23.1第1课时认识图形的旋转

合集下载

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。

本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。

通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。

二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。

但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。

三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。

2.能够运用图形旋转的性质解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.图形旋转的性质的理解和运用。

2.旋转的表示方法的掌握。

五. 教学方法采用问题驱动法和案例教学法进行教学。

通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。

六. 教学准备1.多媒体教学设备。

2.图形旋转的实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。

3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。

4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。

5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。

人教版数学九年级上册学案23.1《图形的旋转》(含答案)

人教版数学九年级上册学案23.1《图形的旋转》(含答案)

第二十三章旋转23.1 图形的旋转第1课时认识图形的旋转出示目标1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题.3.通过观察具体实例认识旋转,探索它的基本性质.4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.预习导学1知识准备(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?(是;是;等腰梯形、长方形、正多边形等.)点拨:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质.(3)什么叫轴对称图形.自学指导:自学教材内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:①从3时到5时,时针转动了多少度?(60°)②风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(90°)③以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?探究把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.合作探究1活动1 小组讨论例1 如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)经过旋转,点A、B、C、D分别移到什么位置?点拨:(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.例2 如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点A;旋转的度数是45°.活动1 小组讨论例3 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.点拨:关键是确定△ADE三个顶点的对应点的位置.活动2 跟踪训练1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.①此图能否旋转某一部分得到一个正方形?②若能,指出由哪一部分旋转而得到的?并说明理由.③它的旋转角多大?并指出它们的对应点.解:①能.②由△BCQ绕B点旋转得到.理由:连结AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.③90°.点C对应点A,点Q对应点P.2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°.∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的.∴BK=DM.课堂小结1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.第2课时旋转作图出示目标1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2.掌握根据需要用旋转的知识设计出美丽的图案.预习导学自学指导自学教材第61页.完成下列问题.1.回顾思考(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O 点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.3.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.因此,从以上的画图中,我们可以得到旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以我们可以经过旋转设计出美丽的图案.活动1 小组讨论例1 如图所示,图①沿逆时针方向旋转90°可得到图⑤.图①按顺时针方向至少旋转180度可得图③.例2 如图所示,在△ABC 中,∠BAC=90°,AB=AC ,点P 是△ABC 内的一点,且AP=3,将△ABP 绕点A 旋转后与△ACP ′重合,求PP ′的长.点拨:依题意,AP 绕点A 旋转90°时得AP ′=AP=3,则△APP ′是等腰直角三角形. 所以PP ′=223332+=. 解题的关键是确定AP 与AP ′垂直且相等.课堂小练一、选择题1.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是( )A. B.C. D.2.如图,在正方形网格中,将△ABC顺时针旋转后得到△A'B′C′,则下列4个点中能作为旋转中心的是( )A.点PB.点QC.点RD.点S3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′ACD.B′C平分∠BB′A′4.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)6.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是( )A.60°B.90°C.120°D.150°7.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.10°B.20°C.50°D.70°8.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120° B.90° C.60° D.30°二、填空题9.一个正n边形绕它的中心至少旋转18°才能与原来的图形完全重合,则n的值为.10.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.11.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°得△A′B′O,则点A的对应点A′的坐标为_ _.12.时钟6点到9点,时针转动了__度.13.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD= 度.14.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为 .三、解答题15.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.参考答案16.答案为:D17.答案为:A;18.答案为:C.19.答案为:C.20.答案为:B.21.答案为:D.22.答案为:B.23.A24.答案为:20.25.答案为:15°.26.答案为:(2,3)27.答案为:90º28.答案为:30.29.答案为:17°.30.解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,,∴△BCE≌△DCF,∴∠F=∠E=86°.。

