《计算机控制及网络技术》-第5章 计算机控制系统间接设计法

合集下载

第五章数字控制器的离散化设计方法

第五章数字控制器的离散化设计方法

第五章数字控制器的离散化设计⽅法第五章数字控制器的离散化设计⽅法数字控制器的连续化设计是按照连续控制系统的理论在S 域内设计模拟调节器,然后再⽤计算机进⾏数字模拟,通过软件编程实现的。

这种⽅法要求采样周期⾜够⼩才能得到满意的设计结果,因此只能实现⽐较简单的控制算法。

当控制回路⽐较多或者控制规律⽐较复杂时,系统的采样周期不可能太⼩,数字控制器的连续化设计⽅法往往得不到满意的控制效果。

这时要考虑信号采样的影响,从被控对象的实际特性出发,直接根据采样控制理论进⾏分析和综合,在Z 平⾯设计数字控制器,最后通过软件编程实现,这种⽅法称为数字控制器的离散化设计⽅法,也称为数字控制器的直接设计法。

数字控制器的离散化设计完全根据采样系统的特点进⾏分析和设计,不论采样周期的⼤⼩,这种⽅法都适合,因此它更具有⼀般的意义,⽽且它可以实现⽐较复杂的控制规律。

5.1 数字控制器的离散化设计步骤数字控制器的连续化设计是把计算机控制系统近似看作连续系统,所⽤的数学⼯具是微分⽅程和拉⽒变换;⽽离散化设计是把计算机控制系统近似看作离散系统,所⽤的数学⼯具是差分⽅程和Z 变换,完全采⽤离散控制系统理论进⾏分析,直接设计数字控制器。

计算机采样控制系统基本结构如图5.1所⽰。

图中G 0(s)是被控对象的传递函数,H(s)是零阶保持器的传递函数,G(z)是⼴义被控对象的脉冲传递函数,D(z)是数字控制器的脉冲传递函数, R(z)是系统的给定输⼊,C(z)是闭环系统的输出,φ(z)是闭环系统的脉冲传递函数。

零阶保持器的传递函数为:se s H Ts--=1)( (5-1)⼴义被控对象的脉冲传递函数为:[])()()(0s G s H Z z G = (5-2)由图可以求出开环系统的脉冲传递函数为:图5.1 计算机采样控制系统基本结构图)()()()()(z G z D z E z C z W == (5-3)闭环系统的脉冲传递函数为:()()()()()1()()C zD z G z z R z D z G z Φ==+ (5-4)误差的脉冲传递函数为:()1()()1()()e E z z R z D z G z Φ==+ (5-5)显然 )(1)(z z e Φ-=Φ(5-6)由式(5-4)可以求出数字控制器的脉冲传递函数为:)](1)[()()(z z G z z D Φ-Φ= (5-7)如果已知被控对象的传递函数G 0(s),并且可以根据控制系统的性能指标确定闭环系统的脉冲传递函数φ(z),由上式可以得到离散化⽅法设计数字控制器的步骤:(1)根据式(5-2)求出⼴义被控对象的脉冲传递函数G(z)。

《计算机控制技术》课件

《计算机控制技术》课件
《计算机控制技术》ppt课件
contents
目录
• 计算机控制技术概述 • 计算机控制系统组成 • 计算机控制系统的基本原理 • 计算机控制系统的设计方法 • 计算机控制系统的实现技术 • 计算机控制系统的应用实例
01
计算机控制技术概述
定义与特点
总结词
计算机控制技术的定义和特点
详细描述
计算机控制技术是指利用计算机对工业生产过程进行自动控制的技术。它具有 高精度、高效率、高可靠性的特点,能够实现生产过程的自动化、智能化和信 息化。
动控制。
监控软件
用于实时监控系统的运行状态 ,显示各种参数和数据,以及
进行故障诊断和报警等。
数据库软件
用于存储和管理各种数据,如 历史数据、实时数据等。
操作系统
提供计算机控制系统的运行环 境和基础服务。
人机接口
01
02
03
界面设计
设计易于操作的人机界面 ,包括图形界面和文本界 面等。
交互方式
提供多种交互方式,如鼠 标操作、键盘输入等,方 便用户进行操作和控制。
常见的开环控制系统有步进电机 控制系统、温度控制系统等。
闭环控制系统
闭环控制系统是一种包含反馈环节的控制系统,通过检测系统输出结果,将检测结 果反馈给输入端,与输入信号进行比较,根据比较结果调整输入信号。
闭环控制系统的优点是能够实时调整系统输出,提高控制精度和稳定性,但结构相 对复杂。
常见的闭环控制系统有伺服电机控制系统、数控机床控制系统等。
自适应控制
通过调整控制器参数,使系统能够自动适应环境变化和不确定性, 保持最优性能。
鲁棒控制
设计具有鲁棒性的控制系统,使系统在存在不确定性和干扰的情况 下仍能保持稳定和良好的性能。

