浙江省台州市淑江区2017届九年级第一学期期末考试数学试卷
【精品】2017年初三数学期末考试卷

价格为每千克 30 元.物价部门
规定其销售单价不高于每千克 60 元,不低于每千克 30 元.经市场调查发现:日销售量 y(千克)是
销售单价 x(元)的一次函数,且当 x=60 时, y=80 ;x=50 时, y=100.在销售过程中,每天还要支
付其它费用 450 元.
( 1)求 y 与 x 的函数关系式,并写出自变量 x 的取值范围.
)
A . 55°
B .60°
C . 65 °
D. 70°
第9题
第 10 题
第 11 题
10. 如图, AB 是⊙ O 的弦, AC 是⊙ O 切线, A 为切点, BC 经过圆心. 若∠ B=20°,则∠ C=(
)
A . 20°
B. 25°
C. 40°
D. 50°
11.如图,正比例函数 y
x 与反比例函数 y
则下列说法:
①a> 0; ② 2a+b=0; ③ a+b+c> 0;
其中正确的个数为(
)
④当﹣ 1< x< 3 时, y> 0
A.1
B. 2
C. 3
D.4
8. 如图,⊙ O 的直径 AB 垂直于弦 CD,垂足为 E,∠ OAC=22.5 °,OC=4 ,则 CD 的长为(
)
A.2
B.4
C.4
D.8
9.如图, A, B ,C 是⊙ O 上三点,∠ ACB=25°,则∠ BAO 的度数是(
C. ( x 3)2 19
D. ( x 3) 2 19
2. 一元二次方程 x2 x 1 4
A .有两个不相等的实数根
0 的根的情况是(
)
B.有两个相等的实数根
浙江省台州市九年级上学期数学期末考试试卷

浙江省台州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·乌海期末) 下列图形不是中心对称图形的是().A . 矩形B . 菱形C . 平行四边形D . 等边三角形2. (2分)已知关于x方程x2-kx-6=02的一个根是x=3,则实数k的值为()A . 1B . -1C . 2D . -23. (2分) (2018九上·朝阳期中) 如图,⊙O的直径为10,AB为弦,OC⊥AB ,垂足为C ,若OC=3,则弦AB的长为()A . 8B . 6C . 4D . 104. (2分) (2019九上·余杭期末) 如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OA=5,则AB的长为()A . 2B . 4C . 6D . 85. (2分) (2018九上·浙江期中) 由二次函数,可知()A . 其图象的开口向下B . 其图象的对称轴为直线C . 当x<3时,y随x的增大而增大D . 其最小值为16. (2分) (2018九上·前郭期末) 利用配方法解方程2x2﹣ x﹣2=0时,应先将其变形为()A .B .C .D .7. (2分)(2019·贺州) 如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE =4,则BC等于()A . 5B . 6C . 7D . 88. (2分)(2017·呼和浩特模拟) 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A . 6,3B . 6,3C . 3 ,3D . 6 ,39. (2分)(2019·张家港模拟) 如图,AB是⊙0的直径,PA切⊙O于点A,线段P0交⊙0于点C,连结BC.若∠P=40°,则∠B等于()A . 15°B . 20°C . 25°D . 30°10. (2分)如图,已知在矩形ABCD中,∠ADB=30°,现将矩形ABCD绕点B顺时针旋转45°到矩形GBEF的位置,则∠CBF的度数为()A . 15°B . 20°C . 25°D . 30°二、填空题 (共6题;共7分)11. (2分)小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2-2b+3,若将实数对(x,-2x)放入其中,得到一个新数为8,则x=________.12. (1分) (2016九上·临海期末) 点A(1,19)与点B关于原点中心对称,则点B的坐标为________13. (1分)圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是________14. (1分) (2016九上·徐闻期中) 如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于________.15. (1分)如果线段a、b、c、d是成比例线段且a=3,b=4,c=5,则d=________;16. (1分)(2018·嘉兴模拟) 已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线上,点N在直线y=x+3上,设则抛物线y=﹣abx2+(a+b)x的顶点坐标是________ .三、解答题 (共9题;共82分)17. (5分)(2019·广州模拟) 计算:18. (5分) (2018九上·灵石期末) 汾河孕育着世代的龙城子孙,而魅力汾河两岸那“新外滩”的称号,将太原人对汾河的爱表露无遗…贯穿太原的汾河,让桥,也成为太原的文化符号,让汾河两岸,也成为繁华的必争之地!北中环桥是世界上首座对称五拱反对称五跨非对称斜拉索桥,2013年开工建设,当年实现全线竣工通车.这座桥造型现代,宛如一条腾飞巨龙.小芸和小刚分别在桥面上的A,B处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离AB=20m,小芸在A处测得∠CAB=36°,小刚在B处测得∠CBA=43°,求弧形钢架拱梁顶部C处到桥面的距离.(结果精确到0.1m)(参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)19. (10分)(2017·桂林模拟) 如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.20. (10分)(2015·丽水) 某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.86X(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.21. (10分) (2020九下·信阳月考) 在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5 千米的C处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.22. (10分)(2017·大连模拟) 在平面直角坐标系xOy中,直线y=﹣x+m经过点A(﹣2,n),B(1,),抛物线y=x2﹣2tx+t2﹣1与x轴相交于点C,D.(1)求点A的坐标;(2)设点E的坐标为(,0),若点C,D都在线段OE上,求t的取值范围;(3)若该抛物线与线段AB有公共点,求t的取值范围.23. (10分) (2019九上·江夏期末) 如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.24. (11分)(2017·西固模拟) 如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.25. (11分) (2017九上·义乌月考) 新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin ,且满足,则我们称函数y为“三角形函数”.(1)若函数y=x+a为“三角形函数”,求a的取值范围;(2)判断函数y=x2﹣ x+1是否为“三角形函数”,并说明理由;(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共82分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2017届九年级数学上学期期末考试试题 (2)

