温度传感器实验

合集下载

3-1温度传感器特性实验

3-1温度传感器特性实验
00004v4v电压表44旋动测微头带动悬臂梁向上或向下运动以水平状态输旋动测微头带动悬臂梁向上或向下运动以水平状态输出电压为零起点每次向上或向下移动出电压为零起点每次向上或向下移动5mm5mm观察输出电压观察输出电压值并记入表值并记入表11根据实验当选据计算灵敏度根据实验当选据计算灵敏度kkk制位移与输出电压特性曲线
二、实验接线
电源5V
+
AD590 图1 AD590
-
电阻1K
输出 接T4
0V
图2 管脚图
图3
二、实验接线
+
AD590
-
电阻1K
输出 接T4
0V 图3
二、实验设备
1、实验平台主板
二、实验设备
2、温度测量模块
AD590集成温度传感器模块
实验平台主板
二、实验设备
1、实验平台主板
二、实验设备
1、实验平台主板
15V电源 开关 + 0.0 0 0 电压表
IN
调零
增益
实验步骤
2、调悬臂梁水平。测微头装于悬臂梁前端的永久 磁钢上,并调节使应变梁处于水平状态。然后按图 2接线,连接成单臂桥测试量电路。直流激励电源 为±4V,R4用电阻应变片代替。
+4V
R1
R

+
差放
电压表
Wb R2
全桥电路
ቤተ መጻሕፍቲ ባይዱ
V
+
R3
-4V
图2
图5 传感器特性实验集成环境
图6 称重传感器制作集成环境
二、实验设备
1、实验平台主板
图5 传感器特性实验集成环境
图6 称重传感器制作集成环境

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。

二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。

根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。

本实验中,我们将使用热电偶温度传感器进行实验。

热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。

热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。

当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。

三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。

(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(4)重复步骤(3),直至记录下不同温度下的数据。

(5)将实验数据整理成表格,并进行数据分析。

四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。

将所有热电势差值进行平均,得到平均热电势差值ΔTave。

根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。

其中,Tref为参考温度值,本实验中取为25℃。

根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。

同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。

五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告温度传感器特性研究实验报告一、实验目的本实验旨在研究温度传感器的特性,包括其灵敏度、线性度、迟滞性以及重复性等,通过对实验数据的分析,以期提高温度传感器的性能并为相关应用提供理论支持。

二、实验原理温度传感器是一种将温度变化转化为电信号的装置,其特性受到材料、结构及环境因素的影响。

本次实验将重点研究以下特性:1.灵敏度:温度传感器对温度变化的响应程度;2.线性度:温度传感器输出信号与温度变化之间的线性关系;3.迟滞性:温度传感器在升温与降温过程中,输出信号与输入温度变化之间的关系;4.重复性:温度传感器在多次重复测量同一温度时,输出信号的稳定性。

三、实验步骤1.准备材料与设备:包括温度传感器、恒温水槽、加热装置、数据采集器、测温仪等;2.将温度传感器置于恒温水槽中,连接数据采集器与测温仪;3.对温度传感器进行升温、降温操作,并记录每个过程中的输出信号;4.在不同温度下重复上述操作,收集足够的数据;5.对实验数据进行整理与分析。

四、实验结果及数据分析1.灵敏度:通过对比不同温度下的输出信号,发现随着温度的升高,输出信号逐渐增大,灵敏度整体呈上升趋势。

这表明该温度传感器具有良好的线性关系。

2.线性度:通过对实验数据的线性拟合,得到输出信号与温度之间的线性关系式。

结果表明,在实验温度范围内,输出信号与温度变化之间具有较好的线性关系。

3.迟滞性:在升温与降温过程中,发现输出信号的变化存在一定的差异。

升温过程中,输出信号随着温度的升高而逐渐增大;而在降温过程中,输出信号却不能完全恢复到初始值。

这表明该温度传感器具有一定的迟滞性。

4.重复性:通过对同一温度下的多次测量,发现输出信号具有良好的重复性。

这表明该温度传感器在重复测量同一温度时具有较高的稳定性。

五、结论与建议本次实验研究了温度传感器的特性,发现该传感器具有良好的灵敏度和线性度,但在降温过程中存在一定的迟滞性。

此外,该温度传感器具有良好的重复性。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告一、实验目的。

本实验旨在通过使用温度传感器,对不同温度下的电压信号进行测量和分析,从而掌握温度传感器的工作原理和特性,提高实验操作和数据处理能力。

二、实验仪器与设备。

1. Arduino开发板。

2. LM35温度传感器。

3. 连接线。

4. 电脑。

5. 串口数据线。

三、实验原理。

LM35是一种精密温度传感器,其输出电压与摄氏温度成线性关系。

在本实验中,我们将使用LM35温度传感器测量不同温度下的输出电压,并通过Arduino开发板将数据传输至电脑进行分析处理。

四、实验步骤。

1. 将LM35温度传感器与Arduino开发板连接,将传感器的输出端(中间脚)连接到Arduino的模拟输入引脚A0,将传感器的VCC端连接到Arduino的5V电源引脚,将传感器的地端连接到Arduino的地引脚。

