2018学年成都市七年级下册数学期末试题7

合集下载

2018-2019学年度七年级下学期期末试卷数学试题卷

2018-2019学年度七年级下学期期末试卷数学试题卷

2018-2019学年度七年级下学期期末试卷数学试题卷一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算正确的是()A.a2+a2=2a4B.3a3﹣a=2a2C.﹣a3•2a4=﹣2a12 D.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直4.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm5.如图,AD和BE是△ABC的两条中线,设△ABD的面积为S1,△BCE的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D.不能确定6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C二.填空题(本大题共6小题,每小题3分,共18分)7.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.8.若x2+mx+16是完全平方式,则m的值是.9.如图,直线AB、CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=131°,则∠EOC=°.10.过去的一年里中国的精准脱贫推进有力,农村贫困人口减少1386万.其中数据13860000用科学记数法表示为.11.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.12.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②D是AC的中点;③AD=BD=BC;④△BDC的周长等于AB+BC,其中正确的序号是三.(本大题共5小题,每小题6分,共30分)13.(1)|﹣3|+(﹣1)2013×(π﹣3)0﹣(﹣)﹣3(2)a3•a3+(2a3)2+(﹣a2)3.14.先化简再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.15.如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.试说明:DE∥AC.16.如图是7×6的正方形网格,点A、B、C在格点上,在图中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(三个图形各不相同).17.一个不透明袋中有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍.已知从袋中摸出一个球是红球的概率为.(1)求绿球的个数;(2)若从袋中拿出4个黄球,求从袋中随机摸出一个球是黄球的概率.四.(本大题共3小题,每小题8分,共24分)18.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车邮箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠C>∠B,试探求∠DAE、∠B、∠C之间的数量关系.20.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由;(2)求∠3的度数.五.(本大题共2小题,每小题9分,共18分)21.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.22.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)试说明:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.六.(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.2018-2019学年度七年级下学期期末试卷数学试题卷参考答案与试题解析一.选择题(共6小题)1.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.【解答】解:(A)原式=2a2,故A错误;(B)原式=3a3﹣a,故B错误;(C)原式=﹣2a7,故C错误;故选:D.3.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.4.【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.5.【解答】解:如图,∵AD和BE是△ABC的两条中线,∴△ABD面积=△ACD面积,△BCE面积=△ABE面积,即S1+S4=S2+S3①,S2+S4=S1+S3②,①﹣②得:S1﹣S2=S2﹣S1,∴S1=S2.故选:B.6.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.二.填空题(共6小题)7.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.8.【解答】解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.9.【解答】解:∵∠AOD=131°,∴∠COB=131°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=131°﹣90°=41°,故答案为:41.10.【解答】解:数据1386 0000用科学记数法表示为1.386×107.故答案为:1.386×107.11.【解答】解:(2a+b)×(3a+2b)=6a2+7ab+2b2,则需要C类卡片7张.故答案为:7.12.【解答】解:∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠CBD=∠ABD=36°,即BD平分∠ABC;故①正确;∴∠BDC=∠C=72°,∴BC=BD,∴BC=BD=AD,故③正确;∴△BDC的周长为:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故④正确;∵CD<BD,∴CD<AD,∴D不是AC中点.故②错误.故答案为:①③④三.解答题(共11小题)13.【解答】解:(1)原式=3+(﹣1)×1﹣(﹣2)3=3﹣1+8=10;(2)原式=a6+4a6﹣a6,=4a6.14.【解答】解:原式=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=1时,原式=3﹣1=2.15.【解答】证明:∵∠BDE=60°,∠ADC=70°.∴∠CDE=180°﹣60°﹣70°=50°,∵∠C=50°,∴∠C=∠CDE,∴AC∥DE.16.【解答】解:如图所示,点D即为所求.17.【解答】解:(1)∵从袋中摸出一个球是红球的概率为,∴红球的个数是:36×=12(个),设绿球的个数为x个,根据题意得:x+2x=36﹣12=24,解得:x=8,答:绿球的个数是8个;(2)根据题意得:黄球的个数是:2×8﹣4=12(个),则从袋中随机摸出一个球是黄球的概率为:=.18.【解答】解:(3)由(2)可知:Q=100﹣6t故答案为:(1)t;Q(2)100;619.【解答】解:(1)∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°;(2)∠DAE=(∠C﹣∠B),如图:∠BAC=180°﹣∠B﹣∠C,∵AE是∠BAC平分线,∴∠EAC=(180°﹣∠B﹣∠C),又∵Rt△ACD中,∠DAC=90°﹣∠C,∴∠DAE=∠EAC﹣∠DAC=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B).20.【解答】解:(1)结论:BF∥CD.理由如下:在三角形ABC中,∠B+∠1+∠2=180°,∴42°+∠2+∠2+10°=180°,∴∠2=64°,又∵∠ACD=64°,∴∠2=∠ACD,∴BF∥CD.(2)∵∠ACD=64°,CE平分∠ACD,∴∠DCE=×64°=32°,由(1)知BF∥CD,∴∠3=180°﹣∠DCE=148°.21.【解答】解:(1)2、2.(2)23.(3)∵a2﹣3a+1=0两边同除a得:a﹣3+=0,移向得:a+=3,∴a2+=(a+)2﹣2=7.22.【解答】(1)证明:∵△ACB和△DCE都是等腰直角三角形,∴CD=CE,CA=CB,∵∠ACB=90°,∠DCE=90°,∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:∵△ACD≌△BCE,∴AD=BE,∵DB=AB=3cm,∴BE=2×3cm=6cm;(3)解:BE与AD垂直.理由如下:∵△ACD≌△BCE,∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.23.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。

2018年人教版七年级数学下《第8章二元一次方程组》知识清单含例题+期末专题复习试卷(含答案)

2018年人教版七年级数学下《第8章二元一次方程组》知识清单含例题+期末专题复习试卷(含答案)

七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。

2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有未知数,含有每个未知数的都是,并且一共有方程。

3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有个解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解。

5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式。

②,将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。

③,把求得的x值代入y=ax+b中求出y的值。

④,把x、y的值用“{”联立起来。

6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。

②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。

③解这个一元一次方程,求得一个未煮熟的值。

2018-2019学年四川省成都市武侯区七年级(下)期末数学试卷[附答案]

2018-2019学年四川省成都市武侯区七年级(下)期末数学试卷[附答案]