2016~2017学年度第一学期期末检测九年级数学试卷(考试时间120分钟 满分120分)一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.二次函数2(1)3y x =--的最小值是(A) 2 (B) 1 (D) -2 (D ) -3 2.下列事件中,是必然事件的是(A) 明天太阳从东方升起; (B) 射击运动员射击一次,命中靶心;(C) 随意翻到一本书的某页,这页的页码是奇数; (D) 经过有交通信号灯的路口,遇到红灯.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是(A) 23(B) 12 (C) 25(D) 13 4.如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,若AD :DB =1:2,则△ADE 与△ABC 的面积之比是(A) 1:3 (B) 1:4 (C) 1:9 (D) 1:165. 已知点A (1,a )与点B (3,b )都在反比例函数12y x=-的图象上,则a 与b 之间的关系是 (A) a >b (B) a <b (C) a ≥b (D) a =b6. 已知圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面展开图的面积为(A) 18πcm 2 (B) 12πcm 2 (C) 6πcm 2 (D) 3πcm 27. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R 表示电流I 的函数表达式为(A) 3I R = (B) I R=-6 (C) 3I R=-(D) I R=68.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为5,AC =8.则cos B 的值是 (A) 43(B)35(C)3 (D) 49.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形, 勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能 容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是 (A) 5步 (B) 6步 (C) 8步 (D)10步 10. 已知二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=kx +n (k ≠0)的图象如图所示, 下面有四个推断: ①二次函数y 1有最大值②二次函数y 1的图象关于直线1x =-对称 ③当2x =-时,二次函数y 1的值大于0④过动点P (m ,0)且垂直于x 轴的直线与y 1,y 2的图象的交点分别 为C ,D ,当点C 位于点D 上方时,m 的取值范围是m <-3或m >-1. 其中正确的是 (A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11. 将二次函数y =x 2-2x -5化为y=a (x-h )2+k 的形式为y= .12.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 . 13. 如图,若点P 在反比例函数3(0)y x x=-<的图象上,过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,则矩形PMON 的面积为 .14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:则该作物种子发芽的概率约为.15. 如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.计算:o o o++2sin45tan602cos3018.如图,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC AD = 1,求DB的长.19.已知二次函数2(0)y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标; (2)求出该函数图象与x 轴的交点坐标.20. 如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A (2,6),B (4,2), C (6,2). (1)以原点O 为位似中心,将△ABC 缩小为原来的12,得到△DEF . 请在第一象限内, 画出△DEF .(2)在(1)的条件下,点A 的对应点D 的坐标为 ,点B 的对应点E 的坐标为 .21. 如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,CD =10,EM =25.求⊙O 的半径.22. 如图,在Rt △ABC 中,∠C =90°,点D 是BC 边的中点,CD =2,tan B =34.(1)求AD 和AB 的长; (2)求sin ∠BAD 的值.23. 已知一次函数21y x =-+的图象与y 轴交于点A , 点B (-1,n )是该函数图象与反比例函数)(0≠=k xky 图象在第二象限内的交点.(1)求点B 的坐标及k 的值;(2)试在x 轴上确定点C ,使AC AB =,直接写出点C 的坐标.24.如图,用一段长为40m 的篱笆围成一个一边靠墙的矩形花圃ABCD ,墙长28m.设AB 长为x m ,矩形的面积为y m 2.(1)写出y 与x 的函数关系式;(2)当AB 长为多少米时,所围成的花圃面积最大?最大值是多少? (3)当花圃的面积为150m 2时,AB 长为多少米?25.如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且 BC= CD ,过点C 的直线CF ⊥AD 于点F ,交AB 的延长线于点E ,连接AC . (1)求证:EF 是⊙O 的切线;(2)连接FO ,若sin E =12,⊙O 的半径为r ,请写出求线段FO 长的思路.26.某“数学兴趣小组”根据学习函数的经验,对函数y = -x 2+2x +1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:其中m = ;(2)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出: ①该函数的一条性质 ;②直线y =kx +b 经过点(-1,2),若关于x 的方程-x 2+2x +1=kx +b 有4个互不相等的实数根,则b 的取值范围是 .27.