计算机控制技术课后习题与答案

计算机控制技术课后习题与答案
计算机控制系统中的数据处理和控制决策运算工作都是由软件完成的,因此也就为各种复杂的、先进的和智能的算法的应用和实现提供了可能。预测控制、模糊控制、鲁棒控制、智能控制、自适应控制、软测量等等应用于工业生产过程并取得了明显的经济效益和社会效益。计算机显示技术的进步也使作为现代控制系统人机接口(HMI)的监控画面及其操作非常方便直观。由于其实时性和可靠性的特殊要求,控制计算机软件的编程也有着自己的特点。计算机监控程序的编程,根据不同情况可以使用汇编语言或者高级语言实现。专门为现代控制系统所设计的各种组态软件为监控程序提供了非常方便的生成工具,是目前现场技术人员最常用的编程方法之一。
在模拟量输入通道中,A/D转换器将模拟信号转换成数字量总需要一定的时间,完成一次A/D转换所需的时间称之为孔径时间。对于随时间变化的模拟信号来说,孔径时间决定了每一个采样时刻的最大转换误差,即为孔径误差。
7、采样保持器的作用是什么?是否所有的模拟量输入通道中都需要采样保持器?为什么?
(1)A/D转换过程(即采样信号的量化过程)需要时间,这个时间称为A/D转换时间。在A/D转换期间,如果输入信号变化较大,就会引起转换误差。所以,一般情况下采样信号都不直接送至A/D转换器转换,还需加保持器作信号保持。保持器把t=kT时刻的采样值保持到A/D转换结束。
当尖峰型串模干扰成为主要干扰源时用双积分式转换器可以削弱串模干基于rs485总线扩展卡的硬件设计方案可编程控制器rs485rs485总线扩rs485其它智能装置智能io模块智能调节器rs485rs485rs485ipc系统总线基于rs232rs485转换模块的硬件设计方案可编程控制器rs485转换器rs232rs485其它智能装置智能io模块智能调节rs485rs485rs485ipc扰的影响

计算机控制技术--课程分析

计算机控制技术--课程分析
青岛大学 自动化专业
Automation
国家级精品资源共享课 国家级精品课
“计算机控制技术”课程分析
负责人:于海生
课程组:潘松峰、丁军航、吴贺荣、于金鹏、原明亭、 高军伟、叶志明、姜安宝、闫海涛
2015年11月
明德博学,守正出奇
青岛大学 自动化专业
Automation
分析内容
一、课程性质、定位与教学目标 二、课程内容与重点、难点 三、学情分析与教学设计 四、教学方法与手段 五、教学评价与考核方式 六、教学反馈与教学效果 七、课程特色
明德博学,守正出奇
青岛大学 自动化专业
Automation
一、课程性质、定位与教学目标
明德博学,守正出奇
青岛大学 自动化专业
一、课程性质、定位与教学目标 Automation
课程性质
《计算机控制技术》课程是国家级精品资源共享课 (2014年)、国家级精品课程(2009年)、首批山东省省级精 品课程( 2004年)。
难点:模拟量输入输出通道;基于串行总线的计算机控制系统硬件技术; 硬件抗干扰技术。
(2)数字控制技术
重点:数字程序控制基础;逐点比较法差补原理;步进电机控制技术与 伺服电机控制技术。
难点:逐点比较法差补原理;步进电机控制技术
(3)常规及复杂控制技术
重点:数字控制器的连续化设计技术、离散化设计技术;纯滞后控制技 术、串级控制技术、前馈-反馈控制技术;解耦控制技术。
理论教学
Automation
5)随着课程进展,适时下发各种补充阅读材料,如先进的分布式控制 系统(DCS)、设计案例、工业控制组态软件资料等,对课堂讲授形成有 益补充。
6)推荐合适的参考书、辅导书,并及时编写出版与改革后课程内容相 配套的新教材,便于学生课前预习和课后复习。