2018-2019学年四川省成都市武侯区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符题目要求,答案涂在答题卡上)1.(3分)下列运算正确的是()A.a3+a2=a5B.(a2)3=a5C.x6÷x2=x4D.(3a)2=6a2 2.(3分)图书馆的标志浓缩了图书馆的文化,下列图书馆标志中,是轴对称图形的是()A.武侯区图书馆B.四川省图书馆C.四川大学图书馆D.中国国家图书馆3.(3分)2019年1月,中国西北农林科技大学科学家发现了世界首例病毒中的朊病毒,这一发现为老年痴呆症的防治带来了曙光,朊病毒约有0.000000035米,数据0.000000035用科学记数法表示为()A.35×10﹣9B.3.5×10﹣9C.3.5×10﹣8D.﹣3.5×108 4.(3分)将一个内角为30°的三角板按如图所示放置,已知直线l1∥l2,∠1=80°,则∠2的度数为()A.20°B.23°C.25°D.30°5.(3分)下列乘法公式运用正确的是()A.(a+b)(b﹣a)=a2﹣b2B.(﹣m+1)(﹣m﹣1)=m2﹣1C.(2x﹣1)2=2x2+4x﹣1D.(a+1)2=a2+16.(3分)如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE7.(3分)下列说法正确的是()A.面积相等的两个三角形全等B.两条直线被第三条直线所截同位角相等C.抛一枚硬币正面朝上的概率是,则表示每抛硬币2次就有1次出现正面朝上D.直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离8.(3分)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,△ABC 的周长为20cm,边AB的长为7cm,则△BCD的周长为()A.12cm B.13cm C.26cm D.27cm9.(3分)小刚从家出发徒步到同学家取自行车,在同学家逗留几分钟后骑车原路返回,设他从家出发后所用的时间为t分,离家的路程为s米,则s与t之间的关系大致可以用图象表示为()A.B.C.D.10.(3分)如图,现有若干个边长相等的小等边三角形组成的图形,其中已经涂黑了3个小三角形(阴影部分表示),在空白的三角形中只涂黑一个小三角形,使整个图案成轴对称图形的概率是()A.B.C.D.二、填空题(本大题共5个小题,每小题3分,共15分,答案写在答题卡上)11.(3分)已知x﹣y=3,则2x÷2y=.12.(3分)如图,∠1+∠2=300°,则∠3=度.13.(3分)成都某街道路口南北方向红绿灯的设置时间为:红灯15s,绿灯30s,黄灯3s.小刚的爸爸随机地由南往北开车经过该路口时遇到绿灯的概率是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,DE∥BC,点P为线段BD上任意一点,PM⊥BE于点M,PN⊥DE于点N,CD=4.8,则PM+PN=.15.(3分)如图,△ABC为等边三角形,AD=AC,则∠BDC=度.三、解答题(本大题共6个题,共55分,解答过程写在答题卡上)16.(10分)(1)计算:(﹣1)4﹣()﹣2+|﹣9|×(π﹣3.14)0.(2)计算:(﹣ab2)2﹣2b•a2b3.17.(12分)先化简,再求值.(1)(a2b﹣2ab2)÷b﹣(a+b)(a﹣b),其中a=2,b=﹣1.(2)已知2a+b﹣3=0,求代数式a(a﹣b+1)+(a+1)(b+1)﹣a2的值.18.(7分)如图,在△ABC中,AB=AC,D是AB边的中点,E是AC边上一点,过点B 作BF∥AC,交ED的延长线于点F,若AD=6,BF=9,求CE的长.19.(8分)四川省正在打造“世界最长城市中轴线”天府大道北延线德阳段,现甲乙两工程队共同承包德阳段中A,B两地之间的道路,两队分别从A,B两地相向修建.已知甲队先施工3天,乙队才开始施工,乙队施工几天后因另有紧急任务暂停施工,因考虑工期,由甲队以原速的2倍修建,乙队完成紧急任务后又以原速恢复施工,直到道路修通.甲,乙两队各自修路长度与时间之间的关系如图所示,请结合图中信息解答下列问题:(1)试问:在施工的过程中,甲队在提速前每天修道路多少米?(2)求乙队中途暂停施工的天数;(3)求A,B两地之间的道路长度.20.(8分)学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A型卡片,6张C型卡片,则应取张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是(请用含a,b的代数式表示);(2)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为;(3)选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S1﹣S2,且S为定值,则a与b有什么关系?请说明理由.21.(10分)如图1,在正方形ABCD中,∠GAH=45°,∠GAH的两边分别与线段BC,CD相交于E,F(点E不与B,C重合;点F不与C,D重合).(1)填空:线段BE,EF,DF的数量关系是;(2)如图2,点P是EF的中点,连接AP,作点E关于直线AB的对称点E',作点F关于直线AD的对称点F′,连接E′F′,求证:E′F′=2AP;(3)如图3,若E,F是BC,CD上的定点,利用(1),(2)的结论探究:当AP=m,BE+DF=n时,在线段AB,AD上是否分别存在M,N,使四边形MEFN的周长有最小值,若存在,请求出最小值;若不存在,请说明理由.(用m,n的代数式表示)参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符题目要求,答案涂在答题卡上)1.(3分)下列运算正确的是()A.a3+a2=a5B.(a2)3=a5C.x6÷x2=x4D.(3a)2=6a2答案解:A.a3与a2不是同类项,所以不能合并,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.x6÷x2=x4,正确;D.(3a)2=9a2,故本选项不合题意.故选:C.2.(3分)图书馆的标志浓缩了图书馆的文化,下列图书馆标志中,是轴对称图形的是()A.武侯区图书馆B.四川省图书馆C.四川大学图书馆D.中国国家图书馆答案解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.3.(3分)2019年1月,中国西北农林科技大学科学家发现了世界首例病毒中的朊病毒,这一发现为老年痴呆症的防治带来了曙光,朊病毒约有0.000000035米,数据0.000000035用科学记数法表示为()A.35×10﹣9B.3.5×10﹣9C.3.5×10﹣8D.﹣3.5×108答案解:0.000000035=3.5×10﹣8.故选:C.4.(3分)将一个内角为30°的三角板按如图所示放置,已知直线l1∥l2,∠1=80°,则∠2的度数为()A.20°B.23°C.25°D.30°答案解:∵11∥l2,∴∠3=180°﹣∠1=100°,∴∠2=180°﹣100°﹣60°=20°.故选:A.5.(3分)下列乘法公式运用正确的是()A.(a+b)(b﹣a)=a2﹣b2B.(﹣m+1)(﹣m﹣1)=m2﹣1C.(2x﹣1)2=2x2+4x﹣1D.(a+1)2=a2+1答案解:A、(a+b)(b﹣a)=b2﹣a2,本选项错误;B、(﹣m+1)(﹣m﹣1)=m2﹣1,本选项正确;C、(2x﹣1)2=4x2﹣4x+1,本选项错误;D、(a+1)2=a2+2a+1,本选项错误,故选:B.6.(3分)如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE答案解:∵AD=CF,∴AC=DF,∵∠F=∠ACB,∴当添加BC=EF时,可根据”SAS“判断△ABC≌△DEF;当添加∠A=∠EDF(或AB∥DE)时,可根据”ASA“判断△ABC≌△DEF;当添加∠B=∠E时,可根据”AAS“判断△ABC≌△DEF.故选:D.7.(3分)下列说法正确的是()A.面积相等的两个三角形全等B.两条直线被第三条直线所截同位角相等C.抛一枚硬币正面朝上的概率是,则表示每抛硬币2次就有1次出现正面朝上D.直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离答案解:A、面积相等的两个三角形不一定全等,故此选项错误;B、两条平行直线被第三条直线所截同位角相等,故此选项错误;C、抛一枚硬币正面朝上的概率是,则表示每抛硬币2次就有1次出现正面朝上,只有实验次数非常多的情况下,频率接近概率,故此选项错误;D、直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,正确.故选:D.8.(3分)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,△ABC 的周长为20cm,边AB的长为7cm,则△BCD的周长为()A.12cm B.13cm C.26cm D.27cm答案解:∵△ABC的周长为20,∴AB+AC+BC=20,∵AB=7,∴AC+BC=13,∵线段AB的垂直平分线与AC相交于点D,∴DA=DB,∴AC=AD+CD=BD+CD,∴△BCD的周长=BD+CD+BC=AC+BC=13(cm),故选:B.9.(3分)小刚从家出发徒步到同学家取自行车,在同学家逗留几分钟后骑车原路返回,设他从家出发后所用的时间为t分,离家的路程为s米,则s与t之间的关系大致可以用图象表示为()A.B.C.D.答案解:小刚取车的整个过程共分三个阶段:①徒步从家到同学家,s随时间t的增大而增大;②在同学家逗留期间,s不变;③骑车返回途中,速度是徒步速度的3倍,比徒步时的直线更陡,离家距离为0;纵观各选项,只有A选项符合.故选:A.10.(3分)如图,现有若干个边长相等的小等边三角形组成的图形,其中已经涂黑了3个小三角形(阴影部分表示),在空白的三角形中只涂黑一个小三角形,使整个图案成轴对称图形的概率是()A.B.C.D.答案解:如图所示:在空白的三角形中只涂黑一个小三角形,使整个图案成轴对称图形的情况有2个,则概率是,故选:B.二、填空题(本大题共5个小题,每小题3分,共15分,答案写在答题卡上)11.(3分)已知x﹣y=3,则2x÷2y=8.答案解:∵x﹣y=3,∴2x÷2y=2x﹣y=23=8.故答案为:812.(3分)如图,∠1+∠2=300°,则∠3=30度.答案解:∵∠1=∠2,∠1+∠2=300°,∴∠1=150°,∴∠3=180°﹣∠1=180°﹣150°=30°,故答案为:30.13.(3分)成都某街道路口南北方向红绿灯的设置时间为:红灯15s,绿灯30s,黄灯3s.小刚的爸爸随机地由南往北开车经过该路口时遇到绿灯的概率是.答案解:∵红灯15s,绿灯30s,黄灯3s,∴遇到绿灯的概率=,故答案为.14.(3分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,DE∥BC,点P为线段BD上任意一点,PM⊥BE于点M,PN⊥DE于点N,CD=4.8,则PM+PN= 4.8.答案解:连接EP.∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EDB,∴EB=ED∵S△EDB=S△EBP+S△EDP,即=+=ED•(PM+PN)∴PM+PN=CD=4.8.故答案为4.8.15.(3分)如图,△ABC为等边三角形,AD=AC,则∠BDC=150度.答案解:∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=∠BAC=60°,设∠DBC=α,∠DCB=β,∴∠ABD=60°+α,∠ACD=60°+β,∵AD=AC,∴AB=AD,∴∠ADB=∠ABD=60°+α,∠ADC=∠ACD=60°+β,∵∠ABD+∠BDC+∠ACD+∠BAC=360°,∴2(60°+α+60°+β)+60°=360°,∴α+β=30°,∴∠DBC+∠DCB=30°,∴∠BDC=180°﹣30°=150°,故答案为:150.三、解答题(本大题共6个题,共55分,解答过程写在答题卡上)16.(10分)(1)计算:(﹣1)4﹣()﹣2+|﹣9|×(π﹣3.14)0.(2)计算:(﹣ab2)2﹣2b•a2b3.答案解:(1)原式=1﹣9+9×1=1;(2)原式=a2b4﹣2a2b4=﹣a2b4.17.(12分)先化简,再求值.(1)(a2b﹣2ab2)÷b﹣(a+b)(a﹣b),其中a=2,b=﹣1.(2)已知2a+b﹣3=0,求代数式a(a﹣b+1)+(a+1)(b+1)﹣a2的值.答案解:(1)(a2b﹣2ab2)÷b﹣(a+b)(a﹣b)=a2﹣2ab﹣a2+b2=﹣2ab+b2,当a=2,b=﹣1时,原式=﹣2×2×(﹣1)+(﹣1)2=4+1=5;(2)a(a﹣b+1)+(a+1)(b+1)﹣a2=a2﹣ab+a+ab+a+b+1﹣a2=2a+b+1,∵2a+b﹣3=0,∴2a+b=3,∴原式=3+1=4.18.(7分)如图,在△ABC中,AB=AC,D是AB边的中点,E是AC边上一点,过点B 作BF∥AC,交ED的延长线于点F,若AD=6,BF=9,求CE的长.答案解:∵BF∥AC,∴∠F=∠AED,∵D为AB的中点,∴AD=BD,在△ADE和△BDF中,,∴△ADE≌△BDF(AAS),∴AE=BF=9,∵AB=AC,∴AC=2AD=12,∴CE=AC﹣AE=12﹣9=3.19.(8分)四川省正在打造“世界最长城市中轴线”天府大道北延线德阳段,现甲乙两工程队共同承包德阳段中A,B两地之间的道路,两队分别从A,B两地相向修建.已知甲队先施工3天,乙队才开始施工,乙队施工几天后因另有紧急任务暂停施工,因考虑工期,由甲队以原速的2倍修建,乙队完成紧急任务后又以原速恢复施工,直到道路修通.甲,乙两队各自修路长度与时间之间的关系如图所示,请结合图中信息解答下列问题:(1)试问:在施工的过程中,甲队在提速前每天修道路多少米?(2)求乙队中途暂停施工的天数;(3)求A,B两地之间的道路长度.答案解:(1)根据题意,设甲队在提速前每天修道路x米,可得:5x=440,解得:x=88,即甲队在提速前每天修道路88米;(2)根据题意,乙队的速度为(米/天),设乙队中途暂停施工的天数为t,可得:220×{(6﹣3)+[11﹣(6+t)]}=1100,解得:t=3,即乙队中途暂停施工的天数为3天;(3)由(1)知,甲队提速前的施工速度为88米/天,则提速后甲队是速度为88×2=176(米/天),设AB两地之间长度为a,则a=88×6+176×(11﹣6)+1100,解得:a=2508,则AB两地之间长度为2508米.20.(8分)学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A型卡片,6张C型卡片,则应取9张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是a+3b(请用含a,b的代数式表示);(2)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为(a﹣b)2=(a+b)2﹣4ab;(3)选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S1﹣S2,且S为定值,则a与b有什么关系?请说明理由.答案解:(1)A型卡片的面积为a2,B型卡片的面积为b2,C型卡片的面积为ab,题中已经选择1张A型卡片,6张C型卡片,面积之和为a2+6ab,由完全平方公式的几何背景可知一个正方形的面积可以表达成一个完全平方公式,可以很轻易得知a2+6ab+9b2=(a+3b)2,故应取9张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是a+3b故答案为:9;a+3b(2)选取4张C型卡片在纸上按图2的方式拼图,可以得到一个边长为(a+b)的正方形,剪出中间正方形作为第四种D型卡片,可知D型卡片的面积为一个边长为(a+b)的正方形的面积减去4张C型卡片的面积,即:(a+b)2﹣4ab,由图可得D型卡片是一个边长为(a﹣b)的正方形,由正方形的面积为边长的平方可知:(a﹣b)2=(a+b)2﹣4ab故答案为:(a﹣b)2=(a+b)2﹣4ab(3)设MN长为xS1=(a﹣b)[x﹣(a﹣b)]=ax﹣bx﹣a2+2ab﹣b2S2=3b(x﹣a)=3bx﹣3abS=S1﹣S2=(a﹣4b)x﹣a2+5ab﹣b2由题意得,若S为定值,则S将不随x的变化而变化,可知当a﹣4b=0时,即a=4b时,S=﹣a2+5ab﹣b2为定值故答案为:a=4b时,S为定值21.(10分)如图1,在正方形ABCD中,∠GAH=45°,∠GAH的两边分别与线段BC,CD相交于E,F(点E不与B,C重合;点F不与C,D重合).(1)填空:线段BE,EF,DF的数量关系是DF+BE=EF;(2)如图2,点P是EF的中点,连接AP,作点E关于直线AB的对称点E',作点F关于直线AD的对称点F′,连接E′F′,求证:E′F′=2AP;(3)如图3,若E,F是BC,CD上的定点,利用(1),(2)的结论探究:当AP=m,BE+DF=n时,在线段AB,AD上是否分别存在M,N,使四边形MEFN的周长有最小值,若存在,请求出最小值;若不存在,请说明理由.(用m,n的代数式表示)答案解:(1)线段BE,EF,DF的数量关系是DF+BE=EF.理由:如图1所示,延长CB至K,使得BK=DF,连接AK,则△ABK≌△ADF,∴AK=AF,∠BAK=∠DAF,∴∠EAK=∠EAB+∠BAK=∠EAB+∠DAF=90°﹣∠EAF=45°,∴∠EAK=∠EAF,∴△EAK≌△EAF(SAS),∴EF=EK=BK+BE=DF+BE,故答案为:DF+BE=EF;(2)如图2,延长AP至T,使得PT=AP,连接AE',AF',ET,由题可得,点E关于直线AB的对称点为E',点F关于直线AD的对称点为F′,∴B为EE'的中点,D为FF'的中点,又∵四边形ABCD为正方形,∴∠ABE=∠ADF=90°,∴AB为EE'的中垂线,AD为FF'的中垂线,∴AE=AE',AF=AF',∵点P是EF的中点,∴PE=PF,又∵∠EPT=∠FP A,AP=TP,∴△PET≌△PF A(SAS),∴ET=AF,∠PET=∠PF A,∴ET=AF',且∠AET=∠AEP+∠PET=∠AEP+∠AFP=180°﹣∠EAF,∵AE'=AE,AB=AB,∠ABE'=∠ABE=90°,∴Rt△ABE≌Rt△ABE'(HL),∴∠BAE'=∠BAE,同理可得∠F AD=∠F'AD,∴∠E'AF'=∠BAE'+∠DAF'+∠BAD=∠BAE+∠DAF+∠BAD=(∠BAD﹣∠EAF)+∠BAD=180°﹣∠EAF,∴∠AET=∠E'AF',又∵AE'=AE,AF'=ET,∴△E'AF'≌△AET(SAS),∴E'F'=AT=2AP;(3)四边形MEFN的周长存在最小值2m+n.如图3,作点E关于AB的对称点E',作点F关于AD的对称点F',连接E'F',交AB于M,交AD于N,连接ME,NF,∵点E关于直线AB的对称点为E',点F关于直线AD的对称点为F′,∴B为EE'的中点,D为FF'的中点,又∵四边形ABCD为正方形,∴∠ABE=∠ADF=90°,∴AB为EE'的中垂线,AD为FF'的中垂线,∴ME=ME',NF=NF',∴四边形MEFN的周长=EM+MN+FN+EF=ME'+MN+NF'+EF=E'F'+EF,由(2)可得E'F'=2AP,由(1)可得EF=BE+DF,且AP=m,BE+DF=n,∴E'F'+EF=2m+n,∴当E',M,N,F'在同一直线上时,四边形MEFN的周长有最小值,最小值为2m+n.。