在平面直角坐标系xOy 中,直线y =14-x +n 经过点A (-4, 2),分别与x ,y 轴交于点B ,C ,抛物线y = x 2-2mx +m 2-n 的顶点为D . (1) 求点B ,C 的坐标;(2) ①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y = x 2-2mx +m 2-n 与线段BC 有公共点,求m 的取值范围.28.在Rt △ABC 中,∠ACB =90°,O 为AB 边上的一点,且tan B =21,点D 为AC 边上的动点(不与点A ,C 重合),将线段OD 绕点O 顺时针旋转90°,交BC 于点E .(1)如图1,若O 为AB 边中点, D 为AC 边中点,则OE OD 的值为 ;(2)若O 为AB 边中点, D 不是AC 边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D 在AC 边上运动的过程中,(1)中OE OD的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求OE OD 的值的几种想法:想法1:过点O 作OF ⊥AB 交BC 于点F ,要求OE OD的值,需证明△OEF ∽△ODA .想法2:分别取AC ,BC 的中点H ,G ,连接OH ,OG ,要求OE OD的值,需证明△OGE ∽△OHD .想法3:连接OC ,DE ,要求OE OD的值,需证C ,D ,O ,E 四点共圆.......请你参考上面的想法,帮助小军写出求OE OD的值的过程 (一种方法即可);(3)若1BO BA n =(n ≥2且n 为正整数),则OE OD的值为 (用含n 的式子表示).29.在平面直角坐标系xOy 中, C 的半径为r (r >1),P 是圆内与圆心C 不重合的点,C 的“完美点”的定义如下:若直线..CP 与 C 交于点A ,B ,满足2PA PB -=,则称点P 为 C 的“完美点”,下图为 C 及其“完美点”P 的示意图.(1) 当O 的半径为2时,①在点M (32,0),N (0,1),1()2T -中, O 的“完美点”是 ;② 若O 的“完美点”P 在直线y =上,求PO 的长及点P 的坐标;(2) C 的圆心在直线1y =+上,半径为2,若y 轴上存在 C 的“完美点”,求圆心C 的纵坐标t 的取值范围.北京市朝阳区2016~2017学年度第一学期期末检测 九年级数学试卷参考答案及评分标准一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17. 解:2sin 45tan602cos30︒+︒+︒-22=-=18.解:∵,ACD ABC ∠=∠A A ∠=∠, ∴△ACD ∽△ABC . ∴AC ADAB AC=.=. ∴3AB =.∴2DB =.19.解:(1) 由题意,得c = -3.将点(2, 5),(-1,-4)代入,得4235,3 4.a b a b +-=⎧⎨--=-⎩ 解得1,2.a b =⎧⎨=⎩∴223y x x =+- . 顶点坐标为(-1,-4). (2) (-3,0),(1,0).20.解:(1) 如图.(2) D (1,3),E (2,1). 21.解:如图,连接OC ,∵M 是弦CD 的中点,EM 过圆心O , ∴EM ⊥CD . ∴CM =MD . ∵CD =10, ∴CM =5.设OC =x ,则OM =25-x ,在Rt △COM 中,根据勾股定理,得 52+(25-x )2=x 2. 解得 x =13 .∴⊙O 的半径为13 .22. 解: (1) ∵D 是BC 的中点,CD =2, ∴BD =DC =2,BC =4.在Rt △ACB 中, 由 tan B =34AC CB =, ∴344AC =. ∴AC =3.∴AD ,AB =5 . (2) 过点D 作DE ⊥AB 于E ,∴∠C =∠DEB =90°.又∠B =∠B ,∴△DEB ∽△ACB . ∴DEDBAC AB =. ∴235DE =. ∴65DE =.∴sin BAD ∠=23. 解:(1) ∵点B (-1,n )在直线21y x =-+上,∴21 3.n =+=∴B (-1,3).∵点B (-1,3)在反比例函数x ky =的图象上,∴3k =-.(2) ()2,C -0或()2,0.24. 解:(1) 2240y x x =-+.(402)x x -(或写成)(2) 由题意,得0402028x x -≤⎧⎨⎩>,<.∴6≤x <20 .由题意,得 ()2210200y x =--+.∴当x =10时,y 有最大值,y 的最大值为200.∴当AB 长为10m 时,花圃面积最大,最大面积为200m 2.(3) 令y =150,则 2240150x x -+=.∴ 125,15x x == .∵6≤x <20,∴x =15.∴当AB 长为15m 时,面积为150m 2.25. (1) 证明:如图,连接OC ,∵OC=OA,∴∠1 =∠2.∵ BC= CD,∴∠1 =∠3.∴∠2 =∠3.∴OC∥AF.∵CF⊥AD,∴∠CFA=90°.∴∠OCF=90°.∴OC⊥EF.∵OC为⊙O的半径,∴EF是⊙O的切线.(2) 解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sin E=12,可得△AEF,△OEC都为含30°的直角三角形;②由∠1 =∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.26. 解:(1) m= 1.(2)如图.(3)①答案不唯一.如:函数图象关于y轴对称.②1<b<2.27. 解: (1) 把A(-4,2)代入y=14x+n中,得n=1. ∴B(4,0),C(0,1).(2) ①D (m ,-1).②将点(0,1)代入2221y x mx m =-+-中,得211m =-.解得12m m == 将点(4,0)代入2221y x mx m =-+-中,得 201681m m =-+-.解得 125,3m m ==.∴5m ≤≤ .28.解:(1) 12.(2) ①如图.②法1:如图,过点O 作OF ⊥AB 交BC 于点F , ∵∠DOE =90°,∴∠AOD +∠DOF =∠DOF +∠FOE =90°.∴∠AOD =∠FOE .∵∠ACB =90°,∴∠A +∠B =∠OFE +∠B =90°.∴∠A =∠OFE .∴△OEF ∽△ODA .∴OE OFOD OA =.∵O 为AB 边中点,∴OA =OB .在Rt △FOB 中,tan B =21, ∴12OFOB =. ∴1.2OFOA =∴12OE OD =.法2:如图,分别取AC ,BC 的中点H ,G ,连接OH ,OG ,∵O 为AB 边中点,∴OH ∥BC ,OH =12BC ,OG ∥AC .∵∠ACB =90°,∴∠OHD =∠OGE =90°.∴∠HOG =90°.∵∠DOE =90°,∴∠HOD +∠DOG =∠DOG +∠GOE =90°.∴∠HOD =∠GOE .∴△OGE ∽△OHD . ∴OEOGOD OH =.∵tan B =21, ∴1.2OGGB =∵OH =GB , ∴1.2OG OH = ∴12OEOD =.法3:如图,连接OC ,DE ,∵∠ACB =90°,∠DOE =90°,∴DE 的中点到点C ,D ,O ,E 的距离相等.∴C ,D ,O ,E 四点共圆.∴∠ODE =∠OCE .