2.2探索直线平行的条件二

合集下载

北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。

本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。

本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。

但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。

三. 教学目标1.理解直线平行的条件,掌握平行线的性质。

2.能够运用直线平行的条件和平行线的性质解决一些简单问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。

2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。

五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。

在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。

六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。

4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。

5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。

2.2 探索直线平行的条件 第2课时

2.2 探索直线平行的条件  第2课时

第二章
第2课时 内错角、同旁内角
知识要点基础练
综合能力提升练
拓展探究突破练
-5-
5.如图,已知∠1=70°,要使AB∥CD,则需具备另一个条件是( C )
A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°
第二章
第2课时 内错角、同旁内角
知识要点基础练
综合能力提升练
拓展探究突破练
第二章
第2课时 内错角、同旁内角
知识要点基础练
综合能力提升练
拓展探究突破练
-12-
15.如图,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?
解:CD∥EF. 理由:因为AB⊥BD,CD⊥BD,所以AB∥CD. 因为∠1+∠2=180°, 所以AB∥EF,所以CD∥EF.
第二章
第2课时 内错角、同旁内角
知识要点基础练
综合能力提升练
拓展探究突破练
-13-
16.(1)已知∠ABC,射线ED∥AB,如图1,过点E作∠DEF=∠ABC.求证:BC∥EF. (2)如图2,已知∠ABC,射线ED∥AB,∠ABC+∠DEF=180°.判断直线BC与直线EF的位置 关系,并说明理由. (3)根据以上探究,你发现了一个什么结论?请你写出来. (4)如图3,已知AC⊥BC,CD⊥AB,DE⊥AC,HF⊥AB.若∠1=48°,试求∠2的度数.
第二章
第2课时 内错角、同旁内角
知识要点基础练
综合能力提升练
拓展探究突破3;②∠2+∠4=180°;③∠4=∠5;④∠2=∠3; ⑤∠6=∠2+∠3.其中能判定直线l1∥l2的条件有 ①②③⑤ .(只填序号)

蓉城学霸七年级下册 第二章 2.2 第二课时 用内错角、同旁内角判断两直线平行

蓉城学霸七年级下册 第二章 2.2 第二课时 用内错角、同旁内角判断两直线平行

(4)∠B=∠5;(5)∠D=∠5.能推出 AB∥CD 的条件是(1)(3)(4) (填序号).
12.一辆汽车在笔直的公路上行驶,要使两次拐弯后,仍在原来的方向平行行 驶前进,如果一次向左拐 40°,那么它第二次应再向 右 拐 40 °.
蓉蓉城城学中霸考
同步中演考练解·B读级
第一第讲二章实数
13.(七中育才·月考)如图,将一副三角板按如图放置,则下列结论中
所以∠ACD+∠BAC=2∠α+2∠β( 等式性质 ).
即∠ACD+∠BAC=2(∠α+∠β).
因为∠α+∠β=90° (已知),
所以∠ACD+∠BAC= 180° Nhomakorabea( 等量代换 ).
所以 AB∥CD( 同旁内角互补,两直线平行
).
蓉蓉城城学中霸考
同步中演考练解·A读级
第一第讲二章实数
10.如图,已知∠B+∠BCD+∠D=360°,则 AB∥ED,为什么?
(1)~(4),虚线部分表示折痕]:从图中可知,小敏画平行线的依据有哪些?
解:因为∠FPA=∠APE,又因为∠FPA+∠APE=180° 所以∠APF=90° 同理,∠DEP=90°,所以∠APF=∠DEP.所以AB∥CD. 故小敏画平行线的依据有:同位角相等,两直线平行.
答案图
蓉蓉城城学中霸考
同步中演考练解·C读级
第一第讲二章实数
已知:如图,AE 平分∠BAC,CE 平分∠ACD,且∠α+∠β=90°.
求证:AB∥CD.
证明:因为 CE 平分∠ACD(已知),
所以∠ACD=2∠α ( 角平分线的定义 ).
蓉蓉城城学中霸考
同步中演考练解·A读级
第一第讲二章实数
因为 AE 平分∠BAC(已知),

七年级数学下册 第二章 平行线与相交线导学案2(无答案)(2012新版)北师大版

七年级数学下册 第二章 平行线与相交线导学案2(无答案)(2012新版)北师大版

【课题】2.1两条直线的位置关系(1)【学习目标】在具体情景中了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题。

【学习重点】补角、余角、对顶角,等角的余角相等、等角的补角相等、对顶角相等。

【学习过程】 一、知识预备 预习书38-39页在同一平面内,两条直线的位置关系有 和 ,只有一个公共点的两条直线叫做 ,这个公共点叫做 , 在同一平面内, 叫做平行线。

二、知识研究 1、对顶角(1)概念 有公共 的两个角,如果它们的两边互为 , 这样的两个角就叫做对顶角。

(2)性质 对顶角 2、余角与补角 (1)概念如果两个角的和是 ,那么称这两个角互为余角; 如果两个角的和是 ,那么称这两个角互为补角。

符号语言:若∠1+∠2= 90o, 那么∠1与∠2互余。

若∠3+∠4=180o, 那么∠3与∠4互补。

填表:一个角 30O 45O 60O 25O 83O∠α ∠β 这个角的余角 这个角的补角(2)性质同角或等角的余角 ;同角或等角的补角 如图,∠DON=∠CON=900,∠1=∠2问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么?1 2 4 3 4321D CB A 2 DCO 1 3 4 ANB∵∠1+∠3=90º,∠2+∠4=90º ∴∠3=90º-∠1,∠4=90º-∠2 ∵∠1=∠2 ∴∠3=∠4问题3:∠AOC 与∠BOD 有什么关系?为什么?你能仿照问题2写出理由吗?三、知识运用 (一)基础达标例1、(1)下列各图中,∠1和∠2是对顶角的是( )(2)如图,直线a ,b 相交,∠1=40O,求∠2,∠3,∠4的度数(二)能力提升例2、如图:直线AB 与CD 交于点O, ∠EOD=900,回答下列问题: (1)∠AOE 的余角是 ;补角是 。