2018-2019学年四川省成都市青羊区七年级(下)期末数学试卷 解析版

2018-2019学年四川省成都市青羊区七年级(下)期末数学试卷  解析版

2018-2019学年七年级(下)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列运算正确的是()A.a3﹣a2=a B.(a2)3=a5C.a4•a=a5D.3x+5y=8xy 2.(3分)下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.(3分)如图,下列条件中,可以判断AB∥CD的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44.(3分)在一个不透明的口袋中装有若干个颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的频率为,那么口袋中球的总个数为()A.13 B.14 C.15 D.165.(3分)若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A.80°B.50°C.80°或50°D.80°或20°6.(3分)如图,直线AB与CD相交于点O,射线OE平分∠BOC,且∠BOC=70°,则∠AOE 的度数为()A.145°B.155°C.110°D.135°7.(3分)如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D,AE=5cm,BD=2cm,则DE的长是()A.8cm B.5cm C.3cm D.2cm8.(3分)已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程S(km)之间的关系式是()A.Q=50﹣B.Q=50+C.Q=50﹣D.Q=50+9.(3分)如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.10.(3分)如图1,点P从矩形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图2是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则矩形ABCD的面积为()A.36 B.48 C.32 D.24二、填空题:(每题4分,共16分)11.(4分)计算:(﹣2a2b)2÷(a2b2)=.12.(4分)若(x+2)(x﹣4)=x2+nx﹣8,则n=.13.(4分)如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.14.(4分)如图所示,△ABC中,AB=6,AC=8,沿过B点的直线折叠这个三角形,使点A 落在BC边上的点E处,折痕为BD.若△CDE的周长为11,则BC长为.三、解答题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)计算:()﹣3+(2019﹣π)0﹣|﹣5|(2)先化简,再求值:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y,其中x=2019,y =.16.(8分)如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE=CE.(1)求证:DE∥BC;(2)若∠A=90°,S△BCD=26,BC=13,求AD.四、解答题(17、18、19每小题8分,20题10分,共34分)17.(8分)下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.18.(8分)如图所示,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE 的延长线于点F.(1)证明:△ADE≌△CFE;(2)若AB=AC,DB=2,CE=5,求CF.19.(8分)2019年6月14H是第16个世界献血者日,成都市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(10分)如图所示,点D是等腰Rt△ABC的斜边BC上一动点,连接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°连接BE、CE.(1)判断BD与CE的数量关系与位置关系,并进行证明;(2)当四边形ADCE的周长最小值是6时,求BC的值.一、填空题;(每题4分,共20分)21.(4分)若5m=3,5n=2,则5m+2n=.22.(4分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=.23.(4分)定义一种新运算=ad﹣bc,例如=3×6﹣4×5=﹣2.按照这种运算规定,已知=m,当x从﹣2,﹣1,0,1,2这五个数中取值,使得m+3=0成立的概率为.24.(4分)如图所示,直线AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,则∠FME的度数是.25.(4分)如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=.二、解答题(本大题共3题,共30分)26.(9分)(1)已知a2+b2=10,a+b=4,求a﹣b的值;(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn =1,求2n3﹣9n2+8n+2019的值.27.(9分)成都市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费;第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费;第三档:280度以上时,超出部分按每度0.8元计费.(1)若李明家1月份用电160度应交电费元,2月份用电200度应交电费元.(2)若设用电量为x度,应交电费为y元,请求出这三档中y与x的关系式.并利用关系式求交电费108元时的用电量.28.(12分)如图,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在线段AC 上有一动点D,连接BD并作∠DBE,使∠DBE=50°,BE边交直线AW于点E,连接DE.(1)如图1,当点E在射线AW上时,直接判断:AE+DE CD;(填“>”、“=”或“<”)(2)如图2,当点E在射线AW的反向延长线上时,①判断线段CD,DE,AE之间的数量关系,并证明;②若S四边形ABDE﹣S△BCD=6,且2DE=5AE,AD=AE,求S△ABC的值.参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下列运算正确的是()A.a3﹣a2=a B.(a2)3=a5C.a4•a=a5D.3x+5y=8xy 【分析】根据幂的乘方、同底数的幂的乘法以及合并同类项的法则即可判断.【解答】解:A、不是同类项,不能合并,选项错误;B、(a2)3=a6,选项错误;C、正确;D、不是同类项,不能合并,选项错误.故选:C.2.(3分)下列大学的校徽图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.3.(3分)如图,下列条件中,可以判断AB∥CD的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 【分析】根据平行线的判定定理:内错角相等,两直线平行可得∠1=∠4时AB∥CD.【解答】解:∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),故选:C.4.(3分)在一个不透明的口袋中装有若干个颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的频率为,那么口袋中球的总个数为()A.13 B.14 C.15 D.16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【解答】解:∵口袋中装有3个红球且摸到红球的频率为,∴口袋中装有3个红球且摸到红球的概率为,∴球的总个数为3÷=15,即口袋中球的总数为15个.故选:C.5.(3分)若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A.80°B.50°C.80°或50°D.80°或20°【分析】先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【解答】解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故选:D.6.(3分)如图,直线AB与CD相交于点O,射线OE平分∠BOC,且∠BOC=70°,则∠AOE 的度数为()A.145°B.155°C.110°D.135°【分析】依据∠BOC=70°,OE平分∠BOC,即可得到∠COE=35°,∠AOC=180°﹣70°=110°,进而得出∠AOE的度数.【解答】解:∵∠BOC=70°,OE平分∠BOC,∴∠COE=35°,∠AOC=180°﹣70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.7.(3分)如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D,AE=5cm,BD=2cm,则DE的长是()A.8cm B.5cm C.3cm D.2cm【分析】根据AAS证明△ACE≌△CBD,可得AE=CD=5cm,CE=BD=2cm,由此即可解决问题;【解答】解:∵AE⊥CE于点E,BD⊥CE于点D,∴∠AEC=∠D=∠ACB=90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=5﹣2=3cm.故选:C.8.(3分)已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程S(km)之间的关系式是()A.Q=50﹣B.Q=50+C.Q=50﹣D.Q=50+【分析】根据每行驶100km耗油10L,可得单位耗油量,根据单位耗油量乘以路程,可得行驶s千米的耗油量,根据总油量减去耗油量,可得剩余油量.【解答】解:单位耗油量10÷100=0.1L,∴行驶S千米的耗油量0.1SL,∴Q=50﹣0.1S=50﹣,故选:C.9.(3分)如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点A关于直线l的对称点A′,连接BA′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.10.(3分)如图1,点P从矩形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图2是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则矩形ABCD的面积为()A.36 B.48 C.32 D.24【分析】根据题意和函数图象中的数据可以求得AB和BC的长,从而可以求得矩形ABCD 的面积.【解答】解:由图可得,AB=2×2=4,BC=(6﹣2)×2=8,∴矩形ABCD的面积是:4×8=32,故选:C.二、填空题:(每题4分,共16分)11.(4分)计算:(﹣2a2b)2÷(a2b2)=8a2.【分析】直接利用积的乘方运算法则化简,进而利用整式的除法运算法则计算得出答案.【解答】解:原式=4a4b2÷a2b2=8a2.故答案为:8a2.12.(4分)若(x+2)(x﹣4)=x2+nx﹣8,则n=﹣2 .【分析】已知等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出n 的值即可.【解答】解:已知等式整理得:x2﹣2x﹣8=x2+nx﹣8,则n=﹣2,故答案为:﹣213.(4分)如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是BC=EF.【分析】求出AC=DF,根据平行线的性质得出∠BCA=∠EFD,根据全等三角形的判定得出即可.【解答】解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.14.(4分)如图所示,△ABC中,AB=6,AC=8,沿过B点的直线折叠这个三角形,使点A 落在BC边上的点E处,折痕为BD.若△CDE的周长为11,则BC长为9 .【分析】依据折叠可得BE=AB=6,AD=ED,进而得出DE+CD=8,再根据△CDE的周长为11,可得CE=3,即可得到BC=BE+CE=9.【解答】解:解:由折叠可得,BE=AB=6,AD=ED,∵AC=8,∴AD+CD=8,∴DE+CD=8,又∵△CDE的周长为11,∴CE=11﹣8=3,∴BC=BE+CE=6+3=9,故答案为:9.三、解答题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)计算:()﹣3+(2019﹣π)0﹣|﹣5|(2)先化简,再求值:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y,其中x=2019,y =.【分析】(1)先根据负整数指数幂,零指数幂和绝对值进行计算,再求出即可;(2)先算括号内的乘法,再合并同类项,算除法,再代入求出即可.【解答】解:(1)原式=8+1﹣5=4;(2)[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y=[x2﹣4xy+4y2﹣x2+9y2+3y2]÷4y=[﹣4xy+16y2]÷4y=﹣x+4y,当x=2019,y=时,原式=﹣2019+4×=﹣2018.16.(8分)如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE=CE.(1)求证:DE∥BC;(2)若∠A=90°,S△BCD=26,BC=13,求AD.【分析】(1)依据角平分线的定义以及等边对等角,即可得到∠BCD=∠ECD=∠CDE,即可判定DE∥BC;(2)过D作DF⊥BC于F,依据角平分线的性质,即可得到AD=FD,再根据S△BCD=26,即可得出DF得到长,进而得到AD的长.【解答】解:(1)∵CD平分∠ACB,∴∠ECD=∠BCD,又∵DE=CE,∴∠ECD=∠EDC,∴∠BCD=∠CDE,∴DE∥BC;(2)如图,过D作DF⊥BC于F,∵∠A=90°,CD平分∠ACB,∴AD=FD,∵S△BCD=26,BC=13,∴×13×DF=26,∴DF=4,∴AD=4.四、解答题(17、18、19每小题8分,20题10分,共34分)17.(8分)下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.【分析】(1)利用网格特点和轴对称的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′;(2)利用一个矩形的面积减去三个三角形的面积去计算△ABC的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=3×3﹣×1×3﹣×2×1﹣×2×3=3.5.18.(8分)如图所示,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE 的延长线于点F.(1)证明:△ADE≌△CFE;(2)若AB=AC,DB=2,CE=5,求CF.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)由AB=AC,DB=2,CE=5可得AD的长,利用全等三角形的性质求出CF=AD,即可解决问题.【解答】解:(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,∠A=∠ACF,∠ADF=∠F,AE=CE,∴△ADE≌△CFE(AAS).(2)∵CE=5,E是边AC的中点,∴AE=CE=5,∴AC=10,∴AB=AC=10,∴AD=AB﹣BD=10﹣2=8,∵△ADE≌△CFE,∴CF=AD=8.19.(8分)2019年6月14H是第16个世界献血者日,成都市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数12 10 5 23 (1)这次随机抽取的献血者人数为50 人,m=20 ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.20.(10分)如图所示,点D是等腰Rt△ABC的斜边BC上一动点,连接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°连接BE、CE.(1)判断BD与CE的数量关系与位置关系,并进行证明;(2)当四边形ADCE的周长最小值是6时,求BC的值.【分析】(1)根据全等三角形的性质得到BD=CE,∠ABD=∠ACE=45°,求得∠BCE=90°,根据垂直的定义得到BD⊥CE;(2)当AD⊥BC时,AD最小,则四边形ADCE的周长最小,即当四边形ADCE为正方形时,四边形ADCE的周长最小是6,求得AD=,根据等腰直角三角形的性质得到结论.【解答】解:(1)BD=CE,BD⊥CE;理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠BCE=90°,∴BD⊥CE;(2)当AD⊥BC时,AD最小,则四边形ADCE的周长最小,即当四边形ADCE为正方形时,四边形ADCE的周长最小是6,∴AD=,∵△ABC是等腰直角三角形,∴BC=2AD=3.一、填空题;(每题4分,共20分)21.(4分)若5m=3,5n=2,则5m+2n=12 .【分析】直接利用同底数幂的乘法运算法则的逆运算以及幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵5m=3,5n=2,∴5m+2n=5m•52n=3×22=12,故答案为:12.22.(4分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1 .【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣123.(4分)定义一种新运算=ad﹣bc,例如=3×6﹣4×5=﹣2.按照这种运算规定,已知=m,当x从﹣2,﹣1,0,1,2这五个数中取值,使得m+3=0成立的概率为.【分析】首先根据题意确定x的值,然后利用概率公式求解即可.【解答】解:由题意可知:(2x﹣3)(x+1)﹣x(x﹣2)=m,∴x2+x﹣3=m,∵m+3=0,∴x2+x=0,解得:x=0或x=﹣1,∴x从﹣2,﹣1,0,1,2这五个数中取值,使得m+3=0成立的概率为故答案为:.24.(4分)如图所示,直线AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,则∠FME的度数是148°.【分析】过点E作EH∥AB,根据平行的性质以及三角形的外角性质即可求出答案.【解答】解:过点E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,设∠BME=α,∠END=β,∴∠MEH=∠BME=α,∠NEH=∠END=β,∴∠MEN=α+β,∵NE平分∠FND,MB平分∠FME,∴∠BMF=α,∠FND=2β,∵AB∥CD,∴∠FGB=2β,∵∠BMF=∠FGB+∠F,∴α=2β+∠F,∴3α=2α+2β+∠F,∴3α=2(α+β)+∠F,∴3α=2∠MEN+∠F=222°,∴α=74°,∴∠FME=2α=148°,故答案为:148°25.(4分)如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=440 .【分析】作DM⊥BC于M,AN⊥BC于N,则△BDM、△BAN是等腰直角三角形,得出BM=DM,BN=AN,证明△AEN≌△CDM(AAS),得出AN=CM,EN=DM,得出BN=CM,因此BM =DM=CN=EN,设BE=5a,则CE=6a,BC=BE+CE=11a,BM=DM=CN=EN=CE=3a,CM=BC﹣BM=8a,由勾股定理得出CD2=DM2+CM2=73a2,由三角形面积求出a2=10,求出S四边形ADEC=CD×AE=CD2=365,即可得出答案.【解答】解:作DM⊥BC于M,AN⊥BC于N,如图所示:则∠CMD=∠BMD=∠ANE=90°,∵∠ABC=45°,∴△BDM、△BAN是等腰直角三角形,∴BM=DM,BN=AN,∵AE⊥CD,∴∠AEN+∠EAN=∠AEN+∠DCM=90°,∴∠EAN=∠DCM,在△AEN和△CDM中,,∴△AEN≌△CDM(AAS),∴AN=CM,EN=DM,∴BN=CM,∴BM=CN,∴BM=DM=CN=EN,∵BE:CE=5:6,∴设BE=5a,则CE=6a,BC=BE+CE=11a,BM=DM=CN=EN=CE=3a,CM=BC﹣BM=8a,∴CD2=DM2+CM2=(3a)2+(8a)2=73a2,∵S△BDE=BE×DM=×5a×3a=75,∴a2=10,∵AE⊥CD,AE=CD,∴S四边形ADEC=CD×AE=CD2=×73a2=×73×10=365,∴S△ABC=S△BDE+S四边形ADEC=75+365=440;故答案为:440.二、解答题(本大题共3题,共30分)26.(9分)(1)已知a2+b2=10,a+b=4,求a﹣b的值;(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn =1,求2n3﹣9n2+8n+2019的值.【分析】(1)利用完全平方公式化简,计算即可求出值;(2)已知代数式整理后,根据题意求出a与m的值,进而求出n的值,代入原式计算即可求出值.【解答】解:(1)把a+b=4,两边平方得:(a+b)2=16,∴a2+b2+2ab=16,将a2+b2=10代入得:10+2ab=16,即2ab=6,∴(a﹣b)2=a2+b2﹣2ab=10﹣6=4,则a﹣b=2或﹣2;(2)原式=(2a﹣4)x2+(a﹣6)x+m﹣3,由化简后不含有x2项和常数项,得到2a﹣4=0,m﹣3=0,解得:a=2,m=3,代入an+mn=1得:2n+3n=1,即n=,则原式=﹣++2019=2019=2020.27.(9分)成都市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费;第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费;第三档:280度以上时,超出部分按每度0.8元计费.(1)若李明家1月份用电160度应交电费80 元,2月份用电200度应交电费102 元.(2)若设用电量为x度,应交电费为y元,请求出这三档中y与x的关系式.并利用关系式求交电费108元时的用电量.【分析】(1)根据“第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费”,列式计算即可,(2)根据“阶梯电价”方法计算电价,可得分段函数;由交电费108元可知在第二档,代入解析式可得用电量.【解答】解:(1)∵160<180,∴0.5×160=80(元),∵180<200<280,∴180×0.5+(200﹣180)×0.6=90+12=102(元),即李明家1月份用电160度应交电费80元,2月份用电200度应交电费102元,故答案为:80,102.(2)根据题意得:当0≤x≤180时,电费为:0.5x(元),当180<x≤280时,电费为:0.5×180+0.6×(x﹣180)=90+0.6x﹣108=0.6x﹣18(元),当x>280时,电费为:0.5×180+0.6×(280﹣180)+0.8×(x﹣280)=0.8x﹣74(元),则y关于x的函数关系式y=.由y=108代入y=0.6x﹣18,可得x=210(度).则交电费108元时的用电量为210度.28.(12分)如图,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在线段AC 上有一动点D,连接BD并作∠DBE,使∠DBE=50°,BE边交直线AW于点E,连接DE.(1)如图1,当点E在射线AW上时,直接判断:AE+DE=CD;(填“>”、“=”或“<”)(2)如图2,当点E在射线AW的反向延长线上时,①判断线段CD,DE,AE之间的数量关系,并证明;②若S四边形ABDE﹣S△BCD=6,且2DE=5AE,AD=AE,求S△ABC的值.【分析】(1)如图1中,在AC上取一点T,使得∠TBD=∠ABC,连接BT.证明△BAE ≌△BCT(ASA),△DBE≌△DBT(SAS)即可解决问题.(2)①结论:DE=CD+AE.如图2中,在AC的延长线上取一点T,使得∠TBD=∠ABC,连接BT.证明方法类似(1).②由①可知:S△ABE=S△BCT,S△BDE=S△BDT,由S四边形ABDE﹣S△BCD=6,推出S△BDC+2S△BCT﹣S△BDC =6,推出S△BCT=3,由2DE=5AE,AD=AE,设DE=5k,AE=2k,则AD=k,CD =DT﹣CT=DE﹣AE=3k,推出AC=AD+CD=k+3k=k,推出AC:CT=67:18,由此即可解决问题.【解答】解:(1)如图1中,在AC上取一点T,使得∠TBD=∠ABC,连接BT.∵∠TBD=∠ABC,∠DBE=50°=∠ABC,∴∠CBT+∠ABD=∠ABD+∠ABE=∠ABC,∴∠ABE=∠CBT,∵BA=BC,∴∠BAC=∠C,∵∠BAE=∠BAC,∴∠EAB=∠C,∴△BAE≌△BCT(ASA),∴TC=AE,BE=BT,∵BD=BD,∠DBE=∠DBT,∴△DBE≌△DBT(SAS),∴DE=DT,∴AE+DE=CT+DT=CD.故答案为=.(2)①结论:DE=CD+AE.理由:如图2中,在AC的延长线上取一点T,使得∠TBD=∠ABC,连接BT.∵∠TBD=∠ABC,∠DBE=50°=∠ABC,∴∠CBT+∠CBD=∠CBD+∠ABE=∠ABC,∴∠ABE=∠CBT,∵BA=BC,∴∠BAC=∠ACB,∵∠BAE=∠BAC,∴∠WAB=∠ACB,∴∠BAE=∠BCT,∴△BAE≌△BCT(ASA),∴TC=AE,BE=BT,∵BD=BD,∠DBE=∠DBT,∴△DBE≌△DBT(SAS),∴DE=DT,∴DE=DC+CT=AE+CD.②由①可知:S△ABE=S△BCT,S△BDE=S△BDT,∵S四边形ABDE﹣S△BCD=6,∴S△BDC+2S△BCT﹣S△BDC=6,∴S△BCT=3,∵2DE=5AE,AD=AE,设DE=5k,AE=2k,则AD=k,CD=DT﹣CT=DE﹣AE=3k,∴AC=AD+CD=k+3k=k,∴AC:CT=67:18,∴S△ABC=×S△CBT=.。

