随机信号分析复习资料
随机信号分析 第一章随机信号基础2

y
o
(x,y)
x
利用分布函数,对任意实数 x1 x 2 , y1 y2 则
P( x1 X x2 , y1 Y y2 ) F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 )
y o
( x1, y2 ) ( x1, y1)
F ( x ) f ( t )dt
x
F(x)
=
0
x0
0 x 1
x
tdt tdt
0 1
x
0
1
(2 t )dt
1 x 2
x2
1
即
x0 0, x2 , 0 x 1 2 F ( x) x2 2x 1 , 1 x 2 2 1, x2
多维随机变量及其分布
由于从二维推广到多维一般无实质性的困难,我们重点 讨论二维随机变量 .
二维随机变量用(X,Y)表示下面着重讨论二维 r.v(X,Y),多维随机变量可类推。
二维随机变量(X,Y) X和Y的联合分布函数
一维随机变量X X的分布函数
F ( x ) P( X x )
F ( x , y) P ( X x , Y y) x, y
4.F ( x , y ) F ( x 0 , y ), F ( x , y ) F ( x , y 0 );
即F(x,y)对每个自变量都是右连续的。
5.对任意实数 x1 x2 , y1 y2
,有
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y2 ) F ( x1 , y1 ) 0.
二章节随机信号分析

(4)R() E 2[ (t)] (t)的直流功率
(5)R(0) R() 2 (t)的交流功率
任意确定功率信号f(t),功率谱密度
P S
(
)
PS ( )
lim T
F ( ) 2 T T
F ( ) T
是fT(t)(f(t)截短函数)的频谱函数
随机过程的功率谱密度应看作是每一可能实现的功率谱的统计
协方差函数与相关函数
用来衡量任意两个时刻上获得的随机变量 的统计相关特性
协方差
B(t1,t2)=E{[
(t1
)-a(t1)][
(t 2
)
-a(t2)]}
=
[
x1
a(t1
)][
x 2
a(t )] 2
f (x , x ;t ,t )dx dx
2 1 212
12
5
相关函数
R(t1,t2)=E[
(t 1
n12
n12
n
x x x
f (x , x ,x ;t ,t ,,t )
n12
n12
n
12
n
n越大,Fn,fn描述 (t) 的统计特性就越充分
4
数学期望与方差
E[ (t)]=
xf1
( x, t
)dx
a(t )
D[ (t)]=E{ (t) -E[ (t)] }2
=E[ (t) ]2-[E (t) ]2 = 2 (t)
f(x)在(, a)单调上升, (a, )单调下降
x 或 x
f (x) 0
f
( x)dx
1
且有
a
f
( x)dx
《随机信号分析》复习课(第一章-第四章)

F (x, y) P{X x,Y y}
y
(x, y)
x
0
1.4 多维随机变量及分布
f (x, y) 2F (x, y) xy
f (x, y) 0
xy
F(x, y)
f (x, y)dxdy
f (x, y)dxdy 1
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
J
dx dy
对于任意单调函数 g(x) :fY ( y) f X (x) J xg1( y)
如果 g(x) 不是单调函数:
fY ( y) f X (x1) J1 f X (xn ) J n
其中 x1 h1 ( y) … xn hn ( y) , Jk dxk / dy
1.6 随机变量的函数
《随机信号分析》复习课(第一章-第四章)
重点内容
绪论 随机变量基础 重点:随机变量的函数
第二章 随机过程的基本概念 重点: 平稳随机过程的概念,随机过程的功率谱密度 ,高斯过程
第三章 随机过程的线性变换 重点:随机过程线性变换的冲激响应法和频谱法, 白噪声通过线性系统,随机过程线性变换后的概率 分布
x2 f (x)dx
x1
1.3 随机变量的分布函数与概率密度
f (x)
1
2
exp