∵O 为AB 边中点,∴OC =OB .∴∠B =∠OCE .∴∠ODE =∠B .∵tan B =21, ∴12OE OD =. (3) 122n -.29. 解:(1) ①N ,T . ②如图,根据题意,2PA PB -=,∴∣OP +2-(2- OP )∣=2.∴OP =1.若点P 在第一象限内,作PQ ⊥x 轴于点Q ,∵点P 在直线y =上,OP =1,∴OQ =12,PQ∴P (12).若点P 在第三象限内,根据对称性可知其坐标为(-12,综上所述,PO 的长为1,,点P 的坐标为(12或(-12,).(2)对于 C 的任意一个“完美点”P 都有2PA PB -=, 即2(2)2CP CP +-=-.可得CP =1.对于任意的点P ,满足CP =1,都有2(2)2CP CP +-=-, 即2PA PB -=,故此时点P 为 C 的“完美点”.因此, C 的“完美点”的集合是以点C 为圆心,1为半径的圆.设直线1y =+与y 轴交于点D ,如图,当 C 移动到与 y 轴相切且切点在点D 的下方时,t 的值最小.设切点为E ,连接CE ,可得DEt的最小值为1当 C移动到与y轴相切且切点在点D的上方时,t的值最大.同理可得t的最大值为1综上所述,t的取值范围为1t ≤1。
2017届九年级(上)期末数学试卷

温州市九年级(上)期末数学试卷一、选择题(本题共12个小题,每小题4分,共48分)1.必然事件的概率是()A.1 B.0 C.大于0且小于1 D.大于1 2.三角形的外心是两条()A.中线的交点B.高的交点C.角平分线的交点D.边的中垂线的交点3.Rt△ABC中,∠C=90°,AC=3,BC=4,则sinB等于()A.B.C.D.4.下列两个三角形不一定相似的是()A.两个等边三角形B.两个全等三角形C.两个等腰直角三角形D.有一个30°角的两个等腰三角形5.二次函数y=﹣x2﹣2x+3的图象大致是()A.B.C.D.6.下列说法正确的是()A.天气预报明天下雨的概率是99%,说明明天一定会下雨B.从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是随机事件C.某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是D.事件A发生的概率是,若在相同条件下重复试验,则做100次这种实验,事件A可能发生7次7.说明命题“平分弦的直径垂直于弦”是假命题的反例可以是()A.弦和直径平行B.弦和直径垂直C.两条不垂直的直径D.两条垂直的直径8.如图,AB是⊙O的直径,弦CD⊥AB于E,CD=16,EB=4,则AE=()A.20 B.18 C.16 D.149.如图,锐角△ABC内接于⊙O,AO=3,AC=4,则tanB=()A .B .C .D .10.AD 是△ABC 的中线,E 是AD 上一点,AE :ED=1:3,BE 的延长线交AC 于F ,AF :FC=( )A .1:3 B .1:4 C .1:5 D .1:611.三条线段a ,b ,c 中,b 是a ,c 的比例中项,则a ,b ,c ( ) A .一定能构成三角形 B .一定不能构成三角形C .不一定能构成三角形D .不能构成直角三角形12.如图,A ,B ,C 在⊙O 上,AB 是⊙O 内接正六边形一边,BC 是⊙O 内接正十边形的一边,若AC 是⊙O 内接正n 边形的一边,则n 等于( ) A .12 B .15 C .18 D .20二、填空题(每小题4分,共24分)13.若α是锐角,且tanα=,则α= 度.14.在同样的条件下对某种小麦进行发芽试验,统计发芽种子数,获得频数及频率如下表:由表估计该麦种的发芽概率是 .15.若点A (﹣3,y 1)、B (0,y 2)是二次函数y=﹣2(x ﹣1)2+3图象上的两点,那么y 1与y 2的大小关系是 (填y 1>y 2、y 1=y 2或y 1<y 2).16.如图,D ,E 分别在AB ,AC 上,DE ∥BC ,AD=3,BD=9,DE=2,则BC= .17.如图,△ABO中,点O是坐标原点,A(2,2),B(4,2),点C在x轴正半轴上,O,B,C三点所构成的三角形与△ABO相似,则点C的坐标是.18.如图,点P(1,2),⊙P经过原点O,交y轴正半轴于点A,点B在⊙P上,∠BAO=45°,则点B的坐标是.三、解答题(本大题共8小题,共78分)19.如图,一个转盘被分成3等分,每一份上各写有一个数字,随机转动转盘2次,第一次转到的数字数字为十位数字,第二次转到的数字为个位数字,2次转动后组成一个两位数(若指针停在等分线上则重新转一次)(1)用画树状图的方法求出转动后所有可能出现的两位数的个数.(2)甲、乙两人做游戏,约定得到的两位数是偶数时甲胜,否则乙胜,这个游戏公平吗?请说明理由.20.已知二次函数y=x2﹣2x2﹣3(1)求此函数图象与坐标轴的交点坐标.(2)函数图象向上平移n个单位后,与坐标轴恰有两个公共点,求n的值.21.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼五楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=12米,求旗杆AB的高度.22.如图,在△ABC中,D、E分别是AB、AC上的点,AE=4,AB=6,AD:AC=2:3,△ABC的角平分线AF交DE于点G,交BC于点F.(1)请你直接写出图中所有的相似三角形;(2)求AG与GF的比.23.如图,AB是⊙O的直径,点D是的中点,CD与BA的延长线交于E,BD 与AC交于点F.(1)求证:DC2=DF•DB;(2)若AE=AO,CD=2,求ED的长.24.某家禽养殖场,用总长为80m的围栏靠墙(墙长为20m)围成如图所示的三块面积相等的矩形区域,设AD长为xm,矩形区域ABCD的面积为ym2.(1)请直接写出GH的长(用含x的代数式表示)(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?25.定义:如图1,D,E在△ABC的边BC上,若△ADE是等边三角形则称△ABC 可内嵌,△ADE叫做△ABC的内嵌三角形.(1)直角三角形可内嵌.(填写“一定”、“一定不”或“不一定”)(2)如图2,在△ABC中,∠BAC=120°,△ADE是△ABC的内嵌三角形,试说明AB2=BD•BC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.(3)在(2)的条件下,如果AB=1,AC=2,求△ABC的内嵌△ADE的边长26.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0)和点B(﹣1,0),与y轴交于点C(1)求抛物线的解析式.(2)若点E为抛物线在第一象限上的一点,过点E作EF⊥x轴于点F,交AC于点H,当线段EH=FH时,求点E的坐标.(3)如图2,若CE∥x轴交抛物线于点E,过点E作ER⊥x轴,垂足为点R,G 是线段OR上的动点,ES⊥CG,垂足为点S.①当△ESR是等腰三角形时,求OG的长.②若点B1与点B关于直线CG对称,当EB1的长最小时,直接写出OG的长.2016-2017学年浙江省宁波市慈溪市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题4分,共48分)1.必然事件的概率是()A.1 B.0 C.大于0且小于1 D.大于1【考点】概率的意义.