目的基因的获得酵母双杂交

合集下载

酵母双杂技术的原理和应用

酵母双杂技术的原理和应用

酵母双杂技术的原理和应用一、酵母双杂技术的原理酵母双杂技术是一种重要的基因工程技术,其原理主要包括以下几个方面:1.酵母双杂技术的基本原理:酵母双杂技术基于酵母细胞中的两种杂交酵母菌株,一种包含目标酵母蛋白的报告基因,另一种包含潜在的酵母互补DNA库。

通过把这两个酵母菌株共同培养在含有特定酵母蛋白诱导剂的培养基中,使得目标酵母蛋白和潜在互补DNA库中的DNA相互作用,从而筛选出与目标蛋白相互作用的DNA序列。

2.双杂交酵母菌株的构建:首先需要构建含有目标酵母蛋白的报告基因表达酵母菌株,该菌株会在酵母细胞中表达目标蛋白。

同时,还需要构建潜在酵母互补DNA库,该库中含有大量酵母基因组DNA片段的克隆。

3.酵母菌株的培养和筛选:将目标蛋白报告基因酵母菌株和酵母互补DNA库菌株共同培养在含有诱导剂的培养基中,诱导目标蛋白和潜在互补DNA库中的DNA发生相互作用。

然后利用适当的筛选方法,如抗生素抗性筛选或含有荧光素底物的筛选,筛选出与目标蛋白相互作用的克隆。

二、酵母双杂技术的应用酵母双杂技术广泛应用于生物医药、生物学研究等领域,具有多个重要的应用方面:1.蛋白相互作用的研究:通过酵母双杂技术,可以快速筛选出与目标蛋白相互作用的DNA序列,从而深入研究蛋白相互作用的机制和功能。

这对于揭示生物体内复杂蛋白相互作用网络、研究疾病相关蛋白相互作用具有重要意义。

2.新药靶点的发现:通过酵母双杂技术,可以筛选出与药物分子相互作用的蛋白,从而为新药靶点的发现提供候选蛋白。

这对于药物研发和临床治疗具有重要意义。

3.基因功能研究:通过酵母双杂技术,可以筛选出与目标基因相互作用的蛋白,从而推断目标基因的功能。

这有助于揭示基因的调控机制和功能。

4.疾病相关基因的筛选:通过酵母双杂技术,可以筛选出与疾病相关的基因,从而对疾病的发生机制和治疗提供有价值的信息。

5.基因治疗的研究:通过酵母双杂技术,可以筛选出与治疗目标相关的蛋白或基因,从而为基因治疗的研究提供候选靶点或治疗策略。

双杂交技术实验步骤

双杂交技术实验步骤

双杂交技术实验步骤
双杂交技术是一种常用的分子生物学实验技术,用于研究蛋白质-蛋白质相互作用以及蛋白质-核酸相互作用。

下面是双杂交技术的实验步骤:
1. 构建酵母双杂交系统:选择酵母菌株(如Saccharomyces cerevisiae),构建表达载体,将目标基因的编码区域与转录激活因子(如GAL4)的DNA结合,构建双杂交系统。

2. 交叉配对:将两个转录激活因子(如GAL4)的相应DNA结合区域与目标融合基因的编码区域分别克隆到不同的表达载体中,转化至酵母细胞中,利用交叉配对使两个融合蛋白质相互作用。

3. 筛选阳性克隆:利用选择性培养基,在表达载体中加入抗性标记基因,对转化后的酵母细胞进行筛选,筛选出阳性克隆,即能够生长在选择性培养基上的克隆。

4. 验证蛋白质相互作用:通过酵母双杂交系统筛选出的阳性克隆,可以采用进一步的验证实验,如酵母生长抑制实验、酵母
beta-galactosidase报告基因系统等,来确定蛋白质相互作用的可靠性。

5. 验证蛋白质相互作用位点:通过酵母双杂交技术,在确定蛋白质相互作用的基础上,还可以进一步确定相互作用的位点,如利用DNA序列分析、点突变等方法,对融合蛋白质的序列进行改变,观察改变对蛋白质相互作用的影响,从而确定蛋白质相互作用位点。