计算机控制系统设计第五章模煳控制技术

计算机控制系统设计第五章模煳控制技术

)
g x2 ( x1 ) g x1 ( x2 ) g x2 ( x1 ) g x1 ( x2 )
若由 g(x1 / x2 ) 为元素构成相及矩阵,可得
1
G
g
(
x2
/
x1 )
g( x1 / x2 )
1
同理可得
1,
g
g ( x1 (x2 /
/ x2 ), g ( x1 x1 ),1, g ( x2
国内由刘增良教授主持完成的“模糊控制计算 机系沈阳工业大学硕十学位论文统”和“基于 因素神经网络理论的学习型模糊推理控制机” 成果,达到了世界先进水平。
1989年北师大建立国家级模糊实验室。
20世纪90年代,模糊控制软件与硬件技术的完 善,为模糊控制技术的实现提供了更好的发展 空间。
近年来,随着模糊控制的广泛应用,模糊硬件 产品和软件正使模糊控制向更高一级的新领域 扩展,如机器人定位系统,汽车定位系统、智 能车辆高速公路系统。
~
或 A =1/a+0.9/b+0.4/c+0.2/d ~
无限论域:
A
( (x))
~
x U
x
模糊集合的运算
空集
A
~
A
~
(x)
0
等集A ~~
A(x)
~
B ( x)
~
子集
A
~
B
~
A
~
(x)
B
~
(x)
并集
C
~
A
~
B
~
c ( x)
~
max[
~
( x),
(x)]
~
( x)

计算机控制系统复习题答案

计算机控制系统复习题答案

《计算机控制系统》课程复习题答案一、知识点:计算机控制系统的基本概念。

具体为了解计算机控制系统与生产自动化的关系;掌握计算机控制系统的组成和计算机控制系统的主要特性;理解计算机控制系统的分类和发展趋势。

回答题:1.画出典型计算机控制系统的基本框图;答:典型计算机控制系统的基本框图如下:2.简述计算机控制系统的一般控制过程;答:(1) 数据采集及处理,即对被控对象的被控参数进行实时检测,并输给计算机进行处理;(2) 实时控制,即按已设计的控制规律计算出控制量,实时向执行器发出控制信号。

3.简述计算机控制系统的组成;答:计算机控制系统由计算机系统和被控对象组成,计算机系统又由硬件和软件组成。

4.简述计算机控制系统的特点;答:计算机控制系统与连续控制系统相比,具有以下特点:⑴计算机控制系统是模拟和数字的混合系统。

⑵计算机控制系统修改控制规律,只需修改程序,一般不对硬件电路进行改动,因此具有很大的灵活性和适应性。

⑶能够实现模拟电路不能实现的复杂控制规律。

⑷计算机控制系统并不是连续控制的,而是离散控制的。

⑸一个数字控制器经常可以采用分时控制的方式,同时控制多个回路。

⑹采用计算机控制,便于实现控制与管理一体化。

5.简述计算机控制系统的类型。

答:(1)操作指导控制系统;(2)直接数字控制系统;(3)监督计算机控制系统(4)分级计算机控制系统二、知识点:计算机控制系统的硬件基础。

具体为了解计算机控制系统的过程通道与接口;掌握采样和保持电路的原理和典型芯片的应用,掌握输入/输出接口电路:并行接口、串行接口、A/D和D/A的使用方法,能根据控制系统的要求选择控制用计算机系统。