∠AOC 的余角是 ;补角是 ; 对顶角是 。

北师大版数学七年级下第二章学案.doc

北师大版数学七年级下第二章学案.doc

教学目标1、经历观察、操作、推理、交流等过程,进一步开展空间观念、推理水平和有条理表达的水平;2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能 解决一些实际问题.教学重点:1、余角、补角、对顶角的概念;2、理解等角的余角相等、等角的补角相等、对顶角相等.教学难点:理解等角的余角相等、等角的补角相等.判断是否是对顶角.3、对顶角的概念2.1余角与补角一、课前预习1\ \如图1,将矩形纸笈沿虚封剪开.\ \问题1:所得的 1与2有什么关系?. ____________________________ | 问题2:从图1中,你能找出和为 180的两个角吗? ' ,石;二、讲授新课1、余角和补角概念余角: ___________________________________________________________________ 补角:N2、探索有关余角和补角的性质才\参照教材光的反射实验提出以下问题: \(1) Z3+Z 1 = _______ ,所以N3 与N 1 互 ____________ \Z3+Z AOE= ,所以N 3 与NAOE 互图中还有哪些角互补?哪些角互余?为什么?1图中都有哪些角相等?由此你能够得到什么样的结论?结论: _____________________________________________________________________________ 变式练习,熟练技能Gd),13互为余角?/(2)如图3,N = 0 / = ° Z 230, 3 40 ,能否说 1 ,Z = 0Z Z2 62 ,能否说 1与2互为 余角?(3)假设Zl , N2互为余角, (4)假设1,2互为补角,Z = ° Z 1= 50?那么(5)锐角小补角星佳角,直角的补角是 2P 钝角的补角是(6)假设与是对顶角,〔1〕用剪子剪东西时,哪对角同时变大或变小?你能说明理由吗?〔2〕你能发现这样的两个角有怎样的位置关系吗?〔3〕在图2中,还有相等的角吗?这几组相等的角在位置上有什么样的关系, 你能试着描述一下吗?〔总结得出对顶角的性质.〕如图2,直线AB与CD相交于点O, Z1与2 2有公共顶点O,它们的两边互为反向延长线,样的两个角叫做对顶角.4、对顶角的性质问题1:如图2, /I与/2有怎样的数量关系?______________________问题2:你能说明,为什么有这样的数量关系吗? _____________________变式练习,熟练技能如图4所示,有一个破损的扇形零件,你能否利用量角器测出这个扇形零件的圆心角的度数?你的根据是什么?三、课堂总结______________________________________________________________四、当堂检测1. Z a =50.,那么N a的余角等于_______________________ .2.N a、N B互为补角,且N a=N B ,贝ijN a = ______________________ .3.假设N1和N2互余,N 2和N 3互补,Z 1=63° ,那么N 3 = _____________ .4.①假设N A+N B=90° , NB+NC=90° ,那么N A __________ Z C,理由是②假设Nl + N3 = 180° , N2 + N4 = 180.,且N1 = N2,那么N45.以下说法中正确的选项是〔〕A.有公共顶点的角是对顶角B.相等的角是对顶角C.对顶角必相等D. 不是对顶角的角不相等6.如图,三条直线AB、CD、EF交于一点,假设N 1=30° , N 2= 70° ,求N 3的度数.〔7AN3,理I图3五、课后反思:教学目标 2.2探索直线平行的条件(一) (2)请用这种方法过直线外一点画它的平行线(如图 5) o请说出其中的道理: _______________________ _______________1、经历探索直线平行的条件的过程,掌握直线平行的条件2、会用三角心过直线外一点画这条直线的平行线;1,并能解决一些问题; 教学重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行〞 教学难点:判断两直线平行的说理过程教学过程一、课前准备1、什么叫平行线? _____________________________________________________2、两条平行线必须符合什么条件? ____________________________________________________二、讲授新课2、如图,Z 1 = Z 2 = 55° , Z 3等于多少度?直线AB 、CD 平行吗1、创设情境假设两条直线被第三条直线所截,形成几个角?N 1与N 2这样位置关系的角称为同位角在两直线被第三直线所截构成的八个角中,两个位置相同的角叫做同位角 图中还有哪几对角是同位角?2、探究试验如图1,三根木条相交成 Z 1 , 4 ,固定木条a , c ,转动木条b ,观察Z l, Z 2满足什么条件 时木条a 与b 平行.四、课堂小结图2一直线平行的条件1: ______________________________________用几何语言表示:,.・Z 1 =________________ ( )三、变式练习,熟悉技能练习1:如图2,直线AB 、CD 被EF 所截,(1) Z 1的同位角是——,Z 2的同位角是——;(2)当/2 55°时,直线AB , CD 平行吗?说明你的理由.1、 2、 3、 如图1, 如图2, 如图2, 如果如果如果M 4 , M D , M B , 4.如图3,以下推理错误的选项是( 根据那么那么 )H -,练习2:如图4,甲从A 处沿正东偏南55方符行走,乙从B 处沿正东偏南35方向 行走,(1)他们所行道路可能相交吗?(2)当乙从B 处沿什么方向行走,他们所行道路不相交?请说明其中的理由.练习3 ( 1)你还记得怎样移动三角尺画两条平行线吗?N 2,二• a 〃 bB. VZ 1 Z 3,bC. VZ 3 = N 5,,c 〃 d D. 10.如图,直线a 、b 与直线 Z6,③/ 4 + Z 7= 180°A.①②③④B.①③④六、课后反思:VZ2 + Z4 = 180° ―・・c 〃d C.①③D.②④相交,给出以下条件:①N④N5 + N3 = 180° ,其中能2.2探索直线平行的条件〔二〕教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步开展空间观念、推理水平和有条理表达的水平.2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.3、会用三角尺过直线外一点画这条直线的平行线.教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行〞和“同旁内角互补,两直线平行〞o教学难点:会用“内错角相等,两直线平行〞和“同旁内角互补,两直线平行〞课前准备:1、如图,a〃b,数一数图中有几个角〔不含平角〕 ______________________2、写出图中的所有同位角.教学过程:一、引入:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB 〔如下图〕.他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?1、内错角 _____________________________________________________________2、同旁内角 _____________________________________________________________ o二、探索练习:观察课件中的三线八角,内错角的变化和同旁内角的变化,讨论:〔1〕内错角满足什么关系时,两直线平行?为什么?〔动手实验,用量角器画N1 = N2;直线a会平行b吗?