2. 编写Arduino程序,通过模拟输入引脚A0读取LM35传感器的输出电压,并将其转换为摄氏温度值。

3. 将Arduino开发板通过串口数据线与电脑连接,将温度数据传输至电脑端。

4. 在电脑上使用串口通讯软件监测并记录温度数据。

5. 将LM35传感器分别置于不同温度环境下(如冰水混合物、常温水、温水等),记录并分析传感器输出的电压和对应的温度数值。

五、实验数据与分析。

通过实验测得的数据,我们可以绘制出LM35温度传感器的电压输出与温度之间的线性关系图。

通过分析图表数据,可以得出传感器的灵敏度、稳定性和线性度等特性参数。

六、实验结论。

通过本次实验,我们深入了解了LM35温度传感器的工作原理和特性,掌握了使用Arduino开发板对传感器输出进行数据采集和分析的方法。

同时,我们也了解到了温度传感器在不同温度环境下的表现,为今后的工程应用提供了重要参考。

七、实验总结。

温度传感器是一种常用的传感器元件,具有广泛的应用前景。

通过本次实验,我们不仅学会了对温度传感器进行实验操作,还掌握了数据采集和分析的方法,为今后的实验和工程应用打下了坚实的基础。

温度传感器测温实验

温度传感器测温实验

温度传感器实验A 温度源的温度控制调节实验一、实验目的了解温度控制的基本原理及熟悉温度源的温度调节过程,为以后实验打下基础。

二、基本原理当温度源的温度发生变化时温度源中的Pt100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻——电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。

温度控制原理框图如图3-1所示。

图3-1温度控制原理框图三、需用器件、单元与软件:主机箱、温度源、Pt100温度传感器、温度控制仪器软件。

1.主机箱提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V(连续可调)直流稳压电源;直流恒流源0.6mA~20mA可调;音频信号源(音频振荡器)1KHz~10KHz (连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0~20KPa(可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。

其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。

2.温度源温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24V DC,它的电源引线与外壳正面实验插孔相连。

温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24V DC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器Pt100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。

使用时将电源开关打开(O为关,-为开)。

温度传感实验报告

温度传感实验报告

一、实验目的1. 了解温度传感器的基本原理和种类。

2. 掌握温度传感器的测量方法及其应用。

3. 分析不同温度传感器的性能特点。

4. 通过实验验证温度传感器的测量精度和可靠性。

二、实验器材1. 温度传感器实验模块2. 热电偶(K型、E型)3. CSY2001B型传感器系统综合实验台(以下简称主机)4. 温控电加热炉5. 连接电缆6. 万用表:VC9804A,附表笔及测温探头7. 万用表:VC9806,附表笔三、实验原理1. 热电偶测温原理热电偶是由两种不同金属丝熔接而成的闭合回路。

当热电偶两端处于不同温度时,回路中会产生一定的电流,这表明电路中有电势产生,即热电势。

热电势与热端和冷端的温度有关,通过测量热电势,可以确定热端的温度。

2. 热电偶标定以K型热电偶作为标准热电偶来校准E型热电偶。

被校热电偶的热电势与标准热电偶热电势的误差可以通过以下公式计算:\[ \Delta E = \frac{E_{\text{标}} - E_{\text{校}}}{E_{\text{标}}}\times 100\% \]其中,\( E_{\text{标}} \) 为标准热电偶的热电势,\( E_{\text{校}} \) 为被校热电偶的热电势。

3. 热电偶冷端补偿热电偶冷端温度不为0,因此需要通过冷端补偿来减小误差。

冷端补偿可以通过测量冷端温度,然后通过计算得到补偿后的热电势。

4. 铂热电阻铂热电阻是一种具有较高稳定性和准确性的温度传感器。

其电阻值与温度呈线性关系,常用于精密温度测量。

四、实验内容1. 热电偶测温实验将K型热电偶和E型热电偶分别连接到实验台上,通过调节加热炉的温度,观察并记录热电偶的热电势值。

同时,使用万用表测量加热炉的实际温度,分析热电偶的测量精度。

2. 热电偶标定实验以K型热电偶为标准热电偶,对E型热电偶进行标定。

记录标定数据,计算误差。

3. 铂热电阻测温实验将铂热电阻连接到实验台上,通过调节加热炉的温度,观察并记录铂热电阻的电阻值。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。