回答题:1.给出多通道复用一个A/D转换器的原理示意图。

2.给出多通道复用一个D/A转换器的原理示意图。

3.例举三种以上典型的三端输出电压固定式集成稳压器。

答:W78系列,如W7805、7812、7824等;W79系列,如W7805、7812、7824等4.使用光电隔离器件时,如何做到器件两侧的电气被彻底隔离?答:光电隔离器件两侧的供电电源必须完全隔离。

《计算机控制技术》计算机控制系统的常规控制技术

PID调节器结构简单、参数易于调整,当被控对象精确数学模型难 以建立、系统的参数又经常发生变化时,应用PID控制技术,在线整 定最为方便。
在计算机进入控制领域后,用计算机实现数字PID算法代替了模拟 PID调节器。
连续生产过程中,设计数字控制器的两种方法: 1.用经典控制理论设计连续系统模拟调节器,然后用计算机进行数字 模拟,这种方法称为模拟化设计方法。 2.应用采样控制理论直接设计数字控制器,这是一种直接设计方法 (或称离散化设计)
(z)
R(s) +
R(z)
T
e(s) E(z)
_
T
D(z)
U(z)
T
G h0 (s)
图12 典型计算机控制系统结构框图
G(z) G0 (s)
G(s)
Y (z) T
Y (s)
其中: G(z)=Z Gho (s)G0 (s)
1 e Ts
Gh0 ( s )
s
广义对象脉冲传递函数
系统的闭环脉冲传递函数 系统的误差脉冲传递函数
① 断开数字PID控制器,使系统在手动 1
状态下工作,给被控对象一个阶跃输入
信号;
0
y(t )
y()
② 用仪表记录下在阶跃输入信号下的对 象阶跃响应曲线;
p•
0 a
Tm
t b
c
t
图11 对象阶跃响应曲线
③ 在响应曲线上的拐点处作切线,得到对象等效的纯滞后时间和 对象等效的时间常数 ;
④ 选择控制度;
不完全微分PID控制器结构
e(t )
PID 调节器
u(t )
Df (s)
u(t )
不完全微分的PID算法的基本思想是:在PID控制中的微分环节串联上一

《计算机控制技术》教学大纲

《计算机控制技术》课程标准(执笔人:韦庆审阅学院:机电工程与自动化学院)课程编号:0811305英文名称:Computer Control Techniques预修课程:计算机硬件技术基础B、自动控制原理B、现代控制理论学时安排:36学时,其中讲授32学时,实践4学时。

学分:2一、课程概述(一)课程性质地位本课程作为《自动控制理论》的后续课程,是控制科学与工程、机械工程及其自动化和仿真工程专业本科学员理解和掌握计算机控制系统设计的技术基础课。

(二)课程基本理念本课程作为一门理论与工程实践结合紧密的技术基础课,结合自动控制原理技术、微机接口技术,以学员掌握现代化武器装备为目的。

本课程既注重理论教学,也注重教学过程中的案例实践教学环节,使学员在掌握基本理论的基础上,通过了解相关实际系统组成,综合培养解决工程实际问题的能力。

(三)课程设计思路本课程主要包括计算机控制原理和计算机控制系统设计两大部分。

在学员理解掌握自动控制原理的基础上,计算机控制原理部分主要介绍了离散系统的数学分析基础、离散系统的稳定性分析、离散系统控制器的分析设计方法等内容;计算机控制系统设计部分结合实际的项目案例,重点介绍了计算机控制系统的组成、设计方法和步骤、计算机控制原理技术的应用等内容。

二、课程目标(一)知识与技能通过本课程的学习,学员应该了解计算机控制系统的组成,理解计算机控制系统所涉及的采样理论,掌握离散控制系统稳定性分析判断方法,掌握离散控制系统模拟化、数字化设计的理论及方法,掌握一定的解决工程实际问题的能力。

(二)过程与方法通过本课程的学习和实际系统的演示教学,学员应了解工程实际问题的解决方法、步骤和过程,增强积极参与我军高技术武器装备建设的信心。

(三)情感态度与价值观通过本课程的学习,学员应能够提高对计算机控制技术在高技术武器装备中应用的认同感,激发对自动化武器装备技术的求知欲,关注高技术武器装备技术的新发展,增强提高我军高技术武器水平的使命感和责任感。