总之,双杂交技术是一种重要的分子生物学实验技术,可以帮助
我们研究蛋白质相互作用、细胞信号转导等重要生物学问题。

酵母双杂交技术原理

酵母双杂交技术原理

酵母双杂交技术原理
酵母双杂交技术是一种常用的遗传交互技术,用于检测蛋白质之间的相互作用关系。

其原理基于两个主要组成部分:DNA 结合域和活化域。

在酵母双杂交系统中,常用的DNA结合域是DNA结合蛋白Gal4,它可以结合在特定的DNA序列上,形成Gal4-DNA复合物。

同时,活化域是Gal4的活化域,它具有激活靶基因表达的能力。

当两个蛋白质相互作用时,可以通过特定的实验设计,将待测蛋白质A与Gal4的DNA结合域、待测蛋白质B与Gal4的活化域结合,从而在酵母细胞中形成Gal4-DNA-A-B的复合物。

这个复合物可以激活靶基因的表达,从而使被激活的基因产生可观察的表型改变(比如生长能力、荧光等),表明蛋白质A 和B之间存在相互作用。

另外,在酵母双杂交系统中引入了质粒的概念,可以通过构建不同的融合质粒来进一步验证蛋白质相互作用的强弱以及特异性。

例如,可以构建融合质粒A-DNA结合域-AD活化域和融合质粒B-DNA结合域-BD活化域,并通过检测酵母细胞的表型改变来判断蛋白质A和B之间的相互作用。

总体来说,酵母双杂交技术基于蛋白质与蛋白质之间的相互作用,通过构建特定的融合质粒和酵母细胞表型改变的观察,来验证蛋白质之间的相互作用关系。

这项技术在生命科学研究中广泛应用,有助于揭示蛋白质网络的复杂关系和功能。

酵母双杂交的原理及其应用

酵母双杂交的原理及其应用

酵母双杂交的原理及其应用1. 引言酵母双杂交是一种常用的分子生物学技术,可以用于研究蛋白质相互作用、识别蛋白质结构域、筛选靶蛋白等。

本文将介绍酵母双杂交的原理及其在科研和药物研发领域的应用。

2. 酵母双杂交的原理酵母双杂交利用酵母细胞中的转录激活因子(TF)和DNA结合域(DBD)的相互作用来探测蛋白质的相互作用。

该技术主要包括两个重要组成部分:诱饵(bait)与猎物(prey)。

2.1 诱饵(bait)诱饵通常是感兴趣蛋白质的DNA结合域(DBD),可以通过基因工程方法将其与转录激活因子(TF)融合,并构建到酵母细胞中。

2.2 猎物(prey)猎物是待测蛋白质,可以将其与激活域融合,并构建到酵母细胞中。

2.3 相互作用检测当诱饵与猎物相互作用时,其融合蛋白质能够形成转录激活复合物。

该复合物能够通过激活报告基因(如LacZ或荧光蛋白)的表达来检测相互作用的发生。

3. 酵母双杂交的应用酵母双杂交技术在科研和药物研发领域有广泛的应用。

3.1 蛋白质相互作用的研究酵母双杂交技术可以用于筛选和验证蛋白质相互作用的目标。

通过构建不同的诱饵和猎物,可以识别和验证蛋白质相互作用的蛋白质。

3.2 靶蛋白筛选酵母双杂交技术可以用于筛选潜在的靶向蛋白质。

通过将蛋白质库(library)与诱饵进行组合,可以筛选出与诱饵相互作用的猎物,进而识别潜在的靶向蛋白质。

3.3 药物研发酵母双杂交技术可以用于药物研发的初步筛选。

通过将化合物库与诱饵进行组合,可以筛选出与诱饵相互作用的化合物,进而确定潜在的药物候选物。

3.4 蛋白质结构域识别酵母双杂交技术可以用于识别蛋白质的结构域。