【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答.【解答】解:∵必然事件就是一定发生的事件∴必然事件发生的概率是1.故选:A.2.三角形的外心是两条()A.中线的交点B.高的交点C.角平分线的交点 D.边的中垂线的交点【考点】三角形的外接圆与外心.【分析】根据三角形的外心的定义解答即可.【解答】解:∵三角形三边垂直平分线的交点叫三角形的外心,∴三角形的外心是三角形的两边垂直平分线的交点.故选:D.3.Rt△ABC中,∠C=90°,AC=3,BC=4,则sinB等于()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】本题需先根据已知条件,得出AB的长,再根据锐角三角函数的定义即可求出本题的答案.【解答】解:∵Rt△ABC中,AC=3,BC=4,∴AB=5,∴sinB=,=.故选B.4.下列两个三角形不一定相似的是()A.两个等边三角形B.两个全等三角形C.两个等腰直角三角形D.有一个30°角的两个等腰三角形【考点】相似三角形的判定.【分析】依据有两组角对应相等的两个三角形相似进行判断即可.【解答】解:A、两个等边三角形三组角对应相等,所以它们一定相似;B、两个全等三角形的三组角对应相等,所以它们一定相似;C、两个等腰直角三角形三组角对应相等,所以它们一定相似;D、当一个三角形的三个角分为30°,30°,120°,另一个三角形的三个角为30°,75°,75°时,两个三角形不相似.故选:D.5.二次函数y=﹣x2﹣2x+3的图象大致是()A.B.C.D.【考点】二次函数的图象.【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【解答】解:二次函数y=﹣x2﹣2x+3=﹣(x+1)2+4中,a=﹣1<0,图象开口向下,顶点坐标为(﹣1,4),符合条件的图象是A.故选:A.6.下列说法正确的是()A.天气预报明天下雨的概率是99%,说明明天一定会下雨B.从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是随机事件C.某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是D.事件A发生的概率是,若在相同条件下重复试验,则做100次这种实验,事件A可能发生7次【考点】随机事件.【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.【解答】解:∵天气预报明天下雨的概率是99%,说明明天下雨的可能性大,但不是一定会下雨,∴选项A不正确;∵从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是必然事件,∴选项B不正确;∵某同学连续10次投掷质量均匀的硬币,3次正面向上,并不能说明正面向上的概率是,∴选项C不正确;∵事件A发生的概率是,若在相同条件下重复试验,则做100次这种实验,事件A可能发生7次,∴选项D正确.故选:D.7.说明命题“平分弦的直径垂直于弦”是假命题的反例可以是()A.弦和直径平行B.弦和直径垂直C.两条不垂直的直径D.两条垂直的直径【考点】命题与定理.【分析】根据垂径定理的推论解答即可.【解答】解:命题“平分弦的直径垂直于弦”是假命题的反例可以是两条不垂直的直径,故选:C.8.如图,AB是⊙O的直径,弦CD⊥AB于E,CD=16,EB=4,则AE=()A.20 B.18 C.16 D.14【考点】垂径定理;勾股定理.【分析】连结OC,设⊙O的半径为R,先根据垂径的定理得到CE=8,再根据勾股定理得到R2=(R﹣4)2+82,解得R=10,然后利用AE=2R﹣4进行计算.【解答】解:连结OC,如图,设⊙O的半径为R,∵AB⊥弦CD,∴CE=DE=CD=×16=8,在Rt△OCE中,OC=R,OE=R﹣4,∵OC2=OE2+CE2,∴R2=(R﹣4)2+82,解得R=10,∴AE=AB﹣EB=2×10﹣4=16.故选C.9.如图,锐角△ABC内接于⊙O,AO=3,AC=4,则tanB=()A.B.C.D.【考点】三角形的外接圆与外心;解直角三角形.【分析】延长AO交⊙O于D,连接CD,根据圆周角定理求出∠B=∠D,∠ACD=90°,根据勾股定理求出CD,解直角三角形求出即可.【解答】解:延长AO交⊙O于D,连接CD,由圆周角定理得:∠B=∠D,∠ACD=90°,∵AC=4,AO=3=OD,∴由勾股定理得:CD===2,∴tanB=tanD===,故选D.10.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=()A.1:3 B.1:4 C.1:5 D.1:6【考点】平行线分线段成比例.【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到==,计算得到答案.【解答】解:作DH∥BF交AC于H,∵AD是△ABC的中线,∴FH=HC,∵DH∥BF,∴==,∴AF:FC=1:6,故选:D.11.三条线段a,b,c中,b是a,c的比例中项,则a,b,c()A.一定能构成三角形B.一定不能构成三角形C.不一定能构成三角形D.不能构成直角三角形【考点】比例线段.【分析】根据比例的性质,可得b,根据三角形边的关系,可得答案.【解答】解:由题意,得b=,当a=2,c=4时,b=2,a+b=2+2>4,即b是a,c的比例中项,则a,b,c 能构成三角形;当a=3,c=12时,b=6,a+b=3+6=9<12,b是a,c的比例中项,则a,b,c不能构成三角形,故选:C.12.如图,A,B,C在⊙O上,AB是⊙O内接正六边形一边,BC是⊙O内接正十边形的一边,若AC是⊙O内接正n边形的一边,则n等于()A.12 B.15 C.18 D.20【考点】正多边形和圆.【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,则∠AOC=24°,则边数n=360°÷中心角.【解答】解:连接OC,AO,BO,∵AB是⊙O内接正六边形的一边,∴∠AOB=360°÷6=60°,∵BC是⊙O内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOC=∠AOB﹣∠BOC=60°﹣36°=24°,∴n=360°÷24°=15;故选:B.二、填空题(每小题4分,共24分)13.若α是锐角,且tanα=,则α= 60 度.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:α是锐角,且tanα=,则α=60°, 故答案为:60.14.在同样的条件下对某种小麦进行发芽试验,统计发芽种子数,获得频数及频率如下表:由表估计该麦种的发芽概率是 0.95 .【考点】利用频率估计概率.【分析】根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【解答】解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.15.若点A (﹣3,y 1)、B (0,y 2)是二次函数y=﹣2(x ﹣1)2+3图象上的两点,那么y 1与y 2的大小关系是 y 1<y 2 (填y 1>y 2、y 1=y 2或y 1<y 2).