第5讲 数字控制器的设计

本节主要内容
• 数字控制器概念 • 数字控制器的设计方法 • 模拟系统的离散化方法
计算机控制技术
3
第5讲 数字控制器的设计
一、数字控制器的概念
1.什么是控制器? 按照给定的系统性能指标和系统的原始数学模型, 依据闭环控制结构,设计出的使原有系统满足控制 要求的功能模块。
设定值 + -
控制器
被控对象
(2)微分饱和: 1)当出现高频干扰时→微分项输出幅值大且持续时间短,由于
执行机构的动作范围有限和它的惯性→执行机构动作不到位,引起 系统振荡或长期波动(微分饱和)
2)偏差e(k) 突然变大时,控制器的输出在偏差产生的那一个 采样周期内,微分输出的数值很大,可能使执行机构发生饱和 抑制方法:不完全微分PID
模拟PID控制算法
u(
t
)
KP
[ e(
t
)
1 Ti
0t e(
t
)dt
Td
de( t dt
)
]
将上式离散化(积分用求和代替、微分用后向差分代替)后,得到
u(
k
)
K
P
[
e(
k
)
T Ti
k
e(
j0
j )Td
e( k )e( k 1 ) ] T
式(5-2)
计算机控制技术
19
第5讲 数字控制器的设计
特点:1)式(5-2)的控制算法提供了执行机构的位置与时间的
计算比例项输出 KP[e(k)-e(k-1)]
计算积分项 的累加和输出
计算积分项 输出KPKie(k)
计算微分项 输出
计算微分项输出 KPKd[e(k)-2e(k-1)+e(k-2)]

计算机控制系统的经典设计方法-精品文档


经ZOH后:
j T 1 e u ( j ) E * ( j ) D * ( j ) D j
j T 1 e s i n ( T / 2 ) j T / 2 G ( j ) T e Z O H j T / 2
ZOH传递函数:
s i n ( T / 2 ) u ( j) e D * ( j) E ( j j n ) D s T / 2 n
② 一阶保持器z变换法(斜坡响应不变法)
由于和零阶保持器z变换法类似的原因,这种方法应用的较少。
10
2. 一阶向后差分法
(1)离散化公式
实质:将连续域中的微分 用一阶向后差分替换
d c ( t ) / d t c ( k ) c ( k 1 ) ] / T tk T[
s与z之间的变换关系: (直接代入)
2
2
2
j T j T / 2 j T / 2 D D D 2 1e 2 e e j j A D j D T T / 2 j / 2 D T 1e T e e T
图5-10 双线性变换映射关系
2s ji n ( T / 2 ) 2 T 2 D j t a nD T 2 c o s ( T / 2 ) T 2 D
j T / 2 必有: D * ( j ) e D ( j )

补偿器 模拟控制器
uj ( )e D
jT / 2
D * ( j )( E j)
数字控制器
补偿器:补偿ZOH带来的相位延迟-T/2 当T较小时可以忽略其影响,可以不补偿
7
连续域-离散化设计的步骤如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 计算机控制系统的间接设计法
1. 离散与连续等效设计的基本步骤
2.离散与连续等效设计方法 3.数字PID控制器设计 4.改进的数字PID控制算法 5.数字PID控制器的参数整定
1离散与连续等效设计的基本步骤
s
连续域-离散化设计是先在连续域( 平面)上进 行控制系统的分析、设计,得到满足性能指标的连续控 制系统,然后再离散化,得到与连续系统指标相接近的 计算机控制系统。下面具体说明设计步骤:
D( s)
Y ( s)
这里的采样保持器是一个虚拟的数字模型,而不是实际 硬件。由于这种方法加入了零阶保持器,对变换所得的 离散滤波器会带来相移,当采样频率较低时,应进行补 偿。零阶保持器的加入,虽然保持了阶跃响应和稳态增 益不变的特性,但未从根本上改变Z变换的性质。
阶跃响应不变法
阶跃响应不变法的特点如下: 若 D( s )稳定,则相应的 D( z )也稳定; D( z ) 和 D( s ) 的阶跃响应序列相同;
零、极点匹配z变换
6、零、极点匹配z变换法 所谓零、极点匹配z变换法,就是按照一定的规则 把的 G ( s ) 零点映射到离散滤波器 D( z ) 的零点,把G ( s )的 极点映射到 D( z )的极点。极点的变换同z变换相同,零 点的变换添加了新的规则。 设连续传递函数
G ( s的分母和分子分别为n阶和m阶,称 )
sT
G ( s ) 所有的在 点。
s 处的零点变换成在
z 1 处的零
如需 D( z ) 要的脉冲响应具有一单位延迟,则 D( z ) 分子 的零点数应比分母的极点数少1。
要保证变换前后的增益不变,还需进行增益匹配。
零、极点匹配z变换
例5.2
求G(s) 1/(s a) 的零、极点匹配z变换。
2 2
上式可变换为:
反向差分变换法
由上式可以看出,s平面的稳定域映射到Z平面上, 以 1 / 2 , 0 为圆心,1/2为半径的圆内,如 图所示:
j
s平面
Im
z平面
0
0