2018-2019年四川省成都市青羊区七年级(下)期末数学试卷 解析版

2018-2019年四川省成都市青羊区七年级(下)期末数学试卷  解析版

2018-2019学年七年级(下)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列运算正确的是()A.a3﹣a2=a B.(a2)3=a5C.a4•a=a5D.3x+5y=8xy 2.(3分)下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.(3分)如图,下列条件中,可以判断AB∥CD的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44.(3分)在一个不透明的口袋中装有若干个颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的频率为,那么口袋中球的总个数为()A.13 B.14 C.15 D.165.(3分)若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A.80°B.50°C.80°或50°D.80°或20°6.(3分)如图,直线AB与CD相交于点O,射线OE平分∠BOC,且∠BOC=70°,则∠AOE 的度数为()A.145°B.155°C.110°D.135°7.(3分)如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D,AE=5cm,BD=2cm,则DE的长是()A.8cm B.5cm C.3cm D.2cm8.(3分)已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程S(km)之间的关系式是()A.Q=50﹣B.Q=50+C.Q=50﹣D.Q=50+9.(3分)如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.10.(3分)如图1,点P从矩形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图2是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则矩形ABCD的面积为()A.36 B.48 C.32 D.24二、填空题:(每题4分,共16分)11.(4分)计算:(﹣2a2b)2÷(a2b2)=.12.(4分)若(x+2)(x﹣4)=x2+nx﹣8,则n=.13.(4分)如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.14.(4分)如图所示,△ABC中,AB=6,AC=8,沿过B点的直线折叠这个三角形,使点A 落在BC边上的点E处,折痕为BD.若△CDE的周长为11,则BC长为.三、解答题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)计算:()﹣3+(2019﹣π)0﹣|﹣5|(2)先化简,再求值:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y,其中x=2019,y =.16.(8分)如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE=CE.(1)求证:DE∥BC;(2)若∠A=90°,S△BCD=26,BC=13,求AD.四、解答题(17、18、19每小题8分,20题10分,共34分)17.(8分)下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.18.(8分)如图所示,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE 的延长线于点F.(1)证明:△ADE≌△CFE;(2)若AB=AC,DB=2,CE=5,求CF.19.(8分)2019年6月14H是第16个世界献血者日,成都市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?20.(10分)如图所示,点D是等腰Rt△ABC的斜边BC上一动点,连接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°连接BE、CE.(1)判断BD与CE的数量关系与位置关系,并进行证明;(2)当四边形ADCE的周长最小值是6时,求BC的值.一、填空题;(每题4分,共20分)21.(4分)若5m=3,5n=2,则5m+2n=.22.(4分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=.23.(4分)定义一种新运算=ad﹣bc,例如=3×6﹣4×5=﹣2.按照这种运算规定,已知=m,当x从﹣2,﹣1,0,1,2这五个数中取值,使得m+3=0成立的概率为.24.(4分)如图所示,直线AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,则∠FME的度数是.25.(4分)如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=.二、解答题(本大题共3题,共30分)26.(9分)(1)已知a2+b2=10,a+b=4,求a﹣b的值;(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn =1,求2n3﹣9n2+8n+2019的值.27.(9分)成都市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费;第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费;第三档:280度以上时,超出部分按每度0.8元计费.(1)若李明家1月份用电160度应交电费元,2月份用电200度应交电费元.(2)若设用电量为x度,应交电费为y元,请求出这三档中y与x的关系式.并利用关系式求交电费108元时的用电量.28.(12分)如图,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在线段AC 上有一动点D,连接BD并作∠DBE,使∠DBE=50°,BE边交直线AW于点E,连接DE.(1)如图1,当点E在射线AW上时,直接判断:AE+DE CD;(填“>”、“=”或“<”)(2)如图2,当点E在射线AW的反向延长线上时,①判断线段CD,DE,AE之间的数量关系,并证明;②若S四边形ABDE﹣S△BCD=6,且2DE=5AE,AD=AE,求S△ABC的值.参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下列运算正确的是()A.a3﹣a2=a B.(a2)3=a5C.a4•a=a5D.3x+5y=8xy 【分析】根据幂的乘方、同底数的幂的乘法以及合并同类项的法则即可判断.【解答】解:A、不是同类项,不能合并,选项错误;B、(a2)3=a6,选项错误;C、正确;D、不是同类项,不能合并,选项错误.故选:C.2.(3分)下列大学的校徽图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.3.(3分)如图,下列条件中,可以判断AB∥CD的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 【分析】根据平行线的判定定理:内错角相等,两直线平行可得∠1=∠4时AB∥CD.【解答】解:∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),故选:C.4.(3分)在一个不透明的口袋中装有若干个颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的频率为,那么口袋中球的总个数为()A.13 B.14 C.15 D.16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【解答】解:∵口袋中装有3个红球且摸到红球的频率为,∴口袋中装有3个红球且摸到红球的概率为,∴球的总个数为3÷=15,即口袋中球的总数为15个.故选:C.5.(3分)若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A.80°B.50°C.80°或50°D.80°或20°【分析】先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【解答】解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故选:D.6.(3分)如图,直线AB与CD相交于点O,射线OE平分∠BOC,且∠BOC=70°,则∠AOE 的度数为()A.145°B.155°C.110°D.135°【分析】依据∠BOC=70°,OE平分∠BOC,即可得到∠COE=35°,∠AOC=180°﹣70°=110°,进而得出∠AOE的度数.【解答】解:∵∠BOC=70°,OE平分∠BOC,∴∠COE=35°,∠AOC=180°﹣70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.7.(3分)如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CE于点D,AE=5cm,BD=2cm,则DE的长是()A.8cm B.5cm C.3cm D.2cm【分析】根据AAS证明△ACE≌△CBD,可得AE=CD=5cm,CE=BD=2cm,由此即可解决问题;【解答】解:∵AE⊥CE于点E,BD⊥CE于点D,∴∠AEC=∠D=∠ACB=90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=5﹣2=3cm.故选:C.8.(3分)已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程S(km)之间的关系式是()A.Q=50﹣B.Q=50+C.Q=50﹣D.Q=50+【分析】根据每行驶100km耗油10L,可得单位耗油量,根据单位耗油量乘以路程,可得行驶s千米的耗油量,根据总油量减去耗油量,可得剩余油量.【解答】解:单位耗油量10÷100=0.1L,∴行驶S千米的耗油量0.1SL,∴Q=50﹣0.1S=50﹣,故选:C.9.(3分)如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,由水泵站直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是()A.B.C.D.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点A关于直线l的对称点A′,连接BA′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.10.(3分)如图1,点P从矩形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图2是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则矩形ABCD的面积为()A.36 B.48 C.32 D.24【分析】根据题意和函数图象中的数据可以求得AB和BC的长,从而可以求得矩形ABCD 的面积.【解答】解:由图可得,AB=2×2=4,BC=(6﹣2)×2=8,∴矩形ABCD的面积是:4×8=32,故选:C.二、填空题:(每题4分,共16分)11.(4分)计算:(﹣2a2b)2÷(a2b2)=8a2.【分析】直接利用积的乘方运算法则化简,进而利用整式的除法运算法则计算得出答案.【解答】解:原式=4a4b2÷a2b2=8a2.故答案为:8a2.12.(4分)若(x+2)(x﹣4)=x2+nx﹣8,则n=﹣2 .【分析】已知等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出n 的值即可.【解答】解:已知等式整理得:x2﹣2x﹣8=x2+nx﹣8,则n=﹣2,故答案为:﹣213.(4分)如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是BC=EF.【分析】求出AC=DF,根据平行线的性质得出∠BCA=∠EFD,根据全等三角形的判定得出即可.【解答】解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.14.(4分)如图所示,△ABC中,AB=6,AC=8,沿过B点的直线折叠这个三角形,使点A 落在BC边上的点E处,折痕为BD.若△CDE的周长为11,则BC长为9 .【分析】依据折叠可得BE=AB=6,AD=ED,进而得出DE+CD=8,再根据△CDE的周长为11,可得CE=3,即可得到BC=BE+CE=9.【解答】解:解:由折叠可得,BE=AB=6,AD=ED,∵AC=8,∴AD+CD=8,∴DE+CD=8,又∵△CDE的周长为11,∴CE=11﹣8=3,∴BC=BE+CE=6+3=9,故答案为:9.三、解答题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)计算:()﹣3+(2019﹣π)0﹣|﹣5|(2)先化简,再求值:[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y,其中x=2019,y =.