【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣2、3时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y 1=﹣2(x ﹣1)2+3=﹣29;当x=0时,y 2=﹣2(x ﹣1)2+3=1;∵﹣29<1,∴y1<y2,故答案为:y1<y2.16.如图,D,E分别在AB,AC上,DE∥BC,AD=3,BD=9,DE=2,则BC=8.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到比例式,代入计算即可.【解答】解:∵AD=3,BD=9,∴AB=AD+BD=12,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得,BC=8,故答案为:8.17.如图,△ABO中,点O是坐标原点,A(2,2),B(4,2),点C在x轴正半轴上,O,B,C三点所构成的三角形与△ABO相似,则点C的坐标是(2,0)或(10,0).【考点】相似三角形的判定;坐标与图形性质.【分析】分两种情形讨论即可①△BOC∽△OBA.②△BOC′∽△OBA分别计算即可.【解答】解:如图,∵A(2,2),B(4,2),∴AB∥x,AB=2,OB==2,①当BC∥OA时,∵∠AOB=∠CBO,∠ABO=∠BOC,∴△BOC∽△OBA,∵AB∥OC,BC∥OA,∴四边形OABC是平行四边形,∴OC=AB=2,∴C(2,0).②当△BOC′∽△OBA时,=,∴=,∴OC′=10,∴C′(10,0),故答案为(2,0)或(10,0).18.如图,点P(1,2),⊙P经过原点O,交y轴正半轴于点A,点B在⊙P上,∠BAO=45°,则点B的坐标是(3,1)或(﹣1,3).【考点】圆周角定理;坐标与图形性质.【分析】作辅助线,先利用勾股定理求圆P的半径为,根据已知中的∠BAO=45°可知,两个满足条件的点B的连线就是圆P的直径,由此证明△B1OG≌△B2OH,设B1(x,y),则OG=x,B1G=y,从而列方程组可求出x、y的值,写出符合条件的点B的坐标.【解答】解:连接OP,过P作PE⊥x轴于E,∵P(1,2),∴OE=1,PE=2,由勾股定理得:OP==,过A作MN⊥y轴,分别作∠MAO、∠NAO的平分线交⊙P于B1、B2,则∠B1AO=45°,∠B2AO=45°,∴∠B2AB1=90°,连接B1B2,则B1B2是⊙P的直径,即过点P,∴B1B2=2,∴∠B2OB1=90°,∵∠OB2B1=∠B1AO=45°,∴△B1B2O是等腰直角三角形,∴OB1=OB2==,过B1作B1G⊥x轴于G,过B2作B2H⊥y轴于H,∴∠OGB1=∠OHB2=90°,∵∠GOB1+∠AOB1=90°,∠B2OH+∠AOB1=90°,∴∠GOB1=∠B2OH,∴△B1OG≌△B2OH,∴B1G=B2H,OG=OH,设B1(x,y),则OG=x,B1G=y,∵∠B2AO=45°,∴△AB2H是等腰直角三角形,∴B2H=AH=B1G=y,∴AO=AH+OH=x+y=4,则,解得:,∵PB=,∴x=1,y=3不符合题意,舍去,∴B1(3,1),B2(﹣1,3),则点B的坐标为(3,1)或(﹣1,3),故答案为:(3,1)或(﹣1,3).三、解答题(本大题共8小题,共78分)19.如图,一个转盘被分成3等分,每一份上各写有一个数字,随机转动转盘2次,第一次转到的数字数字为十位数字,第二次转到的数字为个位数字,2次转动后组成一个两位数(若指针停在等分线上则重新转一次)(1)用画树状图的方法求出转动后所有可能出现的两位数的个数.(2)甲、乙两人做游戏,约定得到的两位数是偶数时甲胜,否则乙胜,这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)直接利用已知画出树状图,进而得出所有的可能;(2)利用(1)中所求,进而求出甲、乙两人获胜的概率.【解答】解:(1)树状图如图所示:两位数有:11,12,13,21,23,22,31,32,33,一共有9个两位数;(2)两位数是偶数的有:3种,故P(甲胜)==,P(乙胜)==.则这个游戏不公平.20.已知二次函数y=x2﹣2x2﹣3(1)求此函数图象与坐标轴的交点坐标.(2)函数图象向上平移n个单位后,与坐标轴恰有两个公共点,求n的值.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)根据坐标轴上点的坐标特征,解一元二次方程即可;(2)分抛物线与坐标轴交于原点和x轴上一点、与x轴、y轴各有一个交点两种情况进行解答即可.【解答】解:(1)当y=0时,x2﹣2x2﹣3=0,解得,x1=﹣1,x2=3,∴抛物线与x轴交点(﹣1,0),(3,0),当x=0时,y=﹣3,∴抛物线与y轴交点(0,﹣3);(2)当函数图象向上平移3个单位后,得到函数解析式为:y=x2﹣2x2,与坐标轴交于(0,0)和(2,0)两点,y=x2﹣2x2﹣3=(x﹣1)2﹣4,函数图象向上平移4个单位后,y=(x﹣1)2,与x轴、y轴各有一个交点,故n=3或4.21.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼五楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=12米,求旗杆AB的高度.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】过D作DH⊥AB于H,设BH=xm,根据正切的定义求出DH、AC、AB,根据题意列出方程,解方程即可.【解答】解:过D作DH⊥AB于H,设BH=xm,在Rt△BDH中,tan∠BDH=,∴DH==x,∴AC=x,在Rt△ABC中,tan∠ACB=,∴AB=AC•tan60°=3x,∵AH=CD=12∴3x﹣x=12,解得,x=6,答:旗杆AB的高度为18m.22.如图,在△ABC中,D、E分别是AB、AC上的点,AE=4,AB=6,AD:AC=2:3,△ABC的角平分线AF交DE于点G,交BC于点F.(1)请你直接写出图中所有的相似三角形;(2)求AG与GF的比.【考点】相似三角形的判定.【分析】(1)可得到三组三角形相似;(2)先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明△ADE ∽△ACB,则∠ADG=∠C,再利用有两组角对应相等的两个三角形相似证明△ADG∽△ACF,然后利用相似比和比例的性质求的值.【解答】解:(1)△ADG∽△ACF,△AGE∽△AFB,△ADE∽△ACB;(2)∵==,=,∴=,又∵∠DAE=∠CAB,∴△ADE∽△ACB,∴∠ADG=∠C,∵AF 为角平分线,∴∠DAG=∠FAE∴△ADG ∽△ACF ,∴==,∴=2.23.如图,AB 是⊙O 的直径,点D 是的中点,CD 与BA 的延长线交于E ,BD 与AC 交于点F .(1)求证:DC 2=DF•DB ;(2)若AE=AO ,CD=2,求ED 的长.【考点】相似三角形的判定与性质;圆心角、弧、弦的关系;圆周角定理.【分析】(1)由点D 是的中点,得到∠ABD=∠CBD ,等量代换得到∠ACD=∠CBD ,根据相似三角形的性质即可得到结论;(2)连结OD ,如图,根据等腰三角形的性质得到∠OBD=∠ODB ,等量代换得到∠ODB=∠CBD ,根据平行线的判定得到OD ∥BC ,于是得到结论.