0
Re z 1
反向差分变换法
反向差分变换方法的主要特点如下: 变换计算简单; s平面的左半平面映射到z平面的单位圆内部一个小 圆内,因而,如果D(s)稳定,则变换后D(z)的也是 稳定的; 不能保持的脉冲与频率响应。
脉冲响应不变法
Z变换法的特点是: D( z ) 和 D( s ) 有相同的单位脉冲响应; D D( s ) 若稳定, ( z ) 则也稳定; D( z ) 存在着频率失真; 该法特别适用于频率特性为锐截止型的连续滤波器的 离散化。
脉冲响应不变法
它主要应用于连续控制器 D( s) 具有部分分式结构或能 较容易地分解为并联结构,以及 D( s) 具有陡衰减特性, 且为有限带宽的场合。这时采样频率足够高,可减少频 率混叠影响,从而保证 D( z ) 的频率特性接近原连续控制 器 D( s ) 。
(5.2)
反向差分变换法
比较式(5.1)与式(5.2)可知,将式(5.1)中
1 z 1 的s直接用 s 代入即可,即 D( z ) D(s) T
另外,还可将 z 1 作级数展开 z e
1 取一阶近似 z 1 Ts ,也可得到
s
1 z 1 T
1
Ts
T 2s2 1 Ts ... 2
零、极点匹配z变换
例5.3
求G(s) s /(s a) 的零、极点匹配Z变换
离散与连续的等效设计举例
例5.3
某天线跟踪控制系统框图如下图所示,系统的设 计指标要求如下:超调量 % 17% ,调节时间 ts 10 秒,速度误差系数 K 1 。
R( s)
D( s )
-
1 10s 1
正向差分变换法
对 D( s ) 进行正向差分变换时,将其中的s直接用
z 1 s 代入即可,即 D ( z ) D ( s ) T
z 1 T
s
另外还可将 z
z 1 取一阶近似 z 1 Ts ,可以得到 s T
T 2s2 ... 级数展开 z e 1 Ts 2
双线性变换法
例5.1
用双线性变换法将模拟积分控制器 D( s)
为数字积分控制器
U (s) 1 离散化 E (s) s
脉冲响应不变法
4、脉冲响应不变法 所谓脉冲响应不变法就是将连续滤波器D( s ) 离散得 到离散滤波器D( z ) 后,它的脉冲响应g D (kT ) Z 1[ D( z )] 与 连续滤波器 g (t ) L1[ D(s)] 的脉冲响应在各采样时刻的值 是相等的。即g D (kT ) g (t ) t kT 因此,脉冲响应不变法保持了脉冲响应的形状 D( z) Z[ D(s)] 因而,上面给出的连续滤波器 D( s) ,采用脉冲响应不变法 所得到的离散滤波器 D( z )即 D( s) 的z变换。所以,脉冲响应 不变法也称z变换法。
为零阶保持器的传递函数,把
G s Gh 0 ( s )GP ( s ) 称为广义被控对象的传递函数
基本步骤
第三步:将变为差分方程或状态空间方程,并编写计算 机程序。
2.离散与连续等效设计方法
在对连续控制器进行离散化时,常用的离散化方法如 下: 反向差分变换法;
正向差分变换法;
双线性变换法; 脉冲响应不变法(Z变换法); 阶跃响应不变法(具有采样-保持器的脉冲响应不变法); 零、极点匹配Z变换法
写成传递函数形式:
U ( s) 1 G(s) K p (1 TD s ) E (s) TI s
式中KP——比例系数;TI——积分时间常数;TD——微 分时间常数。 在PID控制器中,比例环节对偏差是即时反映的,偏差 一旦产生,控制器立即产生控制作用,以减少偏差;积分环 节主要用来消除静差和提高控制精度。微分环节反映了偏差 信号的变化趋势(变化速率),从而能在偏差信号值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快 系统的动作速度,减小调节时间。
式中
示 D( s ) 的阶跃响应。取上式的Z变换,得到
1 e Ts D( z ) Z D(s) s
阶跃响应不变法
这个方程的右边可以看作前面加了一个采样器和零 阶保持器。因而,可以假设一个连续信号和一个假想 的采样--保持装置,如图所示:
X (s)
S
1 e Ts s
Ts
正向差分变换法
s 平面的稳定域为 Re(s) 0 ,z 平面的稳定域为:
z 1 Re 0 令z T
j
s平面
j Re j ,则可写成: T 1 0 ImLeabharlann z平面 00