【分析】(1)先根据负整数指数幂,零指数幂和绝对值进行计算,再求出即可;(2)先算括号内的乘法,再合并同类项,算除法,再代入求出即可.【解答】解:(1)原式=8+1﹣5=4;(2)[(x﹣2y)2﹣(3y+x)(x﹣3y)+3y2]÷4y=[x2﹣4xy+4y2﹣x2+9y2+3y2]÷4y=[﹣4xy+16y2]÷4y=﹣x+4y,当x=2019,y=时,原式=﹣2019+4×=﹣2018.16.(8分)如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE=CE.(1)求证:DE∥BC;(2)若∠A=90°,S△BCD=26,BC=13,求AD.【分析】(1)依据角平分线的定义以及等边对等角,即可得到∠BCD=∠ECD=∠CDE,即可判定DE∥BC;(2)过D作DF⊥BC于F,依据角平分线的性质,即可得到AD=FD,再根据S△BCD=26,即可得出DF得到长,进而得到AD的长.【解答】解:(1)∵CD平分∠ACB,∴∠ECD=∠BCD,又∵DE=CE,∴∠ECD=∠EDC,∴∠BCD=∠CDE,∴DE∥BC;(2)如图,过D作DF⊥BC于F,∵∠A=90°,CD平分∠ACB,∴AD=FD,∵S△BCD=26,BC=13,∴×13×DF=26,∴DF=4,∴AD=4.四、解答题(17、18、19每小题8分,20题10分,共34分)17.(8分)下面的方格图是由边长为1的42个小正方形拼成的,△ABC的顶点A、B、C均在小正方形的顶点上.(1)作出△ABC关于直线m对称的△A′B′C′;(2)求△ABC的面积.【分析】(1)利用网格特点和轴对称的性质画出点A、B、C的对应点A′、B′、C′,从而得到△A′B′C′;(2)利用一个矩形的面积减去三个三角形的面积去计算△ABC的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=3×3﹣×1×3﹣×2×1﹣×2×3=3.5.18.(8分)如图所示,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE 的延长线于点F.(1)证明:△ADE≌△CFE;(2)若AB=AC,DB=2,CE=5,求CF.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)由AB=AC,DB=2,CE=5可得AD的长,利用全等三角形的性质求出CF=AD,即可解决问题.【解答】解:(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,∠A=∠ACF,∠ADF=∠F,AE=CE,∴△ADE≌△CFE(AAS).(2)∵CE=5,E是边AC的中点,∴AE=CE=5,∴AC=10,∴AB=AC=10,∴AD=AB﹣BD=10﹣2=8,∵△ADE≌△CFE,∴CF=AD=8.19.(8分)2019年6月14H是第16个世界献血者日,成都市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数12 10 5 23 (1)这次随机抽取的献血者人数为50 人,m=20 ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.20.(10分)如图所示,点D是等腰Rt△ABC的斜边BC上一动点,连接AD,作等腰Rt△ADE,使AD=AE,且∠DAE=90°连接BE、CE.(1)判断BD与CE的数量关系与位置关系,并进行证明;(2)当四边形ADCE的周长最小值是6时,求BC的值.【分析】(1)根据全等三角形的性质得到BD=CE,∠ABD=∠ACE=45°,求得∠BCE=90°,根据垂直的定义得到BD⊥CE;(2)当AD⊥BC时,AD最小,则四边形ADCE的周长最小,即当四边形ADCE为正方形时,四边形ADCE的周长最小是6,求得AD=,根据等腰直角三角形的性质得到结论.【解答】解:(1)BD=CE,BD⊥CE;理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠BCE=90°,∴BD⊥CE;(2)当AD⊥BC时,AD最小,则四边形ADCE的周长最小,即当四边形ADCE为正方形时,四边形ADCE的周长最小是6,∴AD=,∵△ABC是等腰直角三角形,∴BC=2AD=3.一、填空题;(每题4分,共20分)21.(4分)若5m=3,5n=2,则5m+2n=12 .【分析】直接利用同底数幂的乘法运算法则的逆运算以及幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵5m=3,5n=2,∴5m+2n=5m•52n=3×22=12,故答案为:12.22.(4分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1 .【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣123.(4分)定义一种新运算=ad﹣bc,例如=3×6﹣4×5=﹣2.按照这种运算规定,已知=m,当x从﹣2,﹣1,0,1,2这五个数中取值,使得m+3=0成立的概率为.【分析】首先根据题意确定x的值,然后利用概率公式求解即可.【解答】解:由题意可知:(2x﹣3)(x+1)﹣x(x﹣2)=m,∴x2+x﹣3=m,∵m+3=0,∴x2+x=0,解得:x=0或x=﹣1,∴x从﹣2,﹣1,0,1,2这五个数中取值,使得m+3=0成立的概率为故答案为:.24.(4分)如图所示,直线AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,则∠FME的度数是148°.【分析】过点E作EH∥AB,根据平行的性质以及三角形的外角性质即可求出答案.【解答】解:过点E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,设∠BME=α,∠END=β,∴∠MEH=∠BME=α,∠NEH=∠END=β,∴∠MEN=α+β,∵NE平分∠FND,MB平分∠FME,∴∠BMF=α,∠FND=2β,∵AB∥CD,∴∠FGB=2β,∵∠BMF=∠FGB+∠F,∴α=2β+∠F,∴3α=2α+2β+∠F,∴3α=2(α+β)+∠F,∴3α=2∠MEN+∠F=222°,∴α=74°,∴∠FME=2α=148°,故答案为:148°25.(4分)如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE=75,则S△ABC=440 .【分析】作DM⊥BC于M,AN⊥BC于N,则△BDM、△BAN是等腰直角三角形,得出BM=DM,BN=AN,证明△AEN≌△CDM(AAS),得出AN=CM,EN=DM,得出BN=CM,因此BM =DM=CN=EN,设BE=5a,则CE=6a,BC=BE+CE=11a,BM=DM=CN=EN=CE=3a,CM=BC﹣BM=8a,由勾股定理得出CD2=DM2+CM2=73a2,由三角形面积求出a2=10,求出S四边形ADEC=CD×AE=CD2=365,即可得出答案.【解答】解:作DM⊥BC于M,AN⊥BC于N,如图所示:则∠CMD=∠BMD=∠ANE=90°,∵∠ABC=45°,∴△BDM、△BAN是等腰直角三角形,∴BM=DM,BN=AN,∵AE⊥CD,∴∠AEN+∠EAN=∠AEN+∠DCM=90°,∴∠EAN=∠DCM,在△AEN和△CDM中,,∴△AEN≌△CDM(AAS),∴AN=CM,EN=DM,∴BN=CM,∴BM=CN,∴BM=DM=CN=EN,∵BE:CE=5:6,∴设BE=5a,则CE=6a,BC=BE+CE=11a,BM=DM=CN=EN=CE=3a,CM=BC﹣BM=8a,∴CD2=DM2+CM2=(3a)2+(8a)2=73a2,∵S△BDE=BE×DM=×5a×3a=75,∴a2=10,∵AE⊥CD,AE=CD,∴S四边形ADEC=CD×AE=CD2=×73a2=×73×10=365,∴S△ABC=S△BDE+S四边形ADEC=75+365=440;故答案为:440.二、解答题(本大题共3题,共30分)26.(9分)(1)已知a2+b2=10,a+b=4,求a﹣b的值;(2)关于x的代数式(ax﹣3)(2x+1)﹣4x2+m化简后不含有x2项和常数项,且an+mn =1,求2n3﹣9n2+8n+2019的值.【分析】(1)利用完全平方公式化简,计算即可求出值;(2)已知代数式整理后,根据题意求出a与m的值,进而求出n的值,代入原式计算即可求出值.【解答】解:(1)把a+b=4,两边平方得:(a+b)2=16,∴a2+b2+2ab=16,将a2+b2=10代入得:10+2ab=16,即2ab=6,∴(a﹣b)2=a2+b2﹣2ab=10﹣6=4,则a﹣b=2或﹣2;(2)原式=(2a﹣4)x2+(a﹣6)x+m﹣3,由化简后不含有x2项和常数项,得到2a﹣4=0,m﹣3=0,解得:a=2,m=3,代入an+mn=1得:2n+3n=1,即n=,则原式=﹣++2019=2019=2020.27.(9分)成都市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费;第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费;第三档:280度以上时,超出部分按每度0.8元计费.(1)若李明家1月份用电160度应交电费80 元,2月份用电200度应交电费102 元.(2)若设用电量为x度,应交电费为y元,请求出这三档中y与x的关系式.并利用关系式求交电费108元时的用电量.【分析】(1)根据“第一档:每月用电不超过180度时,按每度0.5元计费;第二档:每月用电超过180度但不足280度时,其中超过部分按每度0.6元计费”,列式计算即可,(2)根据“阶梯电价”方法计算电价,可得分段函数;由交电费108元可知在第二档,代入解析式可得用电量.【解答】解:(1)∵160<180,∴0.5×160=80(元),∵180<200<280,∴180×0.5+(200﹣180)×0.6=90+12=102(元),即李明家1月份用电160度应交电费80元,2月份用电200度应交电费102元,故答案为:80,102.(2)根据题意得:当0≤x≤180时,电费为:0.5x(元),当180<x≤280时,电费为:0.5×180+0.6×(x﹣180)=90+0.6x﹣108=0.6x﹣18(元),当x>280时,电费为:0.5×180+0.6×(280﹣180)+0.8×(x﹣280)=0.8x﹣74(元),则y关于x的函数关系式y=.由y=108代入y=0.6x﹣18,可得x=210(度).则交电费108元时的用电量为210度.28.(12分)如图,在等腰△ABC中,BA=BC,∠ABC=100°,AB平分∠WAC.在线段AC 上有一动点D,连接BD并作∠DBE,使∠DBE=50°,BE边交直线AW于点E,连接DE.(1)如图1,当点E在射线AW上时,直接判断:AE+DE=CD;(填“>”、“=”或“<”)(2)如图2,当点E在射线AW的反向延长线上时,①判断线段CD,DE,AE之间的数量关系,并证明;②若S四边形ABDE﹣S△BCD=6,且2DE=5AE,AD=AE,求S△ABC的值.【分析】(1)如图1中,在AC上取一点T,使得∠TBD=∠ABC,连接BT.证明△BAE ≌△BCT(ASA),△DBE≌△DBT(SAS)即可解决问题.(2)①结论:DE=CD+AE.如图2中,在AC的延长线上取一点T,使得∠TBD=∠ABC,连接BT.证明方法类似(1).②由①可知:S△ABE=S△BCT,S△BDE=S△BDT,由S四边形ABDE﹣S△BCD=6,推出S△BDC+2S△BCT﹣S△BDC =6,推出S△BCT=3,由2DE=5AE,AD=AE,设DE=5k,AE=2k,则AD=k,CD =DT﹣CT=DE﹣AE=3k,推出AC=AD+CD=k+3k=k,推出AC:CT=67:18,由此即可解决问题.【解答】解:(1)如图1中,在AC上取一点T,使得∠TBD=∠ABC,连接BT.∵∠TBD=∠ABC,∠DBE=50°=∠ABC,∴∠CBT+∠ABD=∠ABD+∠ABE=∠ABC,∴∠ABE=∠CBT,∵BA=BC,∴∠BAC=∠C,∵∠BAE=∠BAC,∴∠EAB=∠C,∴△BAE≌△BCT(ASA),∴TC=AE,BE=BT,∵BD=BD,∠DBE=∠DBT,∴△DBE≌△DBT(SAS),∴DE=DT,∴AE+DE=CT+DT=CD.故答案为=.(2)①结论:DE=CD+AE.理由:如图2中,在AC的延长线上取一点T,使得∠TBD=∠ABC,连接BT.∵∠TBD=∠ABC,∠DBE=50°=∠ABC,∴∠CBT+∠CBD=∠CBD+∠ABE=∠ABC,∴∠ABE=∠CBT,∵BA=BC,∴∠BAC=∠ACB,∵∠BAE=∠BAC,∴∠WAB=∠ACB,∴∠BAE=∠BCT,∴△BAE≌△BCT(ASA),∴TC=AE,BE=BT,∵BD=BD,∠DBE=∠DBT,∴△DBE≌△DBT(SAS),∴DE=DT,∴DE=DC+CT=AE+CD.②由①可知:S△ABE=S△BCT,S△BDE=S△BDT,∵S四边形ABDE﹣S△BCD=6,∴S△BDC+2S△BCT﹣S△BDC=6,∴S△BCT=3,∵2DE=5AE,AD=AE,设DE=5k,AE=2k,则AD=k,CD=DT﹣CT=DE﹣AE=3k,∴AC=AD+CD=k+3k=k,∴AC:CT=67:18,∴S△ABC=×S△CBT=.。