通过将蛋白质的不同结构域与诱饵进行组合,可以确定某个结构域的相互作用蛋白质。

4. 结论酵母双杂交是一种有效的蛋白质相互作用研究方法,广泛应用于科研和药物研发领域。

通过酵母双杂交技术,可以识别蛋白质相互作用、筛选靶蛋白等,为蛋白质相关研究和药物研发提供了有力的工具。

酵母双杂交系统

酵母双杂交系统

4.寻找具有药物治疗作相互作 用的多肽、如果靶蛋白是药物设计的目标的话, 可以得到一些具有药物治疗作用的小分子多肽 药物 。Yang等证明了一段Leu-X-Cys-X-GIu 多肽可以和成视网膜细胞瘤(Rb)蛋白相互结合。 为这项研究打下了基础。
5.寻找与调控蛋白相互作用的化 合物
用以确定有相互作用的两个蛋白,在 恢复转录活性的双杂交系统中加入某一 分子化合物后。再检测报告基因的表达 强度,可以寻找抑制蛋白一蛋白相互作 用的小分子化合物。
6.蛋白质相互作用图谱的绘制
随着基因组研究计划的发展,以及mRNA 在不同组织器官及不同发育阶段的表达图 谱的构建(body map),蛋白质在不同时空 状态下相互作用图谱的构建也逐渐展开。 在双杂交系统的BD及AD均接上cDNA库,让 它们随机表达蛋白,这样检测报告基因表 达的可能是A-B,B-c⋯⋯等一系列崭新的 蛋白一蛋白相互作用,据此可以绘出A-B -C的蛋白联系图谱。
母菌株含有特定报告基因,并已经去除相应转
录因子的编码基因,因此本身无报告基因的转 录活性。如果X、Y蛋白在酵母核内发生相互 作用,导致了BD与AD在空间上的接近,从而 激活UAS下游启动子调节的报告基因的表达,
使转化体可在特定的缺陷培养基上生长。通过 筛选阳性菌落即可检测 “诱饵”和 猎物”蛋
白间的相互作用。
当GAL4的DNA结合区与DNA上游的激活序列(upstream activating sequence,UAS)结合,其转录激活区则能有效 地激活UAS下游报告基因的转录;当两者不能通过中间 序列结合,任一区域都不会激活下游报告基因的转录. 酵母双杂交系统将待研究的两个蛋白质,其中之一与 DNA结合区蛋白质构建成第一个融合蛋白,另外一个与 转录激活LacZ基因还可以与

酵母双杂交具体实验流程

酵母双杂交具体实验流程

酵母双杂交具体实验流程
酵母双杂交(Yeast Two-Hybrid,Y2H)是一种常用的蛋白质相互作用分析方法,它基于酵母细胞内存在的转录激活子结合域(Transcription Activation Domain,TAD)和DNA结合域(DNA Binding Domain,DBD),通过融合特定的蛋白质序列并在酵母细
胞中共同表达,以实现筛选并鉴定蛋白质相互作用的目的。

酵母双杂交具体实验流程如下:
1.构建启动子驱动的酵母表达载体
该载体包含两部分:AD与DB,分别携带TAD和DBD结构域。

这些结构域可以具体化作为外源蛋白的两个互补部分,这样当它们相互结
合时,激活酵母内的报告基因(RLUC或LacZ)表达,并通过信号放
大器Cre的介入增强了信号。

2.构建融合基因的酵母表达载体
将想要研究的两种蛋白质的氨基酸序列分别连接到AD与DB的C端,形成融合蛋白质基因,然后将融合基因与启动子驱动的表达载体转化
入双杂交酵母细胞。