0
Re z 1
正向差分变换s平面与z平面的对应关系
G ( s ) 有m个有限零点,n-m个
s 的无限零点,如:
G( s)
个 s 的无限值零点。
s z1 其有限零点为 s z1,还有两 ( s p1 )( s p2 )( s p3 )
零、极点匹配z变换
零极点匹配Z变换的规则是: 所有的极点和所有的有限值零点均按照 z e 变换
基本步骤
第一步:根据连续控制系统框图(其中 GP (s) 为被控对象传 递函数,D( s) 为控制器。首先在连续域上完成 D( s) 的分析、 D( s ) 设计。在设计 时,要把对系统有不利影响的时间滞后 零阶保持器加入连续系统模型,检查系统性能指标,如果 D( 不满足,则修改 。 s)
R( s)
1 s
( s)
结构图
3. 数字PID设计
常规模拟PID控制系统原理框图如图5-10所示。
比例
r (t )
+ -
e(t )
积分
+ + +
u (t )
c(t )
被控对象
微分
1 u (t ) K P e(t ) TI
TD de(t ) 0 e(t )dt dt
t
数字PID算法
+ -
E (s)
D( s)
G p (s)
C (s)
基本步骤
第二步:将连续传递函数 Dz 离散为脉冲传递函数 D ( z 传递函数) s ,这样,就得到下图所示的计算 G(s) 机控制系统:
R(s) + E(s) D(z) Gh0(s) Gp(s) C(s)
1 eTs 图中,Gh 0 ( s) s
阶跃响应不变法
5、阶跃响应不变法 所谓阶跃响应不变法就是将连续滤波器 D( s) 离散后 得到的离散滤波器 D( z ) ,保证其阶跃响应与原连续滤波 器的阶跃响应在各采样时刻的值是相等的。 用阶跃响应不变法离散后得到的离散滤波器 D( z ) ,则有
1 1 Z 1 D( z ) L1 D ( s ) 1 z 1 s t kT 1 1 Z 1 D( z ) 表示 D( z ) 的阶跃响应,而 L1 D(s) s 表 1 z 1
2 1 z 1 2 z 1 Re Re 0 1 T z 1 T 1 z
2 1 z 1 s T 1 z 1
因为T>0,上面的不等式可以简化为
2 1 2 j 2 j 1 z 1 Re 0 Re Re 2 2 z 1 j 1 ( 1)
双线性变换法
由下图所示的梯形面积近似积分并且进行Z变换,并整理
Y ( z ) T 1 z 1 得到可得: X ( z ) 2 1 z 1
相关文档
最新文档