2018-2019学年鲁教版(五四制)七年级下册数学第七章检测试题含答案

2018-2019学年鲁教版(五四制)七年级下册数学第七章检测试题含答案

第七章 检测试题(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程组中,属于二元一次方程组的是( D ) (A) (B)(C)(D)解析:选项A 中有三个未知数,选项B,C 中含有未知数的项的最高次数是2,因此只有D 符合二元一次方程组的概念.故选D. 2.利用消元法解方程组下列做法正确的是( D )(A)要消去y,可以将①×5+②×2 (B)要消去x,可以将①×3+②×(-5) (C)要消去y,可以将①×5+②×3 (D)要消去x,可以将①×(-5)+②×2解析:要消去y,可以将①×3+②×5或①×(-3)-②×5, 要消去x,可以将①×5-②×2或①×(-5)+②×2, 只有选项D 正确.故选D.3.(2017博山一模)已知关于x,y 的方程x 2m-n-2+4y m+n+1=6是二元一次方程,则m,n 的值为( B )(A)m=-1,n=1 (B)m=1,n=-1 (C)m=,n=- (D)m=-,n= 解析:根据题意,得解得故选B.4.已知一个两位数的十位数字与个位数字的和是7.如果这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是( C ) (A)34 (B)25 (C)16 (D)61解析:设这个两位数的十位数字为x,个位数字为y,根据题意得解得所以这个两位数是16,故选C.5.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )(A)(B)(C) (D)解析:把l1与l2的交点坐标(2,3)代入选项中的每个方程组,只有C项合适.故选C.6.若方程组的解是则方程组的解是( A )(A) (B)(C)(D)解析:由题意可知,当x+2=a,y-1=b时,两方程组对应系数一样,其解相同,即此时有x+2=8.3,y-1=1.2,解得x=6.3,y=2.2.故选A.7.如图,周长为34 cm的长方形ABCD被分成7个相同的长方形,则长方形ABCD 的面积为( D )(A)49 cm2 (B)74 cm2(C)68 cm2 (D)70 cm2解析:设小长方形的长为x cm,宽为y cm,则解得所以长方形ABCD的面积为(5×2)×(5+2)=70 (cm2).故选D.8.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m长的彩绳截成2 m或1 m长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( C )(A)1 (B)2 (C)3 (D)4解析:设截成2 m长的彩绳x根,1 m长的彩绳y根,根据题意,得2x+y=5.显然,x,y均为非负整数,符合题意的解为因此,共有三种不同的截法.二、填空题(每小题4分,共24分)9.若关于x,y的方程mx+ny=8的两组解是和则m+n= 0 .解析:将和代入方程mx+ny=8,得解得所以m+n=0.10.方程组的解是.解析:直接把x+2y=2代入第一个方程即可先求得x的值.11.图中的□、△符号分别代表一个数字,且满足以下两个等式:□+□+△=5,□-△-△-△=6,则□代表的数字是 3 ,△代表的数字是-1 .解析:设□=x,△=y,由题意,得解得所以□代表的数字是3,△代表的数字是-1.12.方程组的解是.解析:任意两个方程相加即可求得一个未知数的值.13.二元一次方程组==x+2的解是.解析:由题意得由①+②得3x=5(x+2),解得x=-5,将x=-5代入①解得y=-1,所以14.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.解析:设安排x人缝制衣袖,y人缝制衣身,z人缝制衣领,则列方程组解得故应该安排120名工人缝制衣袖.三、解答题(共44分)15.(8分)解下列方程组:(1)(2)解:(1)方程①可化简为3x-2y=8.③②+③,得6x=18,所以x=3.把x=3代入②,解得y=.所以原方程组的解为(2)由题意,得3x+5(x+y)=3y+4(x+y),即y=2x.把y=2x代入第一个方程,得3x+15x=36,解得x=2.所以y=4.所以原方程组的解为16.(6分)已知关于x,y的方程组与的解相同,求a,b 的值.解:根据题意,得方程组①+②,得2x=4,解得x=2.把x=2代入①得y=-1.把代入得解得17.(7分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?解:(1)若某月用水量为18立方米,则应交水费45元.(2)设函数表达式为y=kx+b(x>18),因为直线y=kx+b过点(18,45),(28,75),所以解得所以y=3x-9(x>18).由81元>45元,得用水量超过18立方米,所以当y=81时,3x-9=81,解得x=30.答:这个月用水量为30立方米.18.(7分)在解方程组时,由于粗心,甲看错了方程组中的a,而得解为乙看错了方程组中的b,而得解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.解:(1)将x=-3,y=-1代入ax+5y=15,解得a=-,即甲把a看成了-.将x=5,y=4代入4x-by=-2,解得b=,即乙把b看成了.(2)将x=-3,y=-1代入4x-by=-2,解得b=10.将x=5,y=4代入ax+5y=15,解得a=-1.所以原方程组为解得19.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.解:(1)因为(1,b)在直线y=x+1上,所以当x=1时,b=1+1=2.(2)(3)直线y=nx+m也经过点P.理由如下:因为点P(1,2)在直线y=mx+n上,所以m+n=2,所以2=n×1+m,这说明直线y=nx+m 也经过点P.20.(8分)(2018济南)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每名学生只能参加其中一项馆,则能节省票款多少元.解:设参观历史博物馆的有x人,参观民俗展览馆的有y人,根据题意得解得所有人都参观历史博物馆,所需票款为10×150=1 500(元),则可省下票款为2 000-1 500=500元.答:参观历史博物馆的人数为100人,参观民俗展览馆的人数为50人;若所有人都参观历史博物馆,则可节省票款500元.附加题(共20分)21.(10分)为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察,发现它们可以根据人的身长调求出这个关系式;(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77 cm,凳子的高度为43.5 cm,请你判断它们是否配套,说明理由.解:(1)把x=37时y=70,x=40时y=74.8,分别代入y=kx+b,得解得所以桌高y与凳高x满足的关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4≠77,所以它们不配套.22.(10分)已知某电脑公司有A型,B型,C型三种型号的电脑,其价格分别为A型每台6 000元,B型每台4 000元,C型每台2 500元,某中学计划将100 500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.解:(1)设购买A型电脑x台,B型电脑y台,根据题意,得解得显然不合题意,舍去.(2)设购买A型电脑a台,C型电脑b台,根据题意,得解得(3)设购买B型电脑m台,C型电脑n台,根据题意,得解得综上可知,共有两种方案可供选择:购买A型电脑3台,C型电脑33台,或购买B 型电脑7台,C型电脑29台.。

