太赫兹时域光谱系统清单
太赫兹的相关产品及介绍说明

TDS 以及FDS 光谱系统的成像光束我们的太赫兹成像相机是一款测量TDS 以及FDS光速轮廓的完美工具。
TERASENSE与TOPTICA研究者在我们的研发项目中已证实了这款产品的实用性。
这个研发项目是继2015年3月19日-20日在慕尼黑的TOPTICA总部举行的技术会议而产生的。
我们对在这次在TDS以及FDS系统的应用前景相当自信,这次的相互促进合作标志着一个新时代的到来,同时也是标志TERASENSE成像仪的时代的到来。
太赫兹时域光谱(THz-TDS)太赫兹时域光谱运用了光谱技术,通过这个技术材料的属性可通过太赫兹辐射短脉冲探测出来。
生成和检测方案对样板材料在太赫兹辐射的振幅和相位的效果都是非常敏感的。
脉冲太赫兹辐射是由光电导开关产生(GaAs 或者InGaAs/InP)产生的,通过femtosecond 激光照射。
最后,事实上傅立叶变换的太赫兹振幅产生的太赫兹频谱的频率范围为0.1 – 5太赫兹。
Test of TeraSense camera operation with TDS systemTeraSense相机在TDS系统的检测50 GHz – 0.7 THz 频率范围1.5 x 1.5 mm2像素大小1 nW√Hz噪声等效功率每秒高达50 帧16x16, 32x32, 64x64 总像素型号光纤耦合InGaAs光电开关0.1 – 5 THz 带宽>90 dB动态范围峰值平均功率25 uW100 MHz 脉冲重复率太赫兹频域光谱(THz-FDS)太赫兹频域光谱运用了光谱技术,通过这个技术材料的属性可用持续波(cw)太赫兹辐射探测出。
辐射是通过在高带宽的光电导体中的光外差作用获得的:两个持续波激光的输出转换成太赫兹辐射,正是在不同频率的激光。
光电混频器由一个小型金属-半导体-金属结构表示。
使用偏压到半导体结构中,然后产生一个振荡在跳动频率的光电流。
输出频率范围从50 GHz 高达1.5 THz。
太赫兹时域光谱系统测量金属薄膜 光学参数的原理和方法

郑州大学物理工程学院本科生毕业论文太赫兹时域光谱系统测量金属薄膜光学参数的原理和方法赵博电子科学与技术专业20062230136目录太赫兹时域光谱系统测量金属薄光学参数的原理和方法1摘要:1第一章引言太赫兹波技术综述21.1 太赫兹辐射简介21.2 太赫兹波的特性21.3 太赫兹波的产生技术31.4 太赫兹波的探测技术51.5 太赫兹波的应用领域6第二章太赫兹时域光谱系统简述72.1 太赫兹时域光谱技术72.2 太赫兹时域光谱系统光路图8第三章获得薄膜光学参数的方法103.1 金属薄膜内太赫兹传播的理论推导103.2 超薄金属薄膜太赫兹特性113.3 光学参数测量方法123.4 几种常用的具体算法133.5 实验结果和讨论143.6 总结16第四章全文总结17致谢18参考文献19太赫兹时域光谱系统测量金属薄膜光学参数的原理和方法摘要:太赫兹辐射技术是近年来发展迅速的一种技术,在很多方面展现了优良的特性。
本文介绍了太赫兹理论方面的内容,包括源、探测器的原理和结构以及太赫兹波技术的应用领域。
金属薄膜作为一种电磁功能膜,由于其特征尺寸在太赫兹频段内是将介于太赫兹波的穿厚深度附近,因而具有许多独特的性质。
金属薄膜的电导率,介电常数、消光系数等光学特性,也都有各自特点。
介绍太赫兹时域光谱系统,并介绍用太赫兹时域光谱系统通过检测金属薄膜的折射、透射和吸收等过程,获得包括折射率,消光系数,介电常数等在内的薄膜光学参数的原理。
关键字:太赫兹时域光谱系统金属薄膜复折射率Abstract:Terahertz radiation technology is developing rapidly in recent years, a technique demonstrated in many ways, good features. This article describes the theoretical aspects of terahertz, including the source, detector, and the principles and structure of the field of terahertz technology. In the terahertz frequency band, as a function of magnetic film, the feature size of metal film is thick between the THz wave of wear depth in the vicinity, which has many unique properties. Conductivity of dielectric constant, extinction coefficient, optical properties of thin metal film, get their own characteristics. This article describes the terahertz time domain spectroscopy system and ways to the determine optical parameters of metal film, including refraction, transmission and absorption process.Keywords: terahertz time-domain spectroscopy system complex refractive index第一章引言太赫兹波技术综述本章简要介绍了太赫兹太赫兹的相关理论即背景知识。
第四章 太赫兹时域光谱