(x )2 2 2
X ~ N(, 2)
x
FX (x)
1 2
exp
(
x ) 22
2
dx
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-4 -3 -2 -1
随机信号分析基础

i1 p
(4)
a i R h ( k i ) k 0
i1
例:一阶AR模型
AR(1)的系统传输函数及描述此系统的差分方程分别为:
H(z)A1(z)1a11z1
x(n)a1x(n1)e(n)
令e(n)是一均值为零、方差为w 2的白噪声序列,x(n)是在e(n)
激励下系统所产生的输出。
X(n-1)
常 被 表 示 为 : M A (q );
输 出 数 据 序 列 x( n ) 称 “ M A 过 程 ” 。
AR模型冲激响应的自相关函数
AR(p)的 系 统 函 数 : H (z)
d0
p
1 a i z i
i1
p
亦 可 表 示 为 : H ( z ) a i H ( z ) z i d 0 (1) i1
简 记 为 A R M A 过 程 (A R:A utoregressive,M A:M oving A verage)
相 应 的 系 统 模 型 (差 分 方 程 )称 “ ARM A模 型 ”
2.1 有理分式模型
模型参数专用术语定义:
p
q
对 A R M A 模 型 : x ( n ) ai x ( n i) b je ( n j )
2 . 若 A ( z ) 常 数 ,则 A R M A (p ,q )模 型 退 化 为 :
时域的差分方程:
q
x ( n ) b ie ( n i) i 0
Z域 的 系 统 函 数 :
q
H ( z ) B ( z ) 1 b i z i i 1
称 此 类 模 型 为 “ M A 模 型 、 全 零 点 模 型 H A Z ( z )? ;
第二章 随机信号分析

第二章 随机信号分析2.1 确知信号的频谱分析 一.付立叶变换任一信号有两种表示方法:时域表示法)(t f :信号的大小随时间的变化。
频域表示法)(w F :信号的振幅和相位随频率成分的变化。
两种表示法互相对应,记做:)()(w F t f ↔。
变换式为:dw e w F t f jwt ⎰∞∞-=)(21)(πe w F dt e tf w F w j jwt )()()()(θ--∞∞-==⎰|)(|w F 为模,表示幅度谱;)(w θ为幅角,表示相位谱。
二.付氏变换的性质若)()(w F t f i i ↔注:抽样函数xx Sa )(=四.功率谱密度和能量谱密度1.功率信号:时间无限的信号,具有无限的能量,但平均功率有限。
2.能量信号:时间有限的信号,信号能量有限,在全部时间内的平均功率为0。
3.信号的功率(能量):电压(电流)f (t) 加在单位电阻上消耗的功率(或能量)。
信号的瞬时功率(能量)为)(2t f ,总功率(能量)为⎰∞∞-dt t f )(2。
4.能量信号的能量和能量谱密度⎰⎰⎰∞∞-∞∞-∞∞-=-==dw w F dw w F w F dt t f E 22|)(|21)()(21)(ππ(实函数时,F(-w)=F *(w) )定义:能量谱密度2|)(|)(w F w =ξ,能量⎰⎰∞∞-∞∞-==df f dw w E )()(21ξξπ5.无限非周期信号的平均功率和功率谱密度 用f T (t)代表无限信号f (t)在(-T/2, T/2)上的截断函数,只要T 有限,f T (t)就有能量:⎰⎰∞∞-∞∞-==dw w F dt t f E T T 22|)(|21)(π当T ∞时,其平均功率为:dw Tw F dt t f TP T T TT T T 2222|)(|21)(1limlim⎰⎰∞∞-∞→-∞→==π定义:功率谱密度Tw F w S T T f 2|)(|)(lim∞→=平均功率⎰⎰∞∞-∞∞-==df f S dw w S P f f )()(21π5.无限周期信号的平均功率和功率谱密度 功率谱密度∑∞-∞=-=n T nf nw w Cw S )(||2)(2δπ, 平均功率∑∞-∞==n nCP 2||C n 为各个频率点的幅度,|C n |2为nw T 分量的平均功率五.信号通过线性系统1.系统的传递函数 以冲激函数δ(t)作为激励,通过系统后的响应h (t)为该系统的传递函数2.线性系统——满足叠加定理若激励f 1 (t)和f 2 (t)的响应分别是r 1 (t)和r 2 (t),则激励af 1 (t)+bf 2 (t) 的响应是ar 1 (t)+br 2 (t)。