【解答】(1)证明:∵点D 是的中点,∴∠ABD=∠CBD ,而∠ABD=∠ACD ,∴∠ACD=∠CBD ,∵∠BDC=∠CDF ,∴△CDF ∽△BDC ,∴=, 即DC 2=DF•DB ;(2)解:连结OD,如图,∵OD=OB,∴∠OBD=∠ODB,而∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥BC,∴=,∵EA=AO=BO,∴=,∴ED=4.24.某家禽养殖场,用总长为80m的围栏靠墙(墙长为20m)围成如图所示的三块面积相等的矩形区域,设AD长为xm,矩形区域ABCD的面积为ym2.(1)请直接写出GH的长(用含x的代数式表示)(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【分析】(1)根据矩形AEHG与矩形CDEF面积以及矩形BFHG面积相等,求得AD=2DE,进而得出GH的长;(2)根据题意表示出矩形的长与宽,进而得出答案;(3)把y=﹣x2+40x化为顶点式,根据二次函数的性质即可得到结论.【解答】解:(1))∵矩形AEHG与矩形CDEF面积以及矩形BFHG面积相等,∴矩形AEFB面积=矩形CDEF面积的2倍,∴AD=2DE,∵AD=x,∴GH=AE=2DE=x;(2)∵围栏总长为80m,故2x+x+2CD=80,则CD=40﹣x,故y=x(40﹣x)=﹣x2+40x,自变量x的取值范围为:15≤x<30;(2)由题意可得:∵y=﹣x2+40x=﹣(x2﹣30 x)=﹣(x﹣15)2+300,又∵15≤x<30,∴当x=15时,y有最大值,最大值为300平方米.25.定义:如图1,D,E在△ABC的边BC上,若△ADE是等边三角形则称△ABC 可内嵌,△ADE叫做△ABC的内嵌三角形.(1)直角三角形不一定可内嵌.(填写“一定”、“一定不”或“不一定”)(2)如图2,在△ABC中,∠BAC=120°,△ADE是△ABC的内嵌三角形,试说明AB2=BD•BC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.(3)在(2)的条件下,如果AB=1,AC=2,求△ABC的内嵌△ADE的边长【考点】相似形综合题.【分析】(1)当直角三角形是等腰直角三角形时可内嵌,所以直角三角形不一定可内嵌.(2)根据三角形相似的判定方法,判断出△BDA∽△BAC,即可推得AB2=BD•BC.(3)根据△BDA∽△BAC,△AEC∽△BAC,判断出△BDA∽△AEC,求出DE、CE 和x的关系,求出△ABC的内嵌△ADE的边长是多少即可.【解答】解:(1)当直角三角形是等腰直角三角形时可内嵌,∴直角三角形不一定可内嵌.(2)∵△ADE是△ABC的内嵌三角形,∴△ADE是正三角形,∴∠ADE=60°,在△ADB和△BAC中,∴△BDA∽△BAC,∴=,即AB2=BD•BC.(3)设BD=x,∵△BDA∽△BAC,△AEC∽△BAC,∴△BDA∽△AEC,∴=,∴=,即DE=2x,同理CE=4x,∴12=x﹒7x,∴7x2=1,解得x=,∴DE=,∴△ABC的内嵌△ADE的边长是.故答案为:不一定.26.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0)和点B(﹣1,0),与y轴交于点C(1)求抛物线的解析式.(2)若点E为抛物线在第一象限上的一点,过点E作EF⊥x轴于点F,交AC于点H,当线段EH=FH时,求点E的坐标.(3)如图2,若CE∥x轴交抛物线于点E,过点E作ER⊥x轴,垂足为点R,G 是线段OR上的动点,ES⊥CG,垂足为点S.①当△ESR是等腰三角形时,求OG的长.②若点B1与点B关于直线CG对称,当EB1的长最小时,直接写出OG的长.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据H是EF的中点,可得关于n的方程,根据解方程,可得答案;(3)①根据等腰三角形的定义,可得答案;②根据两边之差小于第三边,可得C,B1,E三点共线,根据线段的和差,可得答案.【解答】解:(1)把A(4,0),B(﹣1,0)代入y=﹣x2+bx+c得:,解得:,即:y=﹣x2+x+2;(2)求得AC的解析式为y=﹣x+2设H(n,﹣n+2),由EF⊥x轴,则E(n,﹣n2+n+2)∵EH=FH且点E为抛物线在第一象限上的点,∴EF=2FH,即﹣n2+n+2=2(n+2)得n2﹣5n+4=0,∴n=1或n=4(舍去)∴E(1,3);(3)①设OG=t,则CG=,∵△COG∽△ESC,∴=,∴=∴ES=,∵∠SER=∠SCE=∠CGO,∴cos∠SER=cos∠CGO=.i.如图1,当SE=SR时,过点S作SH⊥ER垂足为点H.∵EH=SE•cos∠SER,∴1=×,∴t=3,(t=3+舍去);ii.如图2,当SE=ER时,=2,∴t=(t=﹣舍去);iii.如图3,当ER=SR时,过点R作RH⊥SE垂足为点H.∵EH=ER•cos∠SER,∴×=2×,∴t=;综上,当△ESR是等腰三角形时OG=3﹣或或.②EB1取最小值时,OG=﹣1.理由如下:如图4,CB1=CB,EB1≥CE﹣CB1=3﹣,当点C,B1,E三点共线时,EB1取到最小值,此时四边形CBGB1是菱形,∴OG=BG﹣BO=﹣1.2017年3月14日。
2017年浙江省台州市椒江区九年级(上)数学(R)期末统考卷(二)(含答案解析)

2017年浙江省台州市椒江区九年级(上)数学(R)期末统考卷(二)姓名:得分:日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是B. C. D.A.2、(4分) 下列事件中是必然事件的是A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹骑自行车上学,轮胎被钉子扎坏C.小红期末考试数学成绩得满分D.画一个三角形,其内角和是180°3、(4分) 一元二次方程x2+2x−6=0根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4、(4分) 抛物线y=(x−3)2+2的顶点坐标是()A.(−2,3)B.(2,3)C.(3,−2)D.(3,2)5、(4分) 为了展示台州市的自然、人文风光,提高城市知名度,更好地彰显马拉松体育精神,台州市连续三年举办马拉松邀请赛,参加人数逐年增加。
2015年参加的人数约是10000人,到2017年增加到15000人,设参加人数每年增长率为x,由题意,所列方程正确的是()A.10000(1+x)=15000B.10000(1+x)2=15000C.10000(1+2x)=15000D.15000(1+x)2=100006、(4分) 如图,反比例函数y=1x (x>0)的图象上有一动点B,点A是x轴上一个定点。