〕★ 结论______________________________________________________用几面藉袤^不福〔2〕同旁内角满足什么关系时,两直线平行?为什么?FB三、稳固练习:1、如右图,VZ 1 = N 2・________________________________________________ ・・//,,.・N 2=・,.//,同位角相等,两直线平行・Z 3 + N 4= 180°/.//, ___________________________________Z. AC // FG, ____________________________四、课堂小结 ____________________________ _____________________________________五、当堂检测1.图中各角分别满足以下条件时,你能判断哪两条直线平行吗?(1)Z 1 = Z 4; (2) Z 2 = Z 4; (3) Z l + Z3=180°2、如右图,V Z 2=,「・DE // BC __________________________VZB+ ----------- = 180° , ------------------------------------・・・DB〃EFVZ B+Z 5 = 180° _・・//- ------- , ---------------------------3、如右图,假设/2=/6 ,那么 ------- k一a 如果/牛/甲/5+/6=180",那么//如果/ 9=,那么AD//BC;如果N 9=,那么AB//CD.4、如右以下图,请你填写一个适当的条件:---------使AD//BC o六、课后反思:2.3平行线的性质 _________________ 〔两直线平行,同位角相等〕,教学目的1,使学生掌握平行线的三个性质,并能运用它们作简单的推理.2.使学生了解平行线的性质和判定的区别. 重点难点1.平行的三个性质,是本节的重点,也是本章的重点之一.2.怎样区分性质和判定,是教学中的一个难点. 教学过程一、引入问:我们已经学习过平行线的哪些判定公理和定理?1.2.3.几何语言:(1)VZ 1 = Z 2 〔〕・・・〔〕(2)VZ 3 = Z 2 〔〕VZ 1 + Z 4= 180° 〔邻补角〕,・・.N2 + N4=° 〔等量代换〕.证法二:AB〃CD 〔〕,・•・_______________ 〔两直线平行,内错角相等〕VZ 3 + Z 4 = 180° 〔邻补角〕,・・・N2 + N4= _____ ° 〔等量代换〕.由上面的证实过程可以得到:图2-35平行线的性质三:___________________________________________例某零件形如梯形ABCD,现已残破,只能量得N A= 115° , Z D 两个角N B、N C的度数吗?根据是什么?〔如图2-35〕.解:Z B= 1800 - Z A= 65° ,・・・___________ 〔〕〔3〕 VZ 2+Z 4=180° 〔〕・・・〔〕二、新课1、如果AB〃CD,测量一下N 1是否等于N2? ______________ 平行线的性质一:__________________________________________________________ 简单说成:_______________________________________________ . 几何语言表示:•・• AB〃 CD〔〕・・・____________ 〔〕2、你能根据平行线的性质1来证实N 3=N 2吗?:如图2-33,直线AB、CD被EF所截,AB// CD,求证:N 3 = N 2.证实:: AB〃CD〔己知〕图2-3 3四、・・・N1 = N2( )VZ1 = Z3( )・・・_________ (等量代换).由上面的证实过程可以得到:平行线的性质二:_______________________________________________________________ 3、:如图2-34,直线AB、CD被EF所截,AB〃 CD.求证:Z 2 + N 4= 180° .证法一:AB〃CD〔〕,图2-3 4从因果关系上看性质由于两条直线平行,所以根据两判定由于,所以两条直线平行根据两NC=180° - Z D = 80° .〔根据平行线的性质三〕小结:平行线的性质与判定的区别:当堂检测N4、律1题)1.如图,AB〃CD, N 1 = 102° ,求N2、N 3、2.如图,EF 过△ABC 的一个顶点A,且EF〃BC,如果 N B= 40°NC、N BAC+N B + N C各是多少度,为什么?五、课后反思:_____________________________________________2.4用尺规作线段和角〔一〕教学目标1、会利用尺规作一条线段等于线段,并能了解它在尺规作图中的简单应用.2、能利用尺规作线段的和、差.3、能够通过尺规设计并绘制简单的图案.4、在尺规作图过程中,积累数学活动经验,培养动手水平和逻辑分析水平. 教学重点、难点教学重点:1、作一条线段等于线段;2、作线段的和、差、倍数等.教学难点:作线段的和、差.一、巧妙设疑,复习引入读一读尺规作图有着悠久的历史.直尺的功能是:在两点间连接一条线段;将线段向两方向延长.圆规的功能是:以任意一点为圆心,任意长为半径作一个圆;以任意一点为圆心, 任意长为半径画一段弧.利用尺规可以作出许多美丽的图案.例如图1和图2三、变式练习,熟练技能练习1:教材做一做线段a 〔如图4〕,和两条互相垂直的直线AB, CD 〔如图5〕.〔1〕利用圆规,在射线OA, OB, OC, OD上作线段OA',OB' , OC' , OC 使它们分别与线段a相等.〔2〕依次连接A' , B',C',D' , A'.你得到了一个怎样的图形?与同伴进行交流.C图4 图5四、迁移应用,深化提升问题1:线段a , b ,求作线段c定b+图1 图2 图3在“数学王子〞高斯的纪念碑上,就刻着一个正十七边形〔如图3〕,它的尺规作图方法是高斯在青年时代发现的.二、讲授新课活动内容:简用没有刻度的直尺和圆规可以作出很多几何图形, 你还记得我们是如何用圆规和直尺作一条线段等于线段的吗?:线段AB ।।A B求作:线段A' B',使得A' B, =AB.问题2:能否作线段c =a-b:学习好资料2.4用尺规作线段和角〔二〕教学目标1、掌握用尺规作一个角等于角的作法,并能借此解决实际问题.2、通过画图实践操作,培养学生动手、动脑、动口的水平.3、通过对实际问题的分析,培养学生勤于思考、发现问题的水平;在运用知识解决实际问题的过程中,梳理数学思维,构建自己的数学知识体系.教学重点、难点教学重点:会用尺规作一个角等于角.教学难点:1、用尺规作一个角等于角的综合运用.2、学生动手操作和有条理表达水平的培养.教学过程一、巧妙设疑,复习引入请学生拿出自己课前收集的长方形线板模型,如图1,标出相应的线段AB和点C.问题1:请过点C画出与AB平行的另一条线.问题2:如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二、计授新课图11、:AOB 〔如图2〕求作:使X OEAOS/作法与示范:作法示范〔1〕作射线O' A'〔2〕以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;〔3〕以点O'为圆心,以OC长为半径画弧,交O' A'于点C';〔4〕以点C'为圆心,以CD长为半径画弧,交前面的弧于点D';〔5〕过点D'作射线O' B'.、、、、NA'O' B'就是所求作的角.2、1、:ZAOB求作:/AQE ,使NAOE =2/A0B.三、变式练习,熟练技能练习1:课本本节随堂练习第1题.练习2:利用尺规完本钱节课开始时提出的问题〔有关图1的问题〕.四、迁移应用,深化提升练习3:如图3,以点B为顶点,射线BC为一边,利用尺规作ZEBC=Z A, E 一定平行吗?答案:平行,由于同位角相等,两直线平行.五、课堂总结这节课你有什么收获吗?1、会用尺规作一个角等于角.2、灵活运用所学知识解决实际问题.3、在生活中要善于运用数学知识.六、布置作业。