二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。

2. 使用Arduino软件编写读取温度传感器数据的程序。

3. 通过串口监视器读取传感器采集到的温度数据。

4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。

四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。

五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。

在不同环境温
度下,传感器能够稳定地输出准确的温度数据。

六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。

温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。

通过本次实验,我们对温度传感器的性能
有了更深入的了解。

七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。

实验3 温度传感器特性实验

实验3  温度传感器特性实验

实验3 温度传感器特性实验【实验目的】1、研究Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。

2、研究比较不同温度传感器的温度特性及其测温原理。

3、掌握单臂电桥及非平衡电桥的原理,及其应用。

4.研究热电偶的温差电动势。

5.、学习热电偶测温的原理及其方法。

【实验仪器】九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。

【实验原理】1、Pt100铂电阻的测温原理金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。

铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。

2、Cu50铜电阻温度特性原理铜电阻是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。

铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。

3.热电偶测温原理热电偶亦称温差电偶,是由A、B两种不同材料的金属丝的端点彼此紧密接触而组成的。

当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称为温差电动势或热电动势。

当组成热电偶的材料一定时,温差电动势Ex仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式:EX ≈α( t-t) (1)式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。

t为工作端的温度,t为冷端的温度。

为了测量温差电动势,就需要在图中的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差t-t0下应有的电动势EX值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二(2)温度传感器实验
实验时间 实验编号 无 同组同学 邓奡
一、实验目的
1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理;
2、掌握热电偶的冷端补偿原理;
3、掌握热电偶的标定过程;
4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。

二、实验原理
1、热电偶测温原理
由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。

图所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为
)()(0T E T E E AB AB t -=。

热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即:
实际电动势+测量所得电动势+温度修正电势
对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热电偶。

2、铂热电阻
铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0︒≤≤︒时,
)1(20BT AT R R T ++=,
式中:T R ——铂热电阻在T ℃时的电阻值
0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ︒⨯/103.96847-31) B ——系数(=C ︒⨯/105.847--71)
3、PN 结温敏二极管
半导体PN 结具有良好的温度线性,PN 结特性表达公式为:
γln be e
kT
U =
∆, 式中,γ为与PN 结结构相关的常数;
k 为波尔兹曼常数,K J /1038.1k 23-⨯=; e 为电子电荷量,C 1910602.1e -⨯=; T 为被测物体的热力学温度(K )。

当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。

4、热敏电阻
热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件,灵敏度高,可以测量小于℃的温差变化。

热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。

实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:
)11(00
e
T T B t R R -=。

式中:
T 为被测温度(K),16.273t +=T
0T 为参考温度(K),16.27300+=t T
T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值
B为热敏电阻的材料常数,由实验获得,一般为2000~6000K
5、集成温度传感器
用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K氏-摄氏转换电路直接得到摄氏温度值。

三、实验过程与结果
1、热电偶标定实验步骤如下:
2、铂热电阻测量实验步骤如下:
3、PN结温敏二极管测量实验步骤如下:
4、半导体热敏电阻测量实验步骤如下:
5、集成温度传感器测量实验步骤如下:
表1如下所示:
给定温度/℃405060708090100冷端温度/℃22222020212120 K型温度热电势/mV
冷端补偿电势/mV
实际电动势/mV
测量温度/℃41495966778798 E型温度热电势/mV
冷端补偿电势/mV
实际电动势/mV
误差/℃6454557测量温度/℃35455462728291铂热电阻输出电压/mV216270312 PN结温敏二极管输出电压/V
半导体热敏电阻输出电压/V
集成温度传感器输出电压/V
四、结果分析与实验结论
1、根据数据分别绘制K 型热电偶和E 型热电偶温度与热电势的关系曲线
2、将K 型热电偶作为标准热电偶,计算被测E 型热电偶的误差
5.147
7
554546=++++++=
平均误差
3、做出铂热电阻的电压-温度曲线,观察其工作线性范围
4、做出PN 结温敏二极管的电压-温度曲线,求出灵敏度t
∆∆=
V
S
0.004540
-1000.814
-1.084t ==∆∆=
V S 5、做出半导体热敏电阻的电压-温度曲线
6、做出集成温度传感器的电压-温度曲线
热电偶测温时,理论上任何两种不同的金属都可以配成热电偶,当选用不同的材料时,测温的范围、灵敏度、精度、线性度、重复性都会不同。

一般情况下,热电偶测温的范围比较大,精度和线性度比较高,重复性和灵敏度也很好。

铂热电阻测温范围比较广,1200℃以下都可以,因为系数B先对于A很小可以被忽略,所以线性度重复性很好,因为有确定的测温公式,所以灵敏度和精度可以得到很好的保证。

PN结温敏二极管以PN结的温度特性为理论基础,具有很好的线性度,精度,重复性,测量范围可以达到很大。

半导体热敏电阻是利用半导体材料的电阻率随温度变化的性质而制成的温度敏感元件,测量范围相对较小,线性度和可重复性较差,但是灵敏度和精度很好。

集成温度传感器的最大优点在于小型化、使用方便、成本低廉,典型的测量范围-50℃~150℃,测量精度和灵敏度都很好,线性度在测温范围内很高,重复性也很好。

五、收获、体会与建议
通过做各种温度测量仪器的实验,一次性加深了对不同测温原理的理解,通过对比不同测温手段,可以清楚地看到它们之间彼此的优缺点。

但是在做实验时,由于温度不好控制,往往做实验的实际温度并不是需要设定的数值,所以得到的结果和理想结果有一定的差别,但是在总体上不影响对实验结果的判断。

相关文档
最新文档