3.获得蛋白质相互作用的筛选和确认
通过对酵母双杂交转化后的细胞进行筛选,并通过对表达的信号进行观察和测量,得到蛋白质相互作用的筛选结果。

4.确定筛选结果的真实性
在确定特定蛋白质相互作用是否真实的过程中,通常会进行一些补充实验。

例如,可以通过分析生化反应,并利用免疫共沉淀等方法验证筛选结果的可靠性。

总的来说,酵母双杂交是一种常用的蛋白质相互作用分析方法,它可以快速、可靠地鉴定蛋白质相互作用,从而帮助研究者更深入地探究蛋白质的功能和作用机制。

酵母双杂杂交回复验证实验

酵母双杂杂交回复验证实验

酵母双杂杂交回复验证实验一、引言酵母双杂杂交回复验证实验是一项常用于研究酵母菌遗传性状的实验方法。

通过将两个不同株系的酵母菌互相杂交,观察其后代的表型,可以确定不同基因型对于特定性状的影响,以及基因之间的相互作用关系。

这项实验提供了一种有效的手段来研究酵母菌的遗传特性,并为从酵母菌到其他生物的研究提供了重要参考。

二、实验设计1. 实验目的确认酵母菌的遗传性状以及基因型之间的相互作用关系。

2. 实验步骤1.选取两个不同基因型的酵母菌株进行杂交。

2.将两个酵母菌株分别培养在适宜的培养基上,以获得足够数量的酵母菌细胞。

3.将两个酵母菌株的细胞混合在一起,使其进行杂交。

4.将混合后的酵母菌细胞培养在选择性培养基上,以筛选出杂交后的酵母菌子代。

5.观察酵母菌子代的表型特征,并将其形态记录下来。

3. 实验材料•两个不同基因型的酵母菌株•培养基及培养仪器•选择性培养基4. 实验结果通过观察酵母菌子代的表型特征,可以得到各个基因型对于特定性状的影响情况。

如果两个酵母菌株的基因型在某一性状上有不同表现,那么杂交后的子代在该性状上可能表现出两种不同的表型。

这种表型的分离现象可以帮助确定酵母菌的遗传性状。

5. 实验分析通过对大量的酵母菌子代进行观察和统计,可以得到不同基因型对于特定性状的影响程度,以及基因之间的相互作用关系。

这些数据可以用来构建酵母菌的遗传模型,推测特定基因在遗传性状中的作用机制。

三、实验应用酵母双杂杂交回复验证实验在酵母研究领域具有广泛的应用价值。

以下是一些应用示例:1. 基因功能研究通过观察不同基因型的酵母菌子代的表型,可以推测特定基因在酵母菌生命周期、代谢途径等方面的作用。

这对于全面理解基因功能具有重要意义。

2. 病原机制研究酵母双杂杂交回复验证实验可以帮助研究人员解析酵母菌导致疾病的机制。

通过分析酵母菌的基因型与特定疾病的发生关系,可以发现关键基因及其表达调控途径,为疾病治疗和预防提供新思路。

(完整版)酵母双杂交原理

(完整版)酵母双杂交原理

酵母双杂交系统原理酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。

典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。

前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。

二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。

而且不同两结构域可重建发挥转录激活作用。

酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。

主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。

上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。

融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。

例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。

因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。

双杂交系统的另一个重要的元件是报道株。

报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。

最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。

〈2〉具有可直接进行选择的标记基因和特征性报道基因。

〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。

一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gal4的DNA-BD可识别位于Gal4效应基因的UAS, 并可与之结合;
Gal4的AD则可与转录复合物中其他成分结合, 激活UAS下游报告基因LacZ的转录。
三、酵母双杂L4 UAS
Promoter
GAL4 UAS
Promoter
lacZ(or HIS) reporter gene
蛋白B Active domain DNA binding domain 蛋白A
4. 观察报告基因表达
在体内,蛋白A与蛋白B是否能结合。
蛋白A
蛋白B