北师大版七下数学《2.2探索直线平行的条件(2)》教案

北师大版七下数学《2.2探索直线平行的条件(2)》教案

北师大版七下数学《2.2探索直线平行的条件(2)》教案一. 教材分析本节课是北师大版七下数学《2.2探索直线平行的条件(2)》的内容。

在前一节课中,学生已经学习了探索直线平行的条件,了解到两条直线平行需要满足的条件。

本节课将进一步引导学生探究直线平行的性质,并通过实例来加深学生对直线平行性质的理解和应用。

二. 学情分析学生在六年级时已经学习了直线、射线、线段等基本概念,对直线有一定的认识。

但在实际操作中,部分学生可能对直线的性质和判定 still有些混淆。

此外,学生在之前的学习中已经接触过一些几何图形的性质和判定,因此具备一定的几何思维能力。

三. 教学目标1.让学生理解直线平行的性质,并能运用性质判断两条直线是否平行。

2.培养学生运用几何语言描述直线平行的性质,提高学生的几何思维能力。

3.通过实例分析,让学生学会将直线平行的性质应用于实际问题,提高学生的解决问题的能力。

四. 教学重难点1.教学重点:直线平行的性质及其应用。

2.教学难点:如何引导学生理解并证明直线平行的性质。

五. 教学方法1.采用问题驱动法,引导学生主动探究直线平行的性质。

2.利用几何画板软件,动态展示直线平行的性质,帮助学生直观理解。

3.通过实例分析,让学生将理论知识应用于实际问题,提高解决问题的能力。

4.采用小组合作学习,培养学生的团队合作精神。

六. 教学准备1.准备几何画板软件,用于动态展示直线平行的性质。

2.准备相关实例,用于引导学生将理论知识应用于实际问题。

3.准备小组合作学习任务单,指导学生进行合作学习。

七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示两条直线平行的条件,引导学生回顾所学知识。

然后提出本节课的问题:直线平行还有哪些性质?2.呈现(10分钟)呈现直线平行的性质,引导学生用几何语言描述。

例如,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。

同时,解释性质的含义和应用。

3.操练(10分钟)学生分组讨论,利用几何画板软件,尝试证明直线平行的性质。

《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】

《探索直线平行的条件》教学设计第2课时一、教学目标1.了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”两种判定方法.2.灵活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间想象、推理能力和有条理的表达能力.4.在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.二、教学重难点重点:了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补两直线平行”两种判定方法.难点:活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计2.平行于同一条直线的两条直线平行.教师活动:引导学生思考,不能用同位角的数量关系直接判断两直线是否平行时,我们该怎么办?【情境引入】小明有一块小画板,他想知道它的上、下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)小明利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行,你知道他是怎么做的吗?预设:可以测量∠1与∠2,也可以测量∠1与∠3....教师活动:进一步提出思考,这样做的理由呢?【合作探究】如何利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行?教师活动:演示测量过程,说明∠1=∠3,由此小明判断上下两个边缘是平行的.∠1+∠2=180°,由此他也能判断上下两个边缘是平行的.提出思考问题:你知道小明的判断依据吗?【探究】内错角与同旁内角的定义如图,具有∠1与∠2这样的位置关系的角称为内错角.具有∠1与∠3这样的位置关系的角称为同旁内角.请找出图中其他的内错角与同旁内角.预设:∠3与∠4是内错角;∠2与∠4是同旁内角.问题:你能说出内错角与同旁内角的特征吗?教师活动:引导学生观察内错角的位置特征,思考并说出内错角的特征.预设:内错角指在两条被截直线的内部,在截线的两侧,位置是交错的两个角.内错角是Z形状教师活动:引导学生观察同旁内角的位置特征,思考并说出同旁内角的特征.预设:同旁内角指在两条被截直线的内部,在截线的同旁的两个角.同旁内角是U形状【归纳】“三线八角”小结①位于两条被截直线同一方、且在截线同一侧的两个角,叫做同位角;如∠1与∠2.同位角是 F 形状②位于两条被截直线的内部,且在截线的两侧的两个角,叫做内错角;如∠7与∠2.内错角是Z形状③位于两条被截直线内部,且在截线的同侧的两个角,叫做同旁内角.如∠5与∠2.同旁内角是U形状.【议一议】(1)内错角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1 = ∠2 . 求证:a∥b证明:∵∠1 = ∠2 (已知)∠1 = ∠3 (对顶角相等)∴∠3 = ∠2 (等量代换)∴直线a∥b (同位角相等,两直线平行) 得出结论:内错角相等,两直线平行(2)同旁内角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1+∠2=180°,求证:a∥b∠1,∠2互补(已知)∠1,∠3互补(邻补角定义)∴∠3 =∠2 (同角的补角相等)∴直线a∥b (内错角相等,两直线平行) 教师活动:提示证明方法不唯一,证明过程中的∠3换成∠4就可以利用同位角相等,两直线平行来证明.得出结论:同旁内角互补,两直线平行【归纳】平行线的判定方法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称为:内错角相等,两直线平行.同旁内角互补,两直线平行.【做一做】如图,三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由.教师活动:以举例的方式提示学生如何寻找.一位同学说:BC与AE是平行的,因为∠BCA与∠EAC是内错角,而且又相等.提问你能看懂她的意思吗?再找到另一组平行线,说说你的理由.预设:BA与CE是平行的,因为∠ACE 与∠BAC是内错角,而且又相等.AC与ED是平行的,因为∠ACE与∠CED 是内错角,而且又相等.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,∠1+∠2=180°,请用不同的方法说明:AB∥CD.分析:两条直线平行,可以利用同位角相等、内错角相等或同旁内角互补来证明.观察可知∠1的对顶角∠EHB与∠2是同旁内角,结合已知可证;∠2的补角∠CGH 与∠1是同位角,利用同角的补角相等可得同位角相等,从而证出两直线平行;同理可证∠1的补角∠AHG与∠2这对内错角相等,也可以证出结论.解题过程:2.下列条件能判断l1∥l2的是( )A. ∠2=∠3B. ∠1=∠3C. ∠4+∠5=180°D. ∠2=∠43.观察图中所标记的五个角,完成题目:(1)∠1 与是同位角;(2)∠5 与是同旁内角;(3)∠2 与是内错角.4.图中各角分别满足下列条件时,你能判断是哪两条直线平行吗?①∠1=∠4②∠2 =∠4③∠1+∠3 =180°答案:1.B ;2.B3.∠4;∠3;∠14.①a∥b;②l∥m;③l∥n.思维导图的形式呈现本节课的主要内容:。

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。

激发学生对探索直线平行条件的兴趣。

1.2 教学内容:直线平行的定义及实例。

直线平行的实际应用场景。

1.3 教学方法:通过图片、实例等方式引入直线平行的概念。

引导学生思考直线平行的实际应用场景。

1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。

2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。

3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。

第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。

培养学生运用判定方法解决实际问题的能力。

2.2 教学内容:直线平行的判定方法。

判定方法的证明和解释。

2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。

通过证明和解释来说明判定方法的合理性。

2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。

2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。

3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。

第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。

培养学生运用性质解决实际问题的能力。

3.2 教学内容:直线平行的性质。

性质的证明和解释。

3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。

通过证明和解释来说明性质的合理性。

3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。

2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。

3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。

第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。

培养学生的实际问题解决能力。

4.2 教学内容:直线平行的条件在实际问题中的应用。

2、2探索直线平行的条件

预习提纲:
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
问题3:什么叫两条直线平行?
问题4:如课本彩图,装修工人正在向墙上钉木条。

如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角是多少度时,才能使木条a 与木条b 平行?
问题:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。

问题5:1、图中的直线b 与直线c 不垂直,直线a 应满足什么条件才能与直线b 平行呢?请你利用教具亲自动手操作。

做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2, 固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a 与纸条b 的位置关系发生了什么变化?纸条a 何时与纸条b 平行?改变图中∠1的大小再试一试,与同学交流你的发现。