人教版-数学-九年级上册-23.1图形的旋转 第一课时

人教版-数学-九年级上册-23.1图形的旋转   第一课时

课题 23.1 图形的旋转(第1课时)教学目标:1、知识技能:通过观察具体实例认识旋转,经历探索,发现旋转的性质.2、数学思考:在发现、探究的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理论认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力.3、解决问题:在了解图形旋转的特征,并进一步应用所掌握的这些特征进行旋转变化的学习过程中,让学生从数学的角度认识现实生活中的现象,增强数学的应用意识.4、情感态度:学生在经历了实验探究、知识应用等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性.教学重点:探索归纳图形旋转的特征,并能根据这些特征作出旋转后的几何图形.教学难点:对图形进行旋转变换教学过程:一、创设情境,导入新课同学们都见过电风扇吧,电风扇在接通电源后就不停地转动.像这样,能够转动的物体有很多,下面就请同学们欣赏老师带来的一组图片并回答问题:以上这些现象有什么共同特点?教师演示课件钟表的指针、飞机的螺旋桨、风车的叶片(学生观察、思考、回答问题,共同特点是物体绕定点转动)二、师生互动,探求新知(一)旋转的概念同学们观察得很仔细,我们把这样的转动叫做旋转,这节课我们共同来探讨——图形的旋转(板书课题)在数学中,如何定义旋转呢?哪位同学能用自己的语言把风车叶片转动的过程描述出来吗?(学生思考、讨论,教师巡视,引导学生归纳出旋转的概念)旋转的概念:在平面内,把一个图形绕着一个定点沿某个方向转动一个角度的图形变换叫做旋转.这个定点叫旋转中心,转动的角叫旋转角.以螺旋桨为例加以解释,并通过几个练习(P63)巩固概念(详见课件)(二)旋转的基本性质通过刚才的欣赏,我们发现了旋转的共同特点.那经过旋转变换后的图形与原图形有什么关系呢?让我们一起动手实践来探索这个问题吧!教师演示课件问题:见P63探究(学生分小组进行数学实验,教师参与到学生当中交流、讨论,并鼓励学生能否找到其余线段,角的相等关系)……刚才很多同学都说出了自己的想法,我想不管结果怎样,我和同学们都非常感谢你们,因为我认为:当你把自己的想法暴露给大家的时候,无论是对的还是错的,你对班级的贡献是一样的.刚才我们通过实践探究得出的三个结论,就是旋转的基本性质,请同学们阅读P63的归纳.三、自主探究,合作交流1.请你判断下列一组图形变换属于旋转变换的是()(学生讨论、交流,老师点评,并适时的对学生进行爱国主义思想教育)2.请你思考右图可以看做是一个菱形通过次旋转得到的.旋转中心是,旋转角的度数是 .O 上图还可以看做是由图形通过次旋转得到的,旋转角的度数是还可以由图形通过次旋转得到的,旋转角的度数是还可以由图形通过次旋转得到的,旋转角的度数是也可以由图形通过次旋转得到的,旋转角的度数是四、应用新知,体验成功(一)按要求作出简单平面图形经旋转变换后的图形.例:如图,在方格纸上作出“小旗子”绕0点按顺时针方向旋转90°后的图案,并简述理由.(学生讨论,老师点评,指出关键是确定O、A、B、C四个点的对应点,即它们旋转后的位置).这面旗子是结构简单的平面图形,在方格纸上大家能画出它绕定点旋转后的图形,那么在没有方格纸的情况下,能否画出简单平面图形旋转后的图形呢?请同学们完成下面这道题:P64例(学生独立思考、分析、解答问题.教师应重点关注:①学生在画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据;②学生中作图的不同方法.)(二)欣赏旋转在现实生活中的应用通过刚才的学习,我们对旋转有了更深刻的理解,下面就让我们一道去寻找它在现实生活中的应用吧!教师演示课件水车、辘轳、压水井、电风扇、汽车的方向盘、风力发电机.通过我们的寻找,旋转在我们身边无处不在.无论在农村,还是城市;无论是在古代,还是当今社会,旋转为我们的生活以及经济建设发挥了巨大的作用!五、课堂小结,深化目标通过今天的学习,你有什么收获?有何感想?在学生自行归纳总结的基础上,教师从以下几个方面进行点拔:①知道了旋转的概念.②明白了旋转的基本性质.③学会了按要求作出简单平面图形旋转后的图形.④肯定学生在课堂中合作交流意识和良好的反思习惯,在今后的学习中要继续发扬.六、布置作业,复习巩固.1、必做题P 66第1和4题.2、思考题一天,小明在做剪纸拼图游戏时,无意中,他把如图所示的两个边长都是1的正方形纸片叠在一起,且点E 是正方形ABCD 的中心.他把正方形EFGH 绕着点E 转动,……小明思考这样一个问题:在正方形EFGH 绕点E 转动时,两张纸片的重叠部分面积是否一定会保持不变呢?你能帮助小明解答这一问题吗?若认为保持不变,求出它的值;否则,请简要说明理由.A B CD E F GHA BC D E FH教学设计说明本节课是九年级上册第二十三章“23.1 图形的旋转”的第一课时.在此之前,学生已经学习了轴对称、平移两种图形变换,对图形变换已具有一定的认识,通过本节课的学习,学生对图形变换的认识会更完整.美国数学教育家波利亚指出:“学习任何东西,最好的途径是自己去发现”,为了有效地学习,学生应在教师设计的实验情境中,尽量多地自己去发现学习的知识、方法.所以本节课的教学以观察、分析现实生活中的实例为切入点,以探究活动为主线设计了一系列的数学活动.让学生通过具体实验认识旋转,通过动手进行数学实验探索旋转的基本性质,通过解决实际问题,数学问题掌握旋转变换中对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等、旋转前、后的图形全等的性质.增强学生应用数学的意识.关于例题和练习的安排是按照由易到难、由简到繁的学习心理和认识规律过程设计的,便于学生循序渐进地掌握知识.问题的选取都很贴近生活,使学生们都有亲切感,都能积极参与数学活动,进一步提高学习数学的信心,同时注重培养学生合作交流的意识和良好反思习惯.为了充分发挥学生的主体作用,激发学习的兴趣,教学时均采用动手实践、自主探究和合作交流的方式,向学生提供充分从事数学活动的机会,营造良好的课堂氛围,激活学生的思维,帮助学生认识自我,建立信心.。