第四章太赫兹时域光谱电磁波谱技术作为人类认识世界的工具,扩展了人们观察世界的能力。
人眼借助于可见光可以欣赏五颜六色的世界,利用红外变换光谱技术和拉曼光谱技术等可以了解分子的振动和转动等性质,利用X射线衍射技术可以了解物质的结构信息。
而太赫兹光谱技术作为新兴的光谱技术能够与红外、拉曼光谱技术形成互补,甚至在某些方面能够发挥不可替代的作用,从而成为本世纪科学研究的热点领域。
4.1 太赫兹时域光谱技术的优势太赫兹时域光谱(THz-TDS)技术是太赫兹光谱技术的典型代表,是一种新兴的、非常有效的相干探测技术。
由于太赫兹辐射本身所具有的独特性质(可参见第1章1.3节),太赫兹时域光谱技术对应有如下一些特性:(1)THz -TDS系统对黑体辐射不敏感,在小于3太赫兹时信噪比可高达104,这要远远高于傅立叶变换红外光谱技术,而且其稳定性业比较好。
(2)由于THz -TDS技术可以有效的探测材料在太赫兹波段的物理和化学信息,所以它可以用于进行定性的鉴别工作,同时它还是一种无损探测的方法。
(3)利用THz -TDS技术可以方便、快捷的得到多种材料如电介质材料、半导体材料、气体分子、生物大分子(蛋白质、DNA等)以及超导材料等的振幅和相位信息。
(4)在导电材料中,太赫兹辐射能够直接反映载流子的信息,THz -TDS的非接触性测量比基于Hall效应进行的测量更方便、有效。
而且,THz -TDS技术已经在半导体和超导体材料的载流子测量和分析中发挥出了重要的作用。
(5)由于太赫兹辐射的瞬态性,可以利用THz -TDS技术进行时间分辨的测量。
另外,太赫兹-TDS技术还具有宽带宽、探测灵敏度高,以及能在室温下稳定工作等优点,所以它可以广泛地应用于样品的探测。
4.2 太赫兹时域光谱系统THz -TDS系统可分为透射式、反射式、差分式、椭偏式等,其中最常见的为透射式和反射式THz -TDS系统。
典型的THz -TDS系统如图4-1所示,它主要由飞秒激光器、太赫兹辐射产生装置及相应的探测装置,以及时间延迟控制系统组成。
《太赫兹时域光谱》课件

脉冲整形方法
利用光学元件或数字信号处理技术对太赫兹波进行整形。
光电导天线
01
02
03
天线材料
半导体材料如硅、锗等, 用于将电信号转换为光信 号。
天线结构
单天线、天线阵列等,影 响太赫兹波的发射和接收 效率。
天线性能
灵敏度、带宽等,决定太 赫兹波的探测精度和范围 。
在食品生产、加工和储存过程中,太赫兹 技术可以检测食品的新鲜度、农药残留和其 他污染物,确保食品安全。
05 太赫兹时域光谱的未来发 展
技术创新与突破
探测器技术
研发更高效、高灵敏度的太赫兹探测器,提高光谱检测的精度和 速度。
光源技术
开发新型太赫兹光源,实现更稳定、更宽频谱的光发射。
信号处理技术
利用人工智能和机器学习算法,优化太赫兹信号处理和分析,提高 数据处理效率和准确性。
数据分析
根据实验目的,对处理后的数据进行进一步分析,如提取光谱信息、计算吸收 系数等。
04 太赫兹时域光谱的应用实 例
生物医学应用
疾病诊断
太赫兹时域光谱能够检测生物组织的分子振动和旋转,从而揭示其 结构和功能。在疾病诊断中,它可以用于检测癌症、炎症和其他疾 病。
药物研发
通过观察药物分子与生物分子相互作用时的太赫兹光谱变化,可以 研究药物的疗效和副作用,加速新药的研发进程。
《太赫兹时域光谱》 PPT课件
目录
CONTENTS
• 太赫兹时域光谱概述 • 太赫兹时域光谱系统 • 太赫兹时域光谱实验技术 • 太赫兹时域光谱的应用实例 • 太赫兹时域光谱的未来发展
01 太赫兹时域光谱概述
太赫兹波的定义与特性
总结词
超快太赫兹时域光谱系统