2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。

问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件 A B D
C O。

北师大版七年级下册数学《资源与评价》答案

义务教育课程标准实验教科书数学 七年级 下册 北京师范大学出版社练习册答案第一章整式的乘除1.1 整式1.(1)C 、D 、F ;(2)A 、B 、G 、H ;(3)A 、B ;(4)G ;(5)E 、I ;2.125r π;3.3343R a π-; 4.四,四,-13ab 2c,-13,25 ;5.1,2;6.13a 3b 2c ;7.3x 3-2x 2-x ;8.11209,10200a a ;9.D ;10.A ; 11.•B ;12.D ;13.C ;14.12222VV V V +;15.a=27;16.n=32;四.-1. 1.2 整式的加减1.-xy+2x 2y 2; 2.2x 2+2x 2y; 3.3; 4.a 2-a+6; 5.99c-99a; 6.6x 2y+3x 2y 2-14y 3; 7.39π-+; 8.3217210n n n n aa a a +++--+-; 9.D; 10.D; 11.D; 12.B; 13.C; 14.C; 15.B; 16.D; 17.C ;18.解:原式=126ax +,当a=-2,x=3时, 原式=1. 19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)-32a b -]=13922a b -,当a=10,b=8时,上车乘客是29人.21. 解:由3xyx y=+,得xy=3(x+y),原式=87-.22. 解:(1)1,5,9,即后一个比前一个多4正方形.(2)17,37,1+4(n-1).四.解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,所以(2)中的用绳最短,(3)中的用绳最长.1.3 同底数幂的乘法1.10m n+,96;2.2x 5,(x+y)7;3.106;4.3;5.7,12,15,3 ;6.10;7.D ;8.•B ; 9.D ;10.D ; 11.B ;12.(1)-(x-y)10;(2)-(a-b-c)6;(3)2x 5;(4)-x m13.解:9.6×106×1.3×108≈1.2×1015(kg). 14.(1)①424103333⨯⨯=,②436135555⨯⨯=. (2)①x+3=2x+1,x=2 ②x+6=2x,x=6. 15.-8x 7y 8;16.15x=-9,x=-35-. 四.105.1.4 幂的乘方与积的乘方1.24219a b c ,23n a +;2.2923(),4p q a b + ;3.4 ;4.628a ;5.331n n x y +-; 6.1,-1;7.6,108; 8.37;9.A 、D;10.A 、C;11.B;12.D ;13.A ;14.B ;15.A;16.B.17.(1)0;(2)m nb a 4412-;(3)0.18.(1)241 (2).10042575325431002521.原式=19991999499431999(3)(25)32534325⨯+-+=-+=-⨯⨯+, 另知19993的末位数与33的末位数字相同都是7,而199925的末位数字为5,∴原式的末位数字为15-7=8. 四.400.1.5 同底数幂的除法1.-x 3,x ;2.2.04×10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7.13;8.2;9.3,2,2; 10.2m=n;11.B; 12.B ;13.C;14.B;15.C;16.A;17.(1)9;(2)9;(3)1;(4)61()n x y --+ ;18.x=0,y=5;19.0;20.(1)201; (2)41.21.22122()22x x x x m --+=+-=-; 四.0、2、-2.1.6 整式的乘法 1.18x 4y 3z 2;2.30(a+b)10;3.-2x 3y+3x 2y 2-4xy 3;4.a 3+3a;5.-36;•6.•a 4-16;7.-3x 3-x+17;8.2,39.n na b -;10.C;11.C;12.C;13.D;14.D;15.D;16.B ;17.A ; 18.(1)x=218;(2)0; 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩;20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=0,21.由题意得35a+33b+3c-3=5,∴35a+33b+3c=8,∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11, 22.原式=-9,原式的值与a 的取值无关. 23.∵21222532332n n n n n +++⨯⨯-⋅⋅,=212125321232n n n n ++⨯⨯-⋅⋅,=211332n n +⋅⋅.∴能被13整除. 四.125121710252⨯=⨯=N ,有14位正整数.1.7 平方差公式(1)1.36-x 2,x 2-14; 2.-2a 2+5b;3.x+1;4.b+c,b+c;5.a-c,b+d,a-c,b+d ;6.3239981,;7.D;8.C;9.D;10.16a -1;11.5050 ;12.(1)52020423+--x x x ,-39 ; (2)x=4;13.原式=200101;14.原式=1615112(1)222-+=.15.这两个整数为65和63.四.略.1.7 平方差公式(2)1.b 2-9a 2;2.-a-1;3.n-m;4.a+b ,1;5.130+2 ,130-2 ,16896;6. 3x-y 2;7.-24 ;8.-15;9.B;10.D;11.C;12.A;13.C;14.B.15.解:原式=4216194n m -. 16.解:原式=16y 4-81x 4;17.解:原式=10x 2-10y 2. 当x=-2,y=3时,原式=-50. 18.解:6x=-9,∴x=23-. 19.解:这块菜地的面积为:(2a+3)(2a-3)=(2a)2-9=4a 2-9(cm 2),20.解:游泳池的容积是:(4a 2+9b 2)(2a+3b)(2a-3b),=16a 4-81b 4(米3).21.解:原式=-6xy+18y 2,当x=-3,y=-2时, 原式=36. 一变:解:由题得:M=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)=(-4x)2-(3y)2-(16x 2-18xy+24xy-27y 2)=16x 2-9y 2-16x 2-6xy+27y 2=18y 2-6xy. 四.2n+1.1.8 完全平方公式(1) 1.19x 2+2xy+9y 2,12y-1 ;2.3a-4b,24ab,25,5 ;3.a 2+b 2+c 2+2ab-2ac-2bc;4.4ab,-2,1x;5.±6;6.x 2-y 2+2yz-z 2;7.2cm;8.D; 9.B ; 10.C; 11.B ; 12.B ; 13.A;14.∵x+1x =5 ∴(x+1x )2=25,即x 2+2+21x=25 ∴x 2+21x =23 ∴(x 2+21x )2=232 即4x +2+41x =529,即441x x+=527.15.[(a+1) (a+4)] [(a+2) (a+3)]=(a 2+5a+4) (a 2+5a+6)= (a 2+5a)2+10(a 2+5a)+24=43210355024a a a a ++++. 16.原式=32a 2b 3-ab 4+2b. 当a=2,b=-1时,原式=-10. 17.∵a 2+b 2+c 2-ab-bc-ca=0∴2(a 2+b 2+c 2-ab-bc-ca)=0∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(a 2-2ac+c 2)=0即(a-b)2+(b-c)2+(a-c)2=0 ∴a-b=0,b-c=0,a-c=0 ∴a=b=c.18.左边=[(a+c)2-b 2](a 2-b 2+c 2)=(a 2+b 2+c 2)(a 2-b 2+c 2) =(a 2+c 2)2-b 4=44a c ++2a 2c 2-b 4=444a b c ++.四.ab+bc+ac=-21.1.8 完全平方公式(2) 1.5y;2.500;2;+2000+4;.3.2;4.3a;6ab;b 2;5.-6;6.4;7.2xy;2xy;8.2641,81x x ,4;9.D ; 10.D ; 11.B ; 12.B; 13.C; 14.B; 15.解:原式 =2a 4-18a 2.16.解:原式 =8x 3-2x 4+32.当x=-21时,原式=8732.17.解:设m=,则=m-1,=m+1,则A=(m-1)(m+1)=m 2-1,B=m 2.显然m 2-1<m 2,所以A<B.18.解:-(x 2-2)2>(2x)2-(x 2)2+4x,-(x 4-4x 2+4)>4x 2-x 4+4x,-x 4+4x 2-4>4x 2-x 4+4x, -4>4x,∴x<-1. 19.解:由①得:x 2+6x+9+y 2-4y+4=49-14y+y 2+x 2-16-12, 6x-4y+14y=49-28-9-4, 6x+10y=8,即3x+5y=4,③由③-②×③得:2y=7,∴y=3.5, 把y=3.5代入②得:x=-3.5-1=-4.5,∴ 4.53.5x y =-⎧⎨=⎩20.解:由b+c=8得c=8-b,代入bc=a 2-12a+52得,b(8-b)=a 2-12a+52,8b-b2=a 2-12a+52,(a-b)2+(b-4)2=0,所以a-6=0且b-4=0,即a=6,b=4, 把b=4代入c=8-b 得c=8-4=4.