23.1 图形的旋转 第1课时 公开课课件

23.1 图形的旋转 第1课时 公开课课件

一、选择题(每小题 5 分,共 20 分)
9.下列说法正确的是( B )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大 小
B.平移和旋转的共同点是图形的形状,大小不和旋转图形中,对应角相等,对应线段相等且平行 10.下列图形中,某个图形中的一个矩形是另一个矩形顺时针方向

蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
最后还想推一下萧绎的《幽逼诗》四 首:
【南史曰:元帝避建邺则都江陵,外 迫强敌 ,内失 人和。 魏师至 ,方征 兵四方 ,未至 而城见 克。在 幽逼求 酒,饮 之,制 诗四绝 。后为 梁王詧 所害。 】 南风且绝唱,西陵最可悲。今日还蒿 里,终 非封禅 时。 人世逢百六,天道异贞恒。何言异蝼 蚁,一 旦损鲲 鹏。 松风侵晓哀,霜雰当夜来。寂寥千载 后,谁 畏轩辕 台。 夜长无岁月,安知秋与春。原陵五树 杏,空 得动耕 人。
(1)①当α=__3_0_度时,四边形 EDBC 是等腰梯3形;②当α=__6_0_
度时,四边形 EDBC 是直角梯形,此时 AD 长为__2__; (2)当α=90°时,判断四边形 EDBC 是否为菱形,并说明理由.
解:当∠α=90°时,四边形 EDBC 是菱形.理由:∵∠α= ∠ACB=90°,∴BC∥DE,∵CE∥AB,∴四边形 EDBC 是平行四 边形,在 Rt△ABC 中.∠A=30°,BC=2,AB=4,AC=2 3,

九年级上册23.1图形的旋转(共19张PPT)

九年级上册23.1图形的旋转(共19张PPT)

知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.

教学设计23.1图形的旋转(第一课时)

23.1 图形的旋转(第一课时)教案一、教材分析:图形的旋转是在学习了图形的两种变换——轴对称和平移的基础上,进一步学习的一种图形基本变换,是将来进一步研究图形全等及其有关性质的基础。

本课通过多媒体课件展示实际生活中经常看到的一些图形旋转现象,给出图形旋转的大致形象,然后引导学生探索研究平面图形的旋转变换。

通过学生的自主探索、合作研究、交流体会,培养学生的观察能力、图形辨析能力和探索学习的能力。

二、教学目标:1、通过多媒体课件展示实际生活中经常看到的一些图形旋转现象和学生自己动手操作观察认识旋转,探索它的基本性质。

2、在发现、探究的过程中,完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力。

3、学生在经历了实验探究、知识应用以及知识内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性。

教学重点:归纳图形旋转的特征,并能根据这些特征绘制旋转后的几何图形。

教学难点:对图形进行旋转变换。

教学方式:按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线” 的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。