第2章 随机信号分析复习

F jF sgn F H
那么传输函数为 H j sgn e 即:
j / 2U
H e
j
/ 2 0 / 2 U /2 0
希尔伯特滤波器幅度-频率和相位-频率特性
2018/10/9 29
希尔伯特变换特例
ˆ (t ) sin t f (t ) cos t , f ˆ (t ) cos t f (t ) sin t , f
若m(t ) M ( )为截至频率为 f 的低通信号,
H 1
希尔伯特变换的物理意义是将信号f(t)的所频率 成分都相移90o,而幅度保持不变。具有这种特 性的网络称之为希尔伯特滤波器。
2018/10/9 28
即:
/ 2 0 / 2 U /2 0
H 1
本章内容
1 2
确知信号的分析 卷积与相关
3
4 5
希尔伯特变换
确定信号通过线性系统的传输 随机信号通过线性系统的传输
1
2018/10/9
信号和系统分类
一、信号的分类:
确知信号 随机信号 周期信号 非周期信号
二、系统分类
线性系统 非线性系统 时不变系统 时变系统
2018/10/9
2
信号的频谱分析
1、傅里叶级数
通常记做 f (t ) F
2018/10/9 7
特例:冲激函数δ (t)
F (t ) (t )e jt dt e j 0 1
《随机信号分析》总复习1
2020/10/24
34
2.4.2 互相关函数及其性质
联合平稳随机过程互相关函数性质
(3)若X(t)和Y(t)是联合平稳的,则 Z(t)=X(t)+Y(t) 也是平稳的,且
举例:两个均值和方差大致相同的随机过程 ,相关性差异很大
2.2.2 随机过程的数字特征
协方差函数
也是相关性的描述 K X (t1,t2 ) E{[ X (t1) mX (t1)][X (t2 ) mX (t2 )]} 如果 K X (t1,t2 ) 0 ,则称 X (t1) 和 X (t2 )不相关。
x1...xN y1yM
如果
f XY (x1,..., xN , t1,..., tN , y1,..., yM , t'1 ,..., t'M ) f X (x1,..., xN , t1,..., tN ) fY ( y1,..., yM , t'1 ,..., t'M )
则称X(t) 和Y(t) 是相互独立的
y g(x)
Y g(X)
1.6 随机变量的函数
一维随机变量函数的分布
若 g(x) 为单调连续上升函数,x g 1( y)
FY ( y)=P{Y y} P{g( X ) y}=P{X g 1( y)} FX (g 1( y))
求导,得
fY
( y)
fX
(x)
dx dy
,雅可(Jacco)比
n)
2020/10/24
20
2.2.1 随机过程的概率分布
二维概率分布:
X (t1)及 X (t2 )为同一随机过程上的随机变量
FX (x1, x2 , t1, t2 ) P{X (t1) x1, X (t2 ) x2}
《随机信号基础》复习题
简答题1.简述两个随机变量X 和Y 之间分别满足独立、不相关、正交关系的条件,以及这三种关系之间的联系。
答:独立:)()(),(y F x F y x F Y X XY ⋅=,或)()(),(y f x f y x f Y X XY ⋅=; 不相关:0=XY r 或0),cov(=Y X ; 正交:0][=XY E .若X 和Y 独立则一定不相关,若X 和Y 不相关则不一定独立; 若X 或Y 的数学期望为0,则不相关与正交等价。
2. 写出函数),(t e X 在①e 确定t 为变量、②t 确定e 为变量、③e 和t 都确定、④e 和t 都是变量四种情况下所代表的意义。
其中S e ∈,S 为样本空间,t 为时间参数。
答:①样本函数;②随机变量;③常数;④随机过程。
3.简述宽平稳随机过程与遍历性过程的关系。
答:平稳过程同时满足以下条件才为遍历性过程 ①均值具有遍历性②相关函数具有遍历性。