∴c=b=4,因此△ABC 是等腰三角形.四.(1)20012+(2001×2002)2+20022=(2001×2002+1)2.(2) n 2+[n(n+1)]2+(n+1)2=[n(n+1)]2.1.9 整式的除法 1.33m a b -; 2.4b; 3.273x -2x+1; 4.3213222x y x y --; 5.-10×1010; 6.-2yz,x(答案不惟一); 7.3310258z y x -; 8.3; 9.x 2+2; 10.C; 11.B; 12.D; 13.A; 14.C; 15.D; 16.(1)5xy 2-2x 2y-4x-4y ; (2)1 (3)2x 2y 2-4x 2-6; 17.由5171m m n +-=⎧⎨-=⎩ 解得32m n =⎧⎨=⎩;∴2139nm--==. 18.a=-1,b=5,c=-15, ∴原式=25187111(15)[15()]15555⨯⨯÷-⨯⨯-=÷=.19. 13b a =⎧⎨=⎩;20.设除数为P,余数为r,则依题意有:80=Pa+r ①,94=Pb+r ②,136=Pc+r ③,171=Pd+r ④,其中P 、a 、b 、c 、•d 为正整数,r ≠0 ②-①得14=P(b-a),④-③得35=P(d-c)而(35,14)=7 故P=7或P=1,当P=7时,有80÷7=11…3 得r=3而当P=1时,80÷1=80余0,与余数不为0矛盾,故P ≠1∴除数为7,余数为3. 四.略.单元综合测试1.332311,0.1;(),26x y z a a a b x+--+, 2.3,2; 3.1.23×510-,-1.49×710;4.6;4;332222;0.533x y x y y x --++-; 5.-2 6.单项式或五次幂等,字母a 等; 7.25; 8.4002;9.-1;10.-1; 11.36;12.a=3,b=6,c=4 ;13.B ; 14.A ; 15.A ;16.A ; 17.C ; 18.D;19.由a+b=0,cd=1,│m │=2 得x=a+b+cd-12│m │=0 原式=27716244x x --, 当x=0时,原式=14-. 20.令111111,1232002232003a b +++=++++=, ∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1=12003.21.∵222222222222121211221221(5)(5)2555x x y y x y x y x y x y ++=+++=2211221221(5)5()x y x y x y x y ++-∴22221210(5)155(5)350y y +=+⨯-= ∴22125y y +=35. 22.1234567162536496481100x x x x x x x ++++++ =(3)3(2)3(1)1⨯-⨯+⨯=123×3-12×3+1=334.第二章 平行线与相交线2.1余角与补角1.×、×、×、×、×、√;2.(1)对顶角(2)余角(3)补角;3.D;4.110°、70°、110°;5.150°;6.60°;7.∠AOE 、∠BOC ,∠AOE 、∠BOC ,1对;8.90°9.30°;10.4对、7对;11.C;12.195°;13.(1)90°;(2)∠MOD=150°,∠AOC=60°;14.(1)∠AOD=121°;(2)∠AOB=31°,∠DOC=31°;(3)∠AOB=∠DOC;(4)成立;四.405°.2.2探索直线平行的条件(1)1.D;2.D;3.A;4.A;5.D;6.64°;7.AD 、BC ,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.BE ∥DF (答案不唯一);10.AB ∥CD ∥EF;11.略;12.FB ∥AC ,证明略. 四.a ∥b,m ∥n ∥l.2.2探索直线平行的条件(2)1.CE 、BD ,同位角;BC 、AC ,同旁内角;CE 、AC ,内错角;2.BC ∥DE (答案不唯一);3.平行,内错角相等,两直线平行;4.C;5.C;6.D;7.(1)∠BED ,同位角相等,两直线平行;(2)∠DFC ,内错角相等,两直线平行;(3)∠AFD ,同旁内角互补,两直线平行;(4)∠AED ,同旁内角互补,两直线平行;8.B;9.C;10.B;11.C;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长DC 到H ); 四.平行,提示:过E 作AB 的平行线.2.3平行线的特征1.110°;2.60°;3.55°;4.∠CGF ,同位角相等,两直线平行,∠F ,内错角相等,两直线平行,∠F ,两直线平行,同旁内角互补;5.平行;6.①②⇒④(答案不唯一);7.3个 ;8.D;9.C;10.D;11.D;12.C;13.证明略;14.证明略;四.平行,提示:过C 作DE 的平行线,110°.2.4用尺规作线段和角(1)1.D;2.C;3.D;4.C;5.C;6.略;7.略;8.略;9.略; 四.(1)略(2)略(3)①A ②61. 4.4用尺规作线段和角(2)1.B;2.D;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略; 四.略.单元综合测试1.143°;2.对顶角相等;3.∠ACD 、∠B ;∠BDC 、∠ACB ;∠ACD;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠AOD 、∠AOC;11.C;12.A;13.C;14.D;15.A;16.D;17.D;18.C;19.D;20.C;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;第三章 生活中的数据 3.1 认识百万分之一 1,1.73×104- ;2,0. ; 3,4×107-; 4,9×103- ; 5,C; 6,D;7,C ; 8,C; 9,C;10,(1)9.1×108-; (2)7×105- ;(3)1.239×103- ;11,6101=106- ;106个. 3.2 近似数和有效数字1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49×104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. A;6、C;7. B ;8. D ;9. A ;10. B;11.有可能,因为近似数1.8×102cm 是从范围大于等于1.75×102而小于1.85 ×102中得来的,有可能一个是1.75cm ,而另一个是1.84cm ,所以有可能相差9cm. 12.13×3.14×0.252×6=0.3925mm 3≈4.0×10-10m 313.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了.四:1,小亮与小明的说法都不正确.3498精确到千位的近似数是3×1033.3 世界新生儿图1,(1)24% ;(2)200m 以下 ;(3)8.2%; 2,(1)59×2.0=118(万盒); (2)因为50×1.0=50(万盒),59×2.0=118(万盒),80×1.5=120 (万盒),所以该地区盒饭销量最大的年份是2000年,这一年的年销量是120万盒; (3)50 1.059 2.080 1.53⨯+⨯+⨯=96(万盒);答案:这三年中该地区每年平均销售盒饭96万盒.3.(1)王先生 2001年一月到六月每月的收入和支出统计图(2)28:22:27:37:30:29;4.(1)这人的射击比较稳定,心态好,所以成绩越来越好;(2)平均成绩是8(3)5.解:(1)实用型生活消费逐年减少,保健品消费逐年增加,旅游性消费逐年增加:(2)每年的总消费数是增加了(3)6.(1)大约扩大了:6000-500=5500(km)26000÷500=12.(2)1960~1980年间,上海市市区及郊县的土地面积没有大的变化,说明城市化进程很慢.(3)说明郊县的部分土地已经划为上海市区,1980年以后,上海市区及郊县的土地总面积和几乎不变,这说明1980年以后上海市区及郊县的土地总面积总和几乎不变,这说明1980年以后上海市在未扩大土地总面积的前提下,城市化进程越来越快,城市土地面各占总土地面积的比例越来越大(如浦东新区的开发等).7,(1)由统计图知道税收逐年增加,因此2000年的税收在80到130亿元之间(2)可获得各年税收情况等(3)只要合理即可.单元综合测试1. 10-9;2. 106;3.333×103;3. 0.;4. 170, 6 ;5.百 , 3.3×104;6. 1.4×108, 1.40×108;7.0.36 0.4;8.1.346×105;9.A,10.B,11.C,12.C,13.A,14.D,15.B,16.C,17.B,18.B19. 0.24与0.240的数值相等,在近似数问题上有区别,近似数位不同:0.24近似到百分位(0.01);0.240近似到千分位(0.001).有效数字不同:0.24有两个有效数字2、4;0.240有三个有效数字2、4、0.20. (1)精确到0.0001,有四位有效数字3、0、1、0;(2)精确到千位,有三位有效数字4、2、3;(3)精确到个位,有三位有效数字3、1、4. 21. 82kg=82000 g,∴100000082000=8.2×10-2(g).22. 1000104005⨯=6104=4×10-6(kg).答:1 粒芝麻约重 4×10-6kg. 23. 西部地区的面积为32×960=640万 km 2=6.40×106 km 2,精确到万位. 24. 可用条形统计图:28届答:该飞机需用 2.53×102 h 才能飞过光 1 s 所经过的距离. 26. (1)树高表示植树亩数,从图中可看出植树面积逐年增加.