2018-2019学年七年级下学期期末考试数学试卷含答案解析

2018-2019学年七年级下学期期末考试数学试卷含答案解析
19、计算(5 分)0.04 3 27 1 4
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间

2017-2018学年四川省成都市成华区七年级(下)期末数学试卷(解析版)

2017-2018学年四川省成都市成华区七年级(下)期末数学试卷(解析版)

2017-2018学年四川省成都市成华区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,∠1和∠2是一对()A. 对顶角B. 同位角C. 内错角D. 同旁内角2.计算a3•a2正确的是()A. aB. a5C. a6D. a93.下列各图中,∠1与∠2互为余角的是()A. B. C. D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A. 7.6×10−9B. 7.6×10−8C. 7.6×109D. 7.6×1085.下列计算正确的是()A. 3a+4b=7abB. (ab3)3=ab6C. (a+2)2=a2+4D. x12÷x6=x66.下面各语句中,正确的是()A. 同角或等角的余角相等B. 过一点有且只有一条直线与已知直线平行C. 互补的两个角不可能相等D. 相等的角是对顶角7.在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下表关系:x(kg)01234…y(cm)1010.51111.512…下列说法不正确的是()A. y随x的增大而增大B. 所挂物体质量每增加1kg弹簧长度增加0.5cmC. 所挂物体为7kg时,弹簧长度为13.5cmD. 不挂重物时弹簧的长度为0cm8.如图,下列判断中错误的是()A. 由∠A+∠ADC=180∘得到AB//CDB. 由AB//CD得到∠ABC+∠C=180∘C. 由∠1=∠2得到AD//BCD. 由AD//BC得到∠3=∠49.如图,点E在线段BA的延长线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A. 50∘B. 40∘C. 30∘D. 20∘10. 星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA -AB -BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A. B.C.D.二、填空题(本大题共9小题,共36.0分)11. 某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中______是自变量,______是因变量. 12. 如果一个角的补角是150°,那么这个角的余角的度数是______度. 13. 如果二次三项式x 2+mx +25是一个完全平方式,则m =______. 14. 园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S (平方米)与工作时间t (小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为______平方米. 15. 计算:42016×(-0.25)2017=______.16. 如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC =40°,则∠BCD的度数是______.17. 若3m =6,9n =2,则32m -4n +1=______.18. 已知(x -y )2=259,x +y =76,则xy 的值为______.19. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序);)2017展开式中含x2015项的系数是______.请依据上述规律,写出(x−2x三、计算题(本大题共3小题,共24.0分)20.计算下列各题)−2(1)32÷(-2)3+(2017-π)0+|-32+1|−(12(2)4xy2(2x-xy)÷(-2xy)2(3)(x-1)(x-1)(x2-1)21.计算下列各题:(1)20172-2018×2016(2)(3x-y+2)(3x+y-2)22.先画简,再求值:(x+y)2-(x+y)(x-y)+y(x-2y),其中x,y满足(x-1)2+|1-y|=0四、解答题(本大题共6小题,共60.0分)23.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.24.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.25.小明在暑假社会实践活动中,以每千克1.2元的价格从批发市场购进若干千克西瓜市场上去销售,在销售了40千克之后,余下的打5折全部售完.销售金额y(元)售出西瓜的千克数x(千克)之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系;(2)小明这次社会实践活动赚了多少钱?(3)若要使这次活动赚44元钱,问余下的西瓜应打几折销售完?26.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:______.方法2:______.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m-n)2=5,请利用(2)中的等式,求mn的值.27.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA 的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.28.阅读理解并完成下面问题:我们知道,任意一个正整数c都可以进行这样的因式分解:c=p×q(p,q是正整数),在c的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是c的最佳分解.并规定:F (c )=pq (其中p ≤q ).例如:12可以分解成1×12,2×6或3×4,因为|1-12|>|2-6|>|3-4|,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数,若m 是一个完全平方数,求F (m )的值;(2)如果一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,那么我们称这个两位正整数t 为“吉祥数”,求符合条件的所有“吉祥数”;(3)在(2)中的所有“吉祥数”中,求F (t )的最小值.答案和解析1.【答案】C【解析】解:∠1与∠2是内错角,故选:C.∠1与∠2符合内错角定义.本题考查了内错角的判别,熟练掌握内错角的定义是关键.2.【答案】B【解析】解:a3•a2=a3+2=a5.故选:B.根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.【答案】B【解析】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选B.如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.本题考查了余角的定义,掌握定义并且准确识图是解题的关键.4.【答案】A【解析】解:0.0000000076用科学记数法表示为7.6×10-9.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】D【解析】解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.6.【答案】A【解析】解:A、同角或等角的余角相等,正确;B、过直线外一点有且只有一条直线与已知直线平行,错误;C、互补的两个角可能相等,错误;D、相等的角不一定是对顶角,错误;故选:A.A、根据余角的性质进行判断;B.根据平行公理进行判断;C.根据补角的定义进行判断;D.根据对顶角的定义进行判断.本题考查了对顶角的定义,平行公理,余角的性质,是基础知识,比较简单.7.【答案】D【解析】解:A、y随x的增大而增大,正确;B、所挂物体质量每增加1kg弹簧长度增加0.5cm,正确;C、所挂物体为7kg时,弹簧长度为13.5cm,正确;D、不挂重物时,弹簧的长度为10cm,错误;故选:D.由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度进行解答即可.本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.8.【答案】D【解析】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选:D.根据平行线的性质与判定,逐一判定.此题考查了平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角.9.【答案】C【解析】解:∵AD∥BC,∴∠B=∠EAD=30°.∵AD平分∠EAC,∴∠DAC=∠EAD=30°.∵AD∥BC,∴∠C=∠DAC=30°.故选:C.首先根据平行线的性质可得∠EAD=∠B,∠DAC=∠C,再根据AD是∠EAC的平分线,可得∠EAD=∠CAD.利用等量代换可得∠B=∠C=30°.此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.【答案】B【解析】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.11.【答案】销售量;销售收入【解析】解:根据题意知,公司的销售收入随销售量的变化而变化,所以销售量是自变量,收入数为因变量.故答案为:销售量,销售收入.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量,会变动的数为自变量.本题考查的是对函数定义中自变量和因变量的判定和对定义的理解.12.【答案】60【解析】解:180°-150°=30°,90°-30°=60°.故答案为:60°.首先求得这个角的度数,然后再求这个角的余角.本题主要考查的是补角和余角的定义,掌握补角和余角的定义是解题的关键.13.【答案】±10【解析】解:∵x2+mx+25=x2+mx+52,∴mx=±2×5×x,解得m=±10.故答案为:±10.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.【答案】50【解析】解:休息后2小时内绿化面积为160-60=100平方米.∴休息后园林队每小时绿化面积为.故答案为:50根据休息后2小时的绿化面积100平方米,即可判断;本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.15.【答案】-0.25【解析】解:42016×(-0.25)2017=[4×(-0.25)]2016×(-0.25)=-0.25.故答案为:-0.25根据幂的乘方和积的乘方法则解答即可.此题考查幂的乘方和积的乘方,关键是根据法则计算.16.【答案】130°【解析】解:如图,过C作HK∥AB.∴∠BCK=∠ABC=40°.∵CD⊥EF,∴∠CDF=90°.∵HK∥AB∥EF.∴∠KCD=90°.∴∠BCD=∠BCK+∠KCD=130°.故选答案为:130°.过C作HK∥AB.利用平行线的性质得出∠B=∠BCK,∠KCD=90°,进而得出答案.此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.17.【答案】27【解析】解:原式=32m÷34n×3=3m×3m÷92n×3=6×6÷4×3=27故填27.根据题意进行同底数幂的运算,注意同底数幂相乘底数不变指数相加,根据此可得出答案.本题考查代数式的求值,关键在于掌握同底数幂相乘底数不变指数相加.18.【答案】-1748【解析】解:∵x+y=.∴(x+y)2=x2+y2+2xy=,(x-y)2==x2+y2-2xy.∴xy===-.故答案为:-.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.19.【答案】-4034【解析】解:(x-)2017展开式中含x2015项的系数,由(x-)2017=x2017-2017•x2016•()+…可知,展开式中第二项为-2017•x2016•()=-4034x2015,∴(x-)2017展开式中含x2015项的系数是-4034,故答案为:-4034.首先确定x2015是展开式中第几项,根据杨辉三角即可解决问题.本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.20.【答案】解:(1)原式=32÷(-8)+1+9-1-4=-4+1+9-1+4=9;(2)原式=(8x2y2-4x2y2)÷4x2y2=2-y;(3)原式=(x2-2x+1)(x2-1)=x4-x2-2x3+2x+x2-1=x4-2x3+2x-1.【解析】(1)根据实数混合运算顺序和运算法则计算可得;(2)先计算乘法,再计算除法可得;(3)根据多项式乘多项式依次计算可得.本题主要考查实数与整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则.21.【答案】(1)解:原式=20172-(2017+1)(2017-1)=20172-(20172-1)=1;(2)解:原式=[3x-(y-2)][3x+(4-2)]=9x2-(y-2)2=9x2-y2+4y-4.【解析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式利用平方差公式,完全平方公式计算即可求出值.此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.22.【答案】解:原式=x2+2xy+y2-(x2-y2)+xy-2y2=x2+2xy+y2-x2+y2+xy-2y2=3xy.∵(x-1)2+|1-y|=0.∴x=1,y=1.把x=1,y=1代入原式=3×1×1=3.【解析】根据平方差公式和完全平方公式进行计算,再根据非负数性质得出x,y的值,代入计算即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简与非负数性质是解此题的关键.23.【答案】解:∵AB∥CD(已知).