第40卷第2期2019年3月应 用 光 学Journal of Applied OpticsVol.40No.2Mar.2019文章编号:1002-2082(2019)02-0229-04收稿日期:2018-09-26; 修回日期:2018-11-16基金项目:国家自然科学基金(61575131,61675138,61575130);北京市教育委员会科技计划一般项目(SQKM201810028004)作者简介:张宏飞(1990-),男,硕士研究生,主要从事太赫兹光学方面的研究。
E-mail:zhfei@cnu.edu.cn通信作者:苏波(1978-),男,副教授,主要从事太赫兹光学方面的研究。
E-mail:su-b@163.com超快太赫兹时域光谱系统张宏飞1,2,3,苏 波1,2,3,何敬锁1,2,3,张存林1,2,3(1.首都师范大学物理系太赫兹光电子学教育部重点实验室,北京100048;2.太赫兹波谱与成像北京市重点实验室,北京100048;3.北京成像技术高精尖创新中心,北京100048)摘 要:超快太赫兹时域光谱系统是基于高速异步光学采样原理进行工作的,该系统使用2个重复频率可在1GHz附近变化的飞秒振荡器,并使用高带宽反馈电路控制其重复频率。
2个飞秒振荡器的重复频率存在Δf的失谐,一个飞秒振荡器的重复频率是1GHz+Δf Hz,为泵浦脉冲;另一个飞秒振荡器的重复频率是1GHz,为探测脉冲,由此提供泵浦脉冲和探针脉冲的时间差,时间延迟呈周期性变化,其扫描周期可以由1/Δf给出。
此系统摒弃了传统THz-TDS系统所必需的机械延迟线,采用双光子探测器来产生触发信号。
当设定Δf=1kHz时,1ms就可以探测出1个THz谱,用时10.3s即可得到动态范围为21dB、频谱分辨率为5GHz的太赫兹信号。
该系统具有检测速度快和频谱分辨率高的优点,在需要快速测量的应用环境中有着传统太赫兹时域光谱系统不可比拟的优势。
太赫兹时域光谱

3.2 反射型太赫兹时域光谱技术
当THz 脉冲照射样本材料后,THz 探测器接收由样本材料反射 的脉冲信号。延迟线的作用是调节反射镜的位置,从而改变 探测光到达THz 探测器的时间。利用不同的探测光到达时间, THz 电场强度随时间的变化量能够被测量,再通过傅立叶变 换得到反射频谱。
精品课件!
精品课件!
4.小结
• 透射型太赫兹时域光谱系统在实验调节来自比较方•• •
3.太赫兹时域光谱系统
由飞秒激光器、太赫兹辐射产生装置及相应的探测装置,以及时间延迟控制系 统和数据采集与信号处理系统组成.
3.1 透射型太赫兹时域光谱技术
QWP :四分之一波片—使O光和e光相位长差 / 2 PBS :渥拉斯顿棱镜—产生两个偏振方向垂直的分量
• 原理:该系统利用电光取样的方法进行测量。 • 当THz脉冲电场通过电光晶体时,其瞬态电场将
2.太赫兹时域光谱技术的优势
• 1) 具有大约 0.1~5THz 的带宽,这样大的带宽用
• •
普通方法是很难得到的; 2)光谱计可以在室温下工作,从而避免了复杂的 制冷系统; 3)能够以皮秒级的时间分辨率测量波形,展示物质 中发生在亚皮秒或皮秒级上的现象; 4) 所获得的数据同时包含了THz 脉冲的幅度和相 位信息,因而可以对样品介电常数的实部和虚部 同时进行测量; 5)具有左右的信噪比,如此高的信噪比允许相对 较短的扫描时间,从而提高了整个系统的稳定性。
太赫兹时域光谱系统

太赫兹时域光谱系统
太赫兹时域光谱系统是一项可以检测物质成分和变化的先进科
学技术。
它可以精确定位和分析物质的微小变化,从而有助于改善医疗食品安全、节能减排、环境检测等方面的工作。
太赫兹时域光谱系统主要有三大功能:
首先是它可以快速检测物质的成分及其比例,从而可以有效的控制生产的质量,保障产品的质量标准。
其次,它可以精确定位物质中的微小变化,比如温度变化、材料流动性等,从而准确把握能源结构,从而改善环境检测,减少环境污染,有助于节能减排。
最后,它可以分析复杂的物质结构,有助于改善医疗食品安全,极大的提升人们的安全保障水平,也是安全生产的关键技术手段。
太赫兹时域光谱系统具有如此多实用功能,已经成为各行各业改善安全和节能减排的必备工具。
它是一项极具有前瞻性的先进科技,已经得到了广泛的应用,例如在航空航天、化学分析等领域均已得到了广泛应用。
作为一项重要的科技,太赫兹时域光谱系统还将得到进一步改进和发展,以便更多的人群可以从中受益,实现更高的安全标准,更好的保障人们的生活质量。
总之,太赫兹时域光谱系统在涉及安全生产、环境检测以及医疗食品安全等方面都起着至关重要的作用,并将持续发挥其巨大的潜力,为世界各国经济社会发展作出巨大的贡献。
太赫兹时域光谱_概述及解释说明