(2)2000年植树约 50 万亩; 2001年植树约75 万亩; 2002年植树约110 万亩; 2003年植树约155 万亩; 2004年植树约175 万亩; 2005年将植树约225 万亩. (3)2000年需人数约 5 万; 2001年需人数约 7.5 万; 2002年需人数约 11 万; 2003年需人数约 15.5 万; 2004年需人数约 17.5 万; 2005年需人数约 22.5 万.第四章 概率 4.1 游戏公平吗 1.1或100% , 0; 2.61;3.相同;4.不可能,0;5.不确定,0,1 ;6.必然事件,1;7. A →③, B →① ,C →② ; 8. D ; 9. C;10.A;11.(1)可能性为1 ;(2)发生的可能性为51;(3)发生的可能性为50% ;(4)发生的可能性为103;(5)发生的可能性为0.12四.这个游戏对双方不公平,当第一个转盘转出数字为1时,第二个转盘转出的数字1,2,3,4,5,6六种可能,这样在它们的积中有3奇3偶,当第一个转盘转出数字2时,第二个转盘转出的六种可能结果数中,两数之积必全为偶数,因此可以知道,,在两个转盘转出的所有可能结果数应是36种,其中只有9种可能是奇数,27种可能出现偶数,即出现积为偶数的可能比积为奇数的可能大得多,因而此游戏对对方不公平,为公平起见,可将游戏稍作改动,即将“两个转盘停止后所指向的两个数字之积”中的“积”改为“和”即可.4.2 摸到红球的概率1. 1.11000; 2.131 ; 3. 21; 4. ,3165 ; 5. 81 ; 6.1,0;7.(1)P=17;(2)P=0 ;(3)P=1;(4)P=0 ;(5)P=37;(6)P=47 ;(7)P=37; 8.C ; 9. D; 10. C; 11.B ;12.B; 13.C; 14.C; 15.D ;16.D ;17.(1)P=13;(2)P=13;(3)P=23;(4)P=23.18.∵P(甲获胜)=310,P(乙获胜)=25.∴这项游戏对甲、乙二人不公平,若要使这项游戏对甲、乙二人公平,则添加编号为“0”的卡片或添加编号为“11”和“12”的卡片等等. 19.(1)k=0 (2)k=220.乙获胜的可能性不可能比甲大,要使游戏公平,小立方体上标有“2 ”的面数为3个,标有“1”“3”的面数共3个 21.P 1P 2; 四.(1)321; (2) 161 ; (3)摊主至少赚187.5元; 4.3 停留在黑砖上的概率1.A ;2.D ; 3.B ; 4.A ;5.B ; 6.C; 7.(1)14; (2)512; (3)23; (4)712; 8.可以在20个扇形区域中,任意将其中6个扇形涂上黄色,而余下14个均为非黄色即可,设计不确定事件发生的概率为103的方法很多,只要合理即可. 9.110; 1100; 10.16 ;11.P (阴影)=416,P (黑球)=416,概率相同,因此同意这个观点. 12.154,227,1354;13.110; 四.解:小晶的解法是正确的,解的过程考虑的是以两个盛着写有0,1,2,3,4,•5的六张卡片的袋中“各取一块”,所以此时的基本事件(实验结果)有: (0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), …… (5,0),(5,1),(5,2),(5,3),(5,4),(5,5)等36种, 其中和为6的是(1,5),(2,4),(3,3),(4,2),(5,1)5种, 故所求概率P=536.而小华解的是把“和”作为基本事件,•其和的解有0,1,2,…,10等11种,但这11种的概率是不同的.单元综合测试1.不确定, 0,1;2. 41 , 131 , 133;3. 53;4. 红, 白;5.2 ① ② ③1;6.= ; 7;32,31 ;8.113;9.C ;10.B;11.B; 12.C; 13.A ; 14.D ;15.B ;16.C; 17. 游戏公平;理由:∵2 的倍数为2、4、6,它们的概率和为21; 数字大于3的有4、5、6,它们面朝上的概率和为21.两种情况机会均等,所以游戏公平.18.没道理.因为有95%的可能性要下雨,还有5%不下雨,所以带雨伞有一定预防作用,并不是必定下雨. 明天下雨的可能性为10%,并不表示一定不下雨,还有10%的概率要下雨.19. 妈妈对小颖的关心爱护的心情是可以理解的,但总担心被车碰着是多余的.虽然时有车祸发生,但车祸的发生不具有随意性,只要我们人人注意,车祸是可以避免的.20. (1)101,451;(2)101×451=4501. 21.上层抽到数学的概率为31;下层抽到数学练习册的概率为31;同时抽到两者的概率为91.22. 10 个纸箱中4 个有糖果,抽到有糖果纸箱的概率为52104 . 23.(1)10 个球中有 2 个红球,其他颜色球随意;(2)10 个球中有 4 个红球,4 个白球,另两个为其他颜色.24. (1)没有.(2)打折的面积占圆盘面积的一半,转一次转盘获打折待遇的概率是21;打九折的概率为41;打八折的概率为61;打七折的概率为121. 第五章 三角形5.1 认识三角形(1)1.C ; 2.D ; 3.C ; 4.B; 5.A ;6.C; 7.C; 8.A; 9.4, △ADE ,△ABE ,△ADC ,•△ABC;10.3 , △AEC ,△AEB ,△AED;11.0<BC<10 12.2 , 5cm ,6cm ,8cm ;6cm ,8cm ,13cm ;13.2;14.•15cm 或18cm ; 15. 7cm<a<12cm;16.学校建在AB ,CD 的交点处.理由:任取一点H ,利用三角形三边关系. 四.AB=6,AC=4,由三边关系定理,BC=4或6或8.5.1 认识三角形(2)1.C; 2.C ; 3.B ; 4.43°48′; 5.5 ; 6.180°; 7.3 ,1 , 1; 8.30°; 9.60°;10.A ; 11.C; 12.B ; 13.70°,60°;14.70°,60° 15.不符合,因为三角形内角和应等于180°. 16.45°,70°,115°;17.解:因为AB ∥CD ,AD ∥BC ,所以∠BDC=∠2=55°,∠DBC=∠1=65°,所以∠C=•180°-∠BDC-∠DBC=60°;四.探究:此类题只需抓住一个三角形,如图(1)所示,在△MNC 中,∠1+∠2+∠C=180°,而∠1=∠A+∠D ,∠2=∠B+∠E ,所以∠A+∠B+∠C+∠D+∠E=180°.如图(2)所示,在△BCM 中,∠C+∠1+∠2=180°,而∠1=∠A+∠D ,∠2=∠DBE+∠E ,故结论成立.如图(3)所示,在△MNE 中,∠1+∠2+∠E=180°,∠1=∠B+∠D ,∠2=∠A+∠C ,•故结论仍成立.5.1 认识三角形(3)1.(1)AD;AD,BD ;(2)BF ,AC ,ACE ,AE ,ADC ,AD ,DEC ,DE;2.5cm;3.40°;4.D;5.A;6.D;7.略 ; 8.略;四.130度;5.2 图形的全等1.B; 2.D ; 3.D ; 4.C. 提示:按一定顺序找,△AOE,△EOD,△AOD,△ABD,△ACD,△AOB;5.a=5,b=18,c=15,∠α=70°,∠β=140°; 6.略 ; 7.C ; 8.D;10.C;11.D ; 12.略四.5.3 全等三角形1.C ;2.D;3.B; 4.B ;5.相等,相等,相等 ; 6.∠ABC;7.DE;8.BC=DC,•AC=EC , EC, ∠E ,∠ECD;9.A ; 10.A; 11.C; 12 .D; 13.D;14.∵△DEF≌△MNP.∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52=°=80°,DE=MN=12cm.四.不成立,因为它们不是对应边.可找出AB=AC,AE=AD,BE=CD.5.4 探索三角性全等的条件(sss)1.SSS ;2.AD=BC ;3.60°;4.D ;5.C;6.先证△ABC≌△DEF(SSS)•,∴∠BCA=∠EFD,∴BC∥EF7.证△ABC≌△ADC(SSS),可得∠BAC=∠DAC,即AE•平分∠BAD8.∠A=∠D,理由如下:连接BC,在△DBC和△ACB中,∵DB=AC,CD=BA,BC=CB,•∴△DBC≌△ACB(SSS),∴∠A=∠D9.DM=DN.四. 略.5.4 探索直角三角形全等的条件(SAS、ASA、AAS)1.乙; 2.AC=AC等;3.2cm; 4.OA=OC或OB=OD或AB=CD;5.B ; 6.C;7.B; 8.B; 9.B;10.B;11.3;12.先证△ABE≌△DAF得AE=DF,因为由正方形ABCD得AD=DC,所以得ED=FC13.证明:延长AE到G,使EG=AE,连结DG.证△ABE≌△GDE,∴AB=GD,∴∠B=∠BDG.∵∠ADC=∠B+∠BAD.∠ADG=∠ADB+∠BDG,而∠ADB=∠BAD,∠B=∠BDG,∴∠ADC=∠ADG再证△ADG≌△ADC,∴AG=AC,即AC=2AE.14.已知:DE⊥AB,DF⊥AC,垂足分别为E,F,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90º.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF(AAS),∴BE=CF.15.此图中有三对全等三角形,分别是:△ABF ≌△DEC ,△ABC ≌△DEF ,△BCF•≌△EFC . 证明:∵AB ∥DE ,∴∠A=∠D .在△ABF 和△DEC 中,,,,AB DE A D AF DC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DEC (SAS ).四.证明:(1)① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°, ∴∠CAD=∠BCE ,∵AC=BC,∴△ADC≌△CEB;② ∵△ADC≌△CEB,∴CE=AD,CD=BE ,∴DE=CE+CD=AD+BE, (2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE,又∵AC=BC , ∴△ACD≌△CBE ,∴CE=AD,CD=BE .