∴∠A+∠ACD=180°(同旁内角已互补,两直线平行).∵∠A =105°.∴∠ACD =75°.∵∠DCE =∠ACD -∠ACE ,∠ACE =51°.∴∠DCE =24°.∵CD ∥EF (已知).∴∠E =∠DCE (两直线平行、内错角相等).∴∠E =24°.【解析】直接利用平行线的性质得出∠ACD=75°,进而得出∠DCE=24°,再得出∠E=∠DCE 即可得出答案.此题主要考查了平行线的性质,正确得出∠DCE 的度数是解题关键. 24.【答案】解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12∠ABC ,∠ECB =12∠ACB ,∵∠ABC =∠ACB ,∴∠DBF =∠ECB ,∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF .【解析】 此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F .根据BD 平分∠ABC ,CE 平分∠ACB ,得出∠DBF=∠ABC ,∠ECB=∠ACB ,∠DBF=∠ECB ,再根据∠DBF=∠F ,得出∠ECB=∠F ,即可证出EC ∥DF .25.【答案】解:(1)设y =kx .∵y =kx 过点(40,80).∴y =2x .(2)由y =2x 可得,x ≤40时售价为2元.∵当x >40时,售价为2×0.5=1元. (110-80)÷1=30, ∴这批西瓜的总重量-30+40=70千克.,∴40×2+(70-40)×1-70×1.2=26元. (3)设余下的西瓜打a 折.40×2+30×2×a -70×1.2=44.80×60a -84=44. ∴a =0.8.∴当余下的西瓜打8折销售,这次活动可赚44元.【解析】(1)设y=kx.将(40,80)代入求解即可;(2)先求得降价后的单价,然后可求得降价后出售的重量,从可求得这批西瓜的总总量,然后可求得这次社会实践活动赚了多少钱;(3)设余下的西瓜打a折,根据这次活动赚44元钱列方程求解即可.本题主要考查的是一次函数的应用,求得这批西瓜的总重量是解题的关键.26.【答案】(1)4ab;(a+b)2-(a-b)2.(2)(a+b)2-(a-b)2=4ab,成立.证明:∵(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)=4ab.∴(a+b)2-(a-b)2=4ab.(3)由(2)得:(2m+n)2-(2m-n)2=8mn.∵(2m+n)2=13,(2m-n)2=5,∴8mn=13-5=8.∴mn=1.【解析】解:(1)阴影部分的面积为:4ab或(a+b)2-(a-b)2,故答案为:4ab;(a+b)2-(a-b)2.(2)见答案;(3)见答案.(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据(2)的结论代入即可解答.本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等,列等式是解题的关键.27.【答案】解:(1)如图1,过点P作PE∥MN.∵PB平分∠DBA.∠DBA=40°.∴∠BPE=12∴∠BPE=∠DBP=40°(两直线平行,内错角相等).∠DCA=25°.同理可证.∠CPE=∠PCA=12∴∠BPC=40°+25°=65°.(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°-80°=100°.∵BP平分∠DBA.∠DBA=50°.∴∠DBP=12∵MN∥PE,∴∠BPE=180°-∠DBP=130°(两直线平行,同旁内角互补).∵PC平分∠DCA.∠DCA=25°(两直线平行,内错角相等).∴∠PCA=∠CPE=12∴∠BPC=130°+25°=155°.(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=40°=∠BPE(两直线平行等,内错角相等).∴CP平分∠DCA.∠DCA=180°-∠DCG=130°.∠DCA=65°.∴∠PCA=12∴∠CPE=180°-∠PCA=150°(两直线平行,同旁内角互补).∴∠BPC=40°+115°=155°.【解析】(1)过点P作PE∥MN,根据平行线的性质和角平分线的性质得:.,相加可得结论;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=180°-80°=100°.由角平分线和平行线的性质得∠BPE=130°.,相加可得结论;(3)如图3,作平行线,同理可得结论.本题考查了角平分线和平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.28.【答案】解:(1)∵m 是完全平方数∴m =p ×q 且p =q ∴F (m )=p q =1;(2)设正整数为:10x +y ,则t ′=10y +x ,∵10y +x -(10x +y )=18,则9y -9x =18,故(y -x )=2.∴t 可取13,24,35,46,57,68,79;(3)由(2)得.∴F (13)=113,F (24)=46=23,F (35)=57,F (46)=223,F (57)=319,F (68)=417,F (79)=179. ∵57>23>417>319>223>113>179.∴F (t )的最小值为179.【解析】(1)直接利用完全平方数的概念分析得出答案;(2)利用一个两位正整数t ,交换其个位数字与十位数字得到的新两位数减去原数所得的差为18,得出等式求出答案;(3)利用(2)中所求,分别计算得出答案.此题主要考查了完全平方数,正确利用新定义得出符合条件的数字是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下期期末试题
班级 姓名 全卷满分150分;考试时间120分钟.
A 卷(共100分)
第Ⅰ卷(选择题,共30分) 一、选择题(每小题3分,共30分) 1.下列运算正确的是( )
A .954a a a =+
B .33333a a a a =⋅⋅
C .459236a a a ⋅=
D .()74
3a a =-
2.下列图形中,轴对称图形是( )
A .
B .
A B C D 3.如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线, 则∠1与∠2的关系一定成立的是( )
A .相等
B .互余
C .互补
D .对顶角 4.下列各式中,计算结果为81-x 2的是( ) A .()()99-+x x B .()()99--+x x
C .()()99--+-x x
D .()()99---x x 5.如图,已知AB//CD ,∠A =70°,则∠1度数是( )
A .70°
B .100°
C .110°
D .130° 6.国家质检总局出台了国内销售纤维制品的甲醛含量标准,该标准规定:针织内衣、被套、床上用品等直接接触皮肤的制品,甲醛含量应在百万分之七十五以下.百万分之七十五用科学记数法表示应写成( )
A .7.5×10-6
B .7.5×10-5
C .7.5×10-4
D .7.5×105 7. 一个长方形的面积为4a 2-6ab+2a ,它的长为2a ,则宽为( ) A . 2a -3b +1 B .2a -3b C .2a -6b+1 D .4a -6b+2
第3题图
第5题图
8.下列事件:
①两条直线被第三条直线所截,同位角相等. ②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1.④有两边及一角对应相等的三角形全等. 其中确定事件有( )
A .1个
B .2个
C .3个
D .4个 9.如图,在△ABC 和△DEF 中,给出以下六个条件: (1)AB=DE,(2)BC=EF ,(3)AC=DF , (4)∠A =∠D ,(5)∠B =∠
E ,(6)∠C =∠
F , 以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是( )
A .(1)(5)(2)
B .(1)(2)(3)
C .(4)(6)(1)
D .(2)(3)(4)
10.如图是某人骑自行车的行驶路程s (千米)与行驶时间t
的函数图象,下列说法不正确...的是( ) A .从1时到2时匀速前进 B .从1时到2时在原地不动
C .从0时到3时,行驶了30千米
D .从0时到1时与从2时到3时的行驶速度相同
二.填空题(本大题共4个小题,每小题4分,共16分) 11. 若A ∠=35°,则A ∠的补角的度数是 度.
12.如图,已知AB BD ⊥于B ,ED BD ⊥于D ,点C 在BD 上,且AB CD =,BC DE =,则ACE ∠=______度.
13.计算:()()3232-++-y x y x = .
14.如图,∠ABC 的平分线与∠ACB 的外角平分线相交于点D ,过点D 作 EF ∥BC ,
交AB 于E ,交AC 于F ,若BE =8cm ,CF =5cm ,则EF = .
t (时)
第10题图
第12题图
第9题图
三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分) (1) 计算:()()2
201531213π-⎛⎫
---+--- ⎪⎝⎭
(2) 计算:2
23333⎪⎭⎫
⎝⎛--⎪⎭⎫ ⎝⎛+x x
16.(本小题满分7分)
如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求当a=3,b=2时的绿化面积.
17.(本小题满分8分)
如图,已知ABC △的面积是212cm ,6cm BC =,在BC 边上有一动点P ,连接AP ,设BP x =,ABP S y =△.
(1)作AD ⊥BC 于D ,求y 与x 之间的关系式;
(2)用表格表示当x 从1变到6时(每次增加1),y 的相应值;
(3)当x 每增加1时,y 如何变化?
D
A
B
F
E
C
18.(本小题满分8分)
某书店参加某校读书活动,并为每班准备了A ,B 两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班甲、乙两名优秀读者都想获得A 名著,于是班主任决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A 名著;若牌面数字之和为奇数,则乙获得A 名著,你认为此规则对甲、乙双方公平吗?为什么?
19.(本小题满分9分)
已知:如图,AB CD =,AB CD ∥,点E F ,在BD 上,DE BF =. 求证:(1)AF CE =;(2)AE ∥CF .
20.(本小题满分10分)
如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC 于点G ,在GD 的延长线上取点E ,使DE=DB ,连接AE ,CD. (1)求证:△AGE ≌△DAC ;
(2)过点E 作EF ∥DC ,交BC 于点F ,请你连结AF , 试判断△AEF 的形状,并说明理由.
B 卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分) 21.已知012=-+y x ,则6355x y ⋅的值为 .
22.从长为10cm 、7cm 、4cm 、3cm 的四条线段中任选三条,则所选三条线段能够成三角形的概率是_____.
23.如图,在ΔABC 中,∠BAC =90°,DA ⊥BC 于点D ,∠ABC
的平分线BE 交AD 于F ,交AC 于E ,若AE =3,DF =2,则AD=_______.
24.观察下列各式后填空:
①()()1112
-=+-x x x ; ②()()
1113
2
-=++-x x x x ;
③32(1)(1)x x x x -+++=14-x ; (
1












65432(1)(1)x x x x x x x -++++++= ;
(2)利用该规律计算:20153233331+++++ = . 25. 如图,在△ABC 中,AC=BC ,∠ACB =90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连接CD ,给出四个结论:①∠ADC =45°;②BD=AE ;③AC+CE=AB ;④AB-BC=2MC ;其中正确的结论有__________________.
二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)
(1)已知(a +b )2=7,(a -b )2=4,求a 2+b 2和ab 的值.
(2)已知y x ,满足y x x y --+-=4
5
222,求代数式y x xy +的值
第25题图
第23题图
如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通.A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km .现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货.该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为x km ,这辆货车每天行驶的路程为y km . (1)用含x 的代数式填空: 当0≤x
≤25时:
货车从H 到A 往返1次的路程为2x km ,
货车从H 到B 往返1次的路程为____________km , 货车从H 到C 往返2次的路程为____________km , 当25<x ≤35时:
这辆货车每天行驶的路程y =_________________; (2)求y 与x 之间的关系式;
(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)
如图,已知∠ABC=90°,△ABD是边长为3的等边三角形,点E为射线BC 上任意一点(点E与点B不重合),连结AE,在AE上方作等边三角形AEF,连结FD并延长交射线BC于点G.
(1)如图甲,当BE=BA时,求证:△ABE≌△ADF;
(2)如图乙,当△AEF与△ABD不重叠时,求∠FGC的度数;
(3)若将已知条件中的“在AE的上方作等边三角形AEF,连结FD并延长交射线BC于点G.”改为“在AE的下方作等边三角形AEF,连结FD交射线BC于点G.”(如图丙所示),试问当点E在何处时BD∥EF?并求此时△AEF的周长.。

相关文档
最新文档