

0.4 ) 2
=
84.278kN
/
m
Water pressure:
qw1
=
1.2bγ
w
(Hw
+
t 2
)
=
Water pressure:
pw1 = 1.2bγ w H w = 1.2×1.2×10×12.9 = 185.76kN / m
q1 = pe1 + pw1 = 208.392 + 185.76 = 394.152kN / m
q2 = 1.2b × 0.215Rγ = 1.2×1.2× 0.215× 4.75 ×18 = 26.471kN / m
KθP = 18070kN ⋅ m / rad (if inside part of lining is tensile)
KθN = 32100kN ⋅ m / rad (if outside part of lining is tensile)
EI = 3.0×104 ×103 × 6.4×10−3 = 192000kN ⋅ m2
Table 1 Load Types and Partial Factors
Load types Partial factors
Load types
Partial factors
Surcharge
1.4
Earth pressure
1.2
Dead load
1.2
Subgrade reaction
1.2
Figure 3 Load condition of the designed tunnel ¾ Vertical pressure at tunnel crown
Earth pressure:
pe1 = b(1.4P0 + 1.2γ ' H ) = 1.2× (1.4× 39.7 + 1.2×12.3) = 208.392kN / m
K
B1
B2
A1
A6
A2
A5
A3
A4
Figure 1 The cross section of the shield lining
Part Two: Computation by Force Method
(1) Load Conditions Judgment of Tunnel Type (by Terzaghi’s formula)
∑ δ 11
=
Rπ EI
+
n i =1
1 Kθ(i )
=
Rπ EI
+
2.5 KθP
+
2 KθN
=
4.55 × π 192000
= 2.29104×10-3m
pk = kδ ⋅ b = 50 × 103 × 2.29104 × 10−3 × 1.2 = 137.462kN / m
p6 = ph(1 − 2 cos2 ϕ )
π (
≤ϕ


)
4
4
Where
δ = Displacement of lining at tunnel spring η = Reduction factor of model rigidity = 0.8 E = Modulus of elasticity of segment = 3.0×104N/mm2 I = Moment of inertia of area of segment = 1/12×1.2×0.43 = 6.4×10-3m4 k = Coefficient of reaction = 50MN/m3 K = k ⋅ b = 50×1.2 = 60MN / m2 ϕ = the angle measured from the vertical direction around the tunnel
Angle of internal friction of soil: φ =30o
Cohesion of soil: c=0 kN/m2 Coefficient of reaction: k=50MN/m3 Coefficient of lateral earth pressure: λ =0.4 Surcharge: P0=39.7kN/m2 Soil condition: Sandy
φπ
Figure 2 Judgment of tunnel type
B1
=
R0
cot(π 8
相关文档
最新文档