太赫兹时域光谱概述及解释说明1. 引言1.1 概述太赫兹时域光谱是一种物质分析和材料研究的重要工具,它利用太赫兹波段(频率范围从0.1 THz到10 THz)的电磁辐射来获得样品的结构、组成和动力学信息。
太赫兹辐射具有介于红外光和微波之间的频率特点,且能够穿透许多非金属材料,如塑料、纸张和绝缘体等。
因此,太赫兹时域光谱技术在医药、生物科学、化学、材料科学等领域都有广泛应用。
1.2 文章结构本文将首先介绍太赫兹时域光谱的基本概念,包括其定义和核心原理。
接着,我们将详细探讨太赫兹辐射的特性及其在不同领域中的应用。
然后,在第三部分中我们会介绍传统的实验方法和常用仪器,并对该技术未来发展方向进行展望。
接下来,在第四部分中我们将聚焦于太赫兹时域光谱技术在材料研究中的应用,包括材料成分分析和性质表征。
最后,我们将总结太赫兹时域光谱的基本概念和应用,并展望其未来发展趋势。
1.3 目的本文旨在全面介绍太赫兹时域光谱技术,并探讨其在材料研究中的应用。
通过了解太赫兹时域光谱的基本原理和实验方法,读者可以更好地理解该技术在材料科学和相关领域中的意义和作用。
同时,我们将对当前的研究进展进行概述,并对太赫兹时域光谱技术未来的发展趋势进行预测,以便读者更好地把握该领域的研究方向和前景。
2. 太赫兹时域光谱的基本概念:2.1 什么是太赫兹时域光谱:太赫兹时域光谱,是指在太赫兹频率范围内进行光谱分析和测量的一种技术方法。
太赫兹频率位于红外和微波之间,对应波长范围大约为0.1毫米到1毫米。
由于太赫兹辐射具有很强的穿透力,并且与物质的相互作用较强,太赫兹时域光谱可以提供关于物质结构、成分和性质的重要信息。
2.2 太赫兹辐射的特性:太赫兹辐射是在电磁波谱中低频端的部分,具有独特的特性。
与红外和微波相比,太赫兹辐射在穿透非金属材料方面表现出色,可以触发并探测许多物质的振动模式,包括晶格振动、电子运动等。
此外,太赫兹波段还具有很好的空间分辨率和时间分辨率,使其成为研究材料结构和动力学行为的理想工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两台激光器异步采样工作模式
约30万美元
TAS7500
TAS7500
半开放结构设计
2发2收配置可选
1毫秒/扫描超高速采样
两台激光器异步采样工作模式
LUNA
T-Ray 5000
紧凑型设计
适用于工业在线检测
最高1KHz测量速度
约40万美元
TeraView
TeraPulse Lx
全光纤耦合,即插即用
太赫兹时域光谱系统清单
收集几款市面上相对成熟的太赫兹时域光谱系统,列出其主要特点及大概价格。
一、太赫兹时域光谱系统
品牌
型号
主要特点及性能
大概免税外币价格
Menlo
TERA K15
半开放式TDS
>6 THz 带宽
>95 dB 峰值动态范围
多发多收太赫兹通道可定制
高达50Hz扫描速度
1560nm/780nm高功率激光输出可选
具备同步功能的科研级激光器平台
13-16万欧
TERA Smart
紧凑型半开放式TDS
>6 THz 带宽
>95 dB 峰值动态范围
高达20Hz扫描速度
一发双收太赫兹多通道可定制
结构紧凑,19”机箱
10-13万欧
ADVANTEST
TAS7500TS&TAS7400TS
紧凑型模块化结构设计
带干燥空气过滤器
专为实验室科研设计
约50万美元
配置业界领先的3200 ps延时线
单激光系TeTechs
TeraGauge 5000
用于塑料产品厚度检测
定制工具可满足各种容器尺寸
支持用户针对容器类型进行编程
约9万美元
RAINBOW
Tera Tune
可调的窄带太赫兹源
调谐范围为1.5至20 THz
DSTMS晶体发射/探测