∴DE=CE-CD=AD -BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE=BE -AD (或AD=BE -DE ,BE=AD+DE 等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE, ∴AD=CE,CD=BE ,∴DE=CD-CE=BE -AD .5.5 ~5.6 作三角形~~利用三角形全等测距离 1.C; 2.D ; 3.A ; 4.∠α ,a,b, 所求; 5.共6个,如图所示:....3.55A 2B 2C 2C 1B 1A 136︒53.53 6.C ;7.略;8.在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长. 9.(1)由△APB ≌△DPC ,所以CD=AB .(2)由△ACB ≌△ECD 得DE=AB .目的是使DE ∥AB ,可行. 10.因为△A ′OB ′≌△AOB ,所以AB=A ′B ′. 11.解:(1)AE=CF (OE=OF ;DE ∥BF 等等)(2)因为四边形ABCD 是长方形,所以AB=CD ,•AB ∥CD ,∠DCF=∠BAF , 又因为AE=CF , 所以AC-AE=AC-CF , 所以AF=CE ,所以△DEC ≌△BFA .12.提示:连接EM ,FM ,需说明∠EMF=∠BMC=180°即可 四.(1)FE=FD; (2)(1)中的结论FE=FD 仍然成立.在AC 上截取AG=AE ,连结FG .证△AEF ≌△AGF 得∠AFE=∠AFG ,FE=FG .由∠B=60°,AD 、CE 分别是∠BAC ,∠BCA 的平分线,得∠DAC+∠ECA=60°.所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.由∠BCE=∠ACE 及FC 为公共边. 可证△CFG ≌△CFD , 所以FG=FD ,所以FE=FD .5.7 探索直角三角形全等的条件(HL )1.B; 2.C; 3.D; 4.3; 5.全等 ; 6.(1)AAS 或ASA ; (2)AAS ; (3)SAS 或HL ; •(4)不全等 ; (5)不全等 ;7.猜想∠ADC=∠ADE .理由是∠ACD=∠AED=90°,∠CAD=•∠EAD , 所以∠ADC=∠ADE (直角三角形两锐角互余).8.C 9.△ADE ≌△CBF ,△DEG ≌△BFG ,△ADG ≌△CBG 10.∠A CE 11.•全等 HL 5cm12.有全等直角三角形,有3对,分别是:△ABE ≌△ACD ,△ADF ≌△AEF ,•△BDF ≌△CEF ,根据的方法分别为AAS ,HL ,HL 或SAS 或AAS 或ASA 或SSS .13.解:因为△ABD ≌△CBD ,所以∠ADB=∠CDB .又因为PM ⊥AD ,PN ⊥CD ,所以PM=•PN . 14.提示:先说明△ADC ≌△BDF ,所以∠DBE=∠DAC ,所以∠ADB=∠AEF=90°,• 所以BE ⊥AC .15.△ABF ≌△DEA ,理由略.16.先证Rt △ACE ≌Rt △BDF ,再证△ACF ≌△BDE; 17. 需证Rt △ADC ≌Rt △AEC四.(1)由于△ABC 与△DEF 是一张矩形纸片沿对角线剪开而得到两张三角形,所以△ABC ≌△DEF ,所以∠A =∠D ,在△ANP 和△DNC 中,因为∠ANP =∠DNC ,所以∠APN =∠DCN ,又∠DCN =90°,所以∠APN =90°,故AB ⊥ED .(2)答案不唯一,如△ABC ≌△DBP ;△PEM ≌△FBM ;△ANP ≌△DNC 等等.以△ABC ≌△DBP 为例证明如下:在△ABC 与△DBP 中,因为∠A =∠D ,∠B =∠B ,PB =BC ,所以△ABC ≌△DBP .单元综合测试1.一定,一定不;2.50°;3.40°; 4.HL;5.略(答案不惟一);6.略(答案不惟一); 7.5;8.正确;9.8;10.D; 11.C; 12.D; 13.C; 14.D; 15.A; 16.C; 17.C;.18.略;19.略;20.合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B =∠C . 21.此时轮船没有偏离航线.画图及说理略;22.(1)图中还有相等的线段是:AE =BF =CD ,AF =BD =CE ,事实上,因为△ABC 与△DEF 都是等边三角形,所以∠A =∠B =∠C =60°,∠EDF =∠DEF =∠EFD =60°,DE =EF =FD ,又因为∠CED +∠AEF =120°,∠CDE +∠CED =120°,所以∠AEF =∠CDE ,同理,得∠CDE =∠BFD ,所以△AEF ≌△BFD ≌△CDE (AAS ),所以AE =BF =CD ,AF =BD =CE ,(2)线段AE ,BF ,CD 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF ,BD ,CE 它们绕△ABC 的内心按顺时针(或按逆时针)方向旋转120°,可互相得到.23.(1)△EAD ≌△EA D ',其中∠EAD=∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠; (2)118022180-2x y ∠=︒-=︒,∠; (3)规律为:∠1+∠2=2∠A .第六章 变量之间的关系 6.1 小车下滑的时间1.R;2.(1)挂重,弹簧长度;(2)13;3.(1)速度,甲乙两地的距离;(2)时间,他距乙地的距离;4.220字/分;5.27;6.x x y 42+=;7.B;8.C;9.D;10.C;11.(1)皮球反弹的高度,下落高度;下落高度是自变量,反弹高度是因变量;(2)40cm;(3)200cm; 12.(1)108.6度;(2)3258度;(3)y=54.3x;13.(1)通话时间和通话费用,通话时间是自变量,通话费用是因变量; (2)(3)略 14.(1)(2)s=3n+1;不能剪成33个,因为当s=33时,n 不是整数.6.2 变化中的三角形 1.9,4;2.3532-x ;3.y=20-2x;4.t=20-6h;5.21;6.y=3000+400x-2002x ;7.231;8.C;9.D;10.C;11.(1)V=331+0.6t ;(2)346;12.(1)y=3x+36; (2)(3)当x 每增加1时,y 增加3;(4)y=36,表示三角形; 13.(1)28个,45个;(2)y=x+19;(3)当y=52时,x=33,但仅有30排,所以不可能某排的座位数是52个; 14.(1)1y =5x+1500;(2)2y =8x ;(3)当x=300时,3000150030051=+⨯=y (元) , 240030082=⨯=y (元),所以12y y <,故选乙公司合算. 6.3 温度的变化 1.表格法,图象法,关系式法;2.水平,竖直;3.24,4;4.(1)7,5;(2)0千米/时,从2时到4时萌萌没有行走;(3)40;(4)10千米/时;(5)20;5.B;6.Q=90-8t ,675;7.D;8.D; 9.(1)正方形个数,火柴棒根数;火柴棒根数;(2)3x+1;(3)19;10.(1)2510=元;58105.20--=3.5元;(2)因为3.5<5,所以应交水费为3.5×2=7元;55.31017+-=7吨. 11.(1)由图象我们可以看出农民自带零钱为5元. (2)(元)5.030520=- (3)(千克)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴______∥______()
2、(1)∵∠1 =∠3
∴______∥______( )
(2)∵∠2 =∠4
∴______∥______( )
反思
学后记(学生):
教后记(老师)
2、对今天的课,你还有哪些困惑?
当堂
检测
如图,已知 ,那么AB∥CD成立吗?请说明理由。
作业
布置
1、当图中各角满足下列条件时,你能指出哪两条直线平行?请写出判别的理由。
(1)∵∠1 =∠4;
∴______∥______()
(2)∵∠2 =∠4;
∴______∥______()
(3)∵∠1 +∠3 = 180。
简称:
如图,可表述为:
∵()
∴(
合作探究
(一)基础达标
例1、(1)∵ (已知)
∴∥()
(2)∵ (已知)
∴∥()
(3)∵ (已知)
∴∥()
(4)∵ (已知)
∴∥()
课堂
训练
如图,∵∠1=∠2
∴∥()
∵∠2=
∴∥,(同位角相等,两直线平行)
∵∠3+∠4=180°
∴∥)
∴AC∥FG()
课堂
小结
1、今天,你学习了什么知识?
七年级下册数学学科导学案
主备
合作
审核
课题
2.2探索直线平行的条件二
(内错角、同旁内角)(3)
时间
编号
班级
姓名
组别
等级
使用说明
预习课本47-48页。
学法指导
让学生通过观察,操作,推理及表达能力。
教学目标
经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。
教学
重难点
重点
弄清内错角和同旁内角的意义。
难点
会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学过程
活动
板块
学生自主学习方案
同步
导案
自主学习
情景导入
什么是同位角?什么是内错角?什么是同旁内角?
平行判定1:
问题导学
问题
展示
纠错
平行判定2:两条直线被第三条直线所截,如果内错角,那么这两直线。
简称:
如图,可表述:
∵()
∴()
平行判定3:两条直线被第三条直线所截,如果同旁内角,那么这两直线。
相关文档
最新文档