(1)如果蛋白A与蛋白B不能相互结合 GAL4的BD domain与AD Domain也不能靠近, 所以仍然不能启动效应基因的转录。
(2)如果蛋白A与蛋白B能相互结合
AD由位于C-末端的768~881位多肽构成。 Gal4的两个结构域位于不同肽链上,只要它们在空 间上充分接近,则能恢复Gal4作为转录因子的活性。
Fields和Song将两个融合蛋白分别构建在穿 梭质粒上,一个是将Gal4的DNA-BD与酵母蛋 白SNF1融合;另一个是将Gal4的AD和酵母蛋 白SNF4融合。
酵母细胞作为报道株的酵母双杂交系统具有许多优点: 易于转化、便于回收扩增质粒 具有可直接进行选择的标记基因和特征性报告基因 酵母的内源性蛋白不易同来源于哺乳动物的蛋白相
互结合
改造后的酵母细胞的特点:
基因组中GAL4基因是缺失型的 基因组中引入额外的报告基因LEU、TRP、HIS
二、酵母双杂交系统的建立
经典文献出处
Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230):245-246
1989年美国纽约州立大学的Fields和Song首先描述了酵 母双杂交系统(yeast two-hybrid system)。
DNA binding domain 转录激活domain 激活转录
上游激活序列(UAS)转录激活 GAL4效应基因
转录表达
双杂交原理
X基因和Y基因产物 的相互结合,导致 reporter gene表达。
Reporter gene表达就 说明X基因产物与Y 基因产物能结合。
报道株
经改造的、含报告基因的重组质粒的宿主细胞
例如:
啤酒酵母的半乳糖苷酶基因激活因子GAL4:
1-147aa
768-881aa
N DNA binding domain
Active domain C
结合
结合
激活转录
上游激活序列(UAS) 转录激活 GAL4效应基因
实验发现:
转录表达
只要DNA binding domain(DNA-BD) 与Active domain(AD)靠近就能激活转录。
目前酵母双杂交实验采用的系统有LexA 系统和 Gal4 系统两种。
在LexA 系统中,DNA 结合域由一个完整的原核蛋 白LexA 构成,转录激活域则由一个88 个氨基酸的 酸性的大肠杆菌多肽B42 构成,它在酵母中可以活 化基因的转录;
在Gal4 系统中,BD 和AD 分别由Gal4蛋白上不同 的两个结构域(1-147aa 与768-881aa)构成。
其中,SNF1是一种丝氨酸/苏氨酸的蛋白激 酶,SNF4是它的一个结合蛋白,这两种蛋白是 已知可以相互作用的。
当两种穿梭质粒共转化含有Gal4结合位点的报告 基因LacZ的酵母菌株后,通过SNFl与SNF4的相互作 用,Gal4的DNA-BD与Gal4的AD靠近, 形成一个大的 复合物Gal4BD-SNF1-SNF4-Gal4-AD。
通过功能互补和显色反应筛选到阳性菌落
四、酵母双杂交系统的基本策略
表达“诱饵”和“猎物”蛋白; 检验这两种蛋白表达后能否激活酵母中的报告基因。
做法:首先构建能表达“诱饵”和“猎物”蛋白 的表达载体。该载体中可加入进行营养型筛选的基因。
该系统的建立是基于对真核生物调控转录起始过 程的认识。真核生物基因转录需要反式转录激活因子 的参与,真核生长转录因子含有两个不同的结构域:
转录激活因子
DNA结合结构域(BD) (DNA binding domain) 转录激活结构域(AD) (activation domain)
这两个结构域各具功能,互不影响,单 独存在时没有转录激活的功能,只有两者通 过共价或非共价键连接建立起来的空间结构 方可表现出一个完整的激活特定基因表达的 激活因子的功能。
Gal4为酵母半乳糖苷酶基因gal1的转录激活因子,天 然的Gal4分子是由一条由881个氨基酸残基组成的多 肽链。
两个结构域中的BD由位于N-末端的1~147位多肽 构成,能识别位于Gal4基因的上游激活序列(upstream activation sequence,UAS)。此外,在其N-端还具有一 段核定位序列。
2. 拆开 Domain
用重组DNA技术把GAL4的两个Domain分开, 就丧失了激活效应基因的能力。
Active domain
DNA binding domain 结合
上游激活序列(UAS) 转录激活
GAL4效应基因
不能转录
3. 重组Domain
用重组DNA技术把这两个Domain分别与两个不 同的多肽连接。
一、酵母双杂交系统简介
酵母双杂交系统是在真核模式生物酵母中进行 的,研究活细胞内蛋白质相互作用,对蛋白质之间 微弱的、瞬间的作用也能通过报告基因的表达产物 敏感地检测得到。
它是一种具有很高灵敏度的研究蛋白质之间关系 的技术。
该技术既可用来研究哺乳动物基因组编码的蛋白 质之间的相互作用,也可用来研究高等植物基因组编 码的蛋白质之间的相互作用。
AD
Y
lacZ(or HIS) reporter gene
X
DNA-BD
GAL4 UAS
AD
Y
Promoter
transcription
lacZ(or HIS) reporter gene
1. 结构域(Domain)合作
许多真核生物的转录激活因子都是由两个在结 构上可以分开的、功能上也相互独立的结构域 组成。
相关文档
最新文档