教学资源准备:教师准备多媒体课件(开拓学生视野,激发学生学习兴趣)、课堂练习题、课堂达标测试题。

学生准备硬纸板、剪刀(训练学生的动手能力)。

三、教学过程:(一)创设情境,导入新课问题:1.观察实例(课件展示)。

①钟表的指针在不停地旋转,从3点到5点,时针转动了多少度?②风车风轮的每个叶片在风的吹动下转动到新的位置。

这些现象有哪些共同特点?教师应关注:(1)学生观察实例的角度;(2)在学生发现实例现象的共同特点后,要求学生试着描述出旋转的定义。

归纳定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角。

(设计意图:旋转是属于动态的问题,对于运动的图形学生在学习掌握上会存在一定的困难。

人教版九年级数学上册图形的旋转(第一课时)教学设计

23.1图形的旋转(第一课时)一、教学内容旋转的概念、旋转的性质二、教学目标知识与技能:通过观察具体实例认识旋转,探索其基本性质。

过程与方法:在发现探索过程中完成对旋转这一图形变换从直观到抽象,从感性认识到理性认识的转变,发展学生的观察、分析、归纳、抽象、概括能力。

情感态度与价值观:学生在经历了实验探究,知识应用及内化等数学活动中,体验数学的具体,生动,灵活性,调动学生学习数学的主动性.三、重难点重点:1、理解旋转的基本概念2、探索旋转的性质.难点:找准旋转变换关系及性质的形成。

四、教学过程设计(一)创设情境、引入新课1、介绍风车2、欣赏风车师生活动:教师展示旋转的风车图片,学生欣赏,并回忆小学曾经知道的旋转。

设计意图:通过转动的风车,引入本节课的研究对象。

(二)师生互动,探求新知1、观察转动的风车得出旋转的概念问题1:观察转动的风车实例:思考这些转动的风车有什么共同特点?师生活动:展示转动的风车图片,学生观察并思考,教师引导学生进行归纳图形旋转的定义。

在师生共同得出旋转定义后,教师射线OA绕着点O旋转到OB的位置为例,介绍图形旋转的相关概念“旋转中心”、“旋转角”、“旋转方向”设计意图:让学生从具体的实例中发现旋转现象,抽象出旋转的本质属性,即将“生活中的旋转”抽象为“数学中的旋转”让学生理解数学概念,同时发展抽象概括能力。

2、再次观察旋转的风车强调旋转的三要素问题:仔细观察两个旋转的风车有哪些异同点?师生活动:展示两个旋转方向、旋转角度都不同的风车,抛出问题,学生观察思考,寻找异同点。

设计意图:帮助学生巩固对旋转概念的认识,使学生初步感受决定旋转的三要素的重要性,缺少任何一条都会导致旋转的结果有所不同。

3、观看学生表演,强调图形旋转的三要素的重要性表演:(1)逆时针旋转900;(2)绕着肩关节旋转600;(3)绕着肘关节顺时针旋转。

师生活动:教师提出要求,两名同学表演,其他同学说明为什么表演的结果确不同。

人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第1课时 认识图形的旋转


8.(2020·苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A
按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,
则∠C′的度数为( )
C
A.18° B.20° C.24° D.28°
9.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕 点B逆时针旋转60°得到△BAE,连接ED,若BC=5,BD=4,则下列结 论错误的是( B )
A.AE∥BC B.∠ADE=∠BDC C.△BDE是等边三角形 D.△ADE的周长是9
10.如图,在正方形 ABCD 中,AD=1,将△ ABD 绕点 B 顺时针旋转 45 °得到△ A′BD′,此时 A′D′与 CD 交于点 E,则 DE 的长为_2_-____2_.
11.如图,在正方形 ABCD 中,AD=2 3 ,把边 BC 绕点 B 逆时针 旋转 30°得到线段 BP,连接 AP 并延长交 CD 于点 E,连接 PC,则 △ PCE 的面积为__9_-__5___3__________.
练习 2:如图,在△ ABC 中,∠C=90°,AC=4,BC=3,将△ ABC
绕点 A 逆时针旋转,使点 C 落在线段 AB 上的点 E 处,点 B 落在点 D
处,则 B,D 两点间的距离为( A )
A. 10
B.2 2
C.3 D.2 5
知识点1:旋转的概念 1.将左图按顺时针方向旋转90°后得到的图形是( A )
2.图形旋转的性质: (1)对应点到旋转中心的距离____相__等_________; (2)对应点与旋转中心所连线段的夹角等于 ______旋__转__角____________________________________________________; (3)旋转前、后的图形___全__等___.

23.1 图形的旋转(1)教学设计

23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标1.知识与技能了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.2.过程与方法让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档