所以遍历过程一定是平稳过程,平稳过程不一定是遍历过程。
4.白噪声的功率谱密度和自相关函数各有何特点?一般白噪声在任意两个不同时刻有何种关系?正态白噪声在任意两个不同时刻有何种关系?答:白噪声的功率谱密度是常数,自相关函数是一个在0处的冲激函数。
一般白噪声在任意两个不同时刻不相关,正态白噪声在任意两个不同时刻独立。
5.若随机过程)(t X 是平稳过程,则其功率谱密度)(ωX G 与自相关函数)(τX R 有何关系?请写出关系式。
答:)(ωX G 是)(τX R 的傅立叶变换,ττωωτd e R G j X X -∞∞-⎰=)()(,或ωωπτωτd e G R j X X ⎰∞∞-=)(21)(.6.设线性系统的冲激响应为h(t),输入随机过程为X(t),系统输出为Y(t),各自的自相关函数分别为RX(t1,t2)和RY(t1,t2)。
说明二者之间的关系。
答:)()(),(),(212121t h t h t t R t t R X Y **=.7.写出希尔伯特变换的时域形式)(t h 和频域形式)(ωH 。
随机信号分析 第一章 概率论2
P(B)
(2) P(S|B)=P(SB)/P(B)=1 (3) 设A1,A2, …互不相容,则A1B,A2B,…,AnB,…也互 不相容,因此
P{(A1+A2+…+An+…)|B} =P{(A1+…+An+…)B}/P(B) =P(A1B+A2B+…+AnB+…)/P(B)=P(A1|B)+P(A2|B)+…
解:设A表示第k次摸到黑球事件,则 表示第k次摸到白球。 因为袋中只有一只白球,而每次摸到白球总是换入黑球,故为了在第
k次摸到白球,则前面的k-1次一定不能摸到白球,故 A 表示第k次摸
到白球。
因为袋中只有一只白球,而每次摸到白球总是换入黑球,故为了 在第k次摸到白球,则前面的k-1次摸球时都摸出黑球而第k次摸出白 球,于是有:
形的概率。
Y
a
a/2
0 a/2 a x
解:设三段长度分别为x,y,a-(x+y),此三段能构成一个 三角形事件为A。
S={(x,y)| 0<x+y<a, a>x, y>0}
A发生
x y a (x y) x a (x y) y
x y a 2
y a/2
y a (x y) x x a / 2
P( A)
N
1k 1
1/
Nk
1
1 N
k 1
1 N
(2)A为第k次首次摸到1号球事件。
P( A)
P k 1 N 1
随机信号分析期末总复习提纲重点知识点
第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析复习资料
1. 数学期望是描述随机变量的集中特性,方差是用来度量随机变量偏离其数学期望的程度
2. 随机变量的X 特征函数是][)(X j e E ωω=Φ,第二特征函数是)(ωψ它们之间的关系是)(ln )(ωωψΦ=
3. 两个随机变量统计,它们必然是不相关的
4. 设有实信号,)(t x 它的希尔伯特换定义是 ττπd t t x t x H t x
⎰∞∞--==)(1)]([)(ˆ,反变换定义为ττπd t t x t x H t x ⎰∞∞--
-==)(ˆ1)](ˆ[)( 5. 各态历经过程必须是平稳的,但平稳过程 不一定都具有各态历经性。
6. 按照随机过程的时间和状态,可以将随机过程分为连续随机过程、离散随机过程、连续随机序列和离散随机序列
7. 对于高斯过程,宽平稳和严平稳是是等价的,不相关和独立性也是是等价的,。
8. 具有高斯分布的噪声称为高斯噪声。
具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的功率谱密度是常数,则称它为白噪声
1. 自相关和自协方差序列为偶函数,而互相关和互协方差序列是非奇非偶函数
5. 随机过程的每一个样本是一个确定的时间函数,而对于一个确定的时刻t 1,随机过程是一个随机变量
6.实平稳过程X(t)的自相关函数是偶函数函数
1叙述一维随机变量概率密度函数的性质?
2 白噪声通过理想低通系统后,有那些变化?
3什么是随机变量?
4.概率密度函数有什么性质?
5.宽平稳随机过程应足那些条件?
6.什么是白噪声过程?。