当点B的横坐标逐渐变大的过程中,△OAB的面积()A.逐渐变小B.逐渐变大C.先变大在变小D.不变7、(4分) 如图,在△ABC中,AB为⊙O的直径,∠B=60∘,∠BOD=100∘,则∠C的度数为()A. 50∘B. 60∘C. 70∘D. 80∘8、(4分) 如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°9、(4分) 如图,在平面直角坐标系中,菱形ABCD的顶点 C与原点 O重合,点 B在 y轴的正半轴上,点 A在反比例函数 y=kx(k>0,x>0)的图像上,点 D的坐标为(4,3).若将菱形ABCD向右平移,使菱形的某个顶点落在反比例函数 y=kx(k>0,x>0)的图像上,求菱形ABCD平移的距离()A.223B.203C.94D.5410、(4分) 当1≤x≤2时,函数y=(x−a)2+1有最小值2,则a的所有可能取值为()A.0或2B.1或C.1或D.0或二、填空题(本大题共 6 小题,共 30 分)11、(5分) 写一个有一个根为0的一元二次方程12、(5分) 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是 .13、(5分) 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为 .14、(5分) 如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分。
2016-2017学年浙江省台州市淑江区九年级(上)期末数学试卷与答案

A.20°
B.25°
C.30°
D.35°
4. (4 分)如图所示,△ABC 中,∠BAC=33°,将△ABC 绕点 A 按顺时针方向旋 转 50°,对应得到△AB′C′,则∠B′AC 的度数为( )
A.33°
B.50°
C.17°
D.平移 3 个单位,再向上平移 5 个单位, 得到抛物线的表达式为( )
21. (10 分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运 动鞋的销售工作,已知该运动鞋每双的进价为 120 元,为寻求合适的销售价 格进行了 4 天的试销,试销情况如表所示: 第1天 第2天 第3天 第4天 售价 x (元/ 双) 销售量 y (双 ) (1)观察表中数据,x,y 满足什么函数关系?请求出这个函数关系式; (2)若商场计划每天的销售利润为 3000 元,则其单价应定为多少元? 22. (10 分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料 有《论语》 , 《三字经》 , 《弟子规》 (分别用字母 A,B,C 依次表示这三个诵读 材料) , 将 A, B, C 这三个字母分别写在 3 张完全相同的不透明卡片的正面上, 把这 3 张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛 时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由 小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛. (1)小明诵读《论语》的概率是 ; 40 30 24 20 150 200 250 300
10. (4 分)如图,⊙P 的半径为 5,A、B 是圆上任意两点,且 AB=6,以 AB 为 边作正方形 ABCD(点 D、P 在直线 AB 两侧) .若 AB 边绕点 P 旋转一周,则 CD 边扫过的面积为( )
九年级上期末考试数学答案
2017—2017学年第一学期期末考试九年级数学试题参考答案及评分标准(共3页)一、选择题(10×3分=30分)1.C ; 2.D ; 3.C ; 4.A ; 5.B ; 6.B ; 7.B ; 8.C ; 9.C ; 10.D .二、填空题(6×3分=18)11.60°; 12.12; 13.20%; 14.(1,0); 15.6π-; 16.(3,2) . 三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-. ------------ 1分△=224(1)41(3)130b ac -=--⨯⨯-=> ------------ 3分方程有两个不等的实数根122b x a -±±== ------------ 5分即121122x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分 ∴2k ab == ------------ 3分 ∴反比例函数解析式为:2y x =(2)由122y x y x⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分 由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分 即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ),则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ =21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433. ∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。
台州市九年级上学期期末数学试卷
台州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·槐荫模拟) 将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A .B .C .D .2. (2分)(2019·株洲模拟) 从-2、-1、0、1、2这5个数中任取一个数,作为关于x的一元二次方程x2-2x+k=0的k值,则所得的方程中有两个不相等的实数根的概率是()A .B .C .D .3. (2分)(2020·西宁模拟) 已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限且关于x的分式方程=3x+ 的解为整数的概率是()A .B .C .D .4. (2分)(2018·广元) 一组数据2,3,6,8,x的众数是x,其中x是不等式组的整数解,则这组数据的中位数可能是()A . 3B . 4C . 6D . 3或65. (2分)下列说法正确的个数是()①“对顶角相等”的逆命题是真命题②所有的黄金三角形都相似③若数据1、-2、3、x的极差为6,则x=4 ④方程x2-mx-3=0有两个不相等的实数根⑤已知关于x的方程的解是正数,那么m的取值范围为m>-6A . 5B . 4C . 3D . 26. (2分)下列命题:①坐标平面内,点(a,b)与点(b,a)表示同一个点;②要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本容量是40台电视机;③过一点有且只有一条直线与这条直线平行;④如果a<b,那么ac<bc;其中真命题有()A . 3个B . 2个C . 1个D . 0个7. (2分) (2020九下·深圳月考) 以下说法正确的是()A . 小明做了次掷图钉的实验,发现次钉尖朝上,由此他说钉尖朝上的概率是B . 一组对边平行,另一组对边相等的四边形是平行四边形C . 点都在反比例函数图象上,且则;D . 对于一元二元方程,若则方程的两个根互为相反数8. (2分) (2017九上·邗江期末) 如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai ,交直线于点Bi .则的值为()A .B . 2C .D .二、填空题 (共10题;共10分)9. (1分)一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x折.可列方程为________.10. (1分) (2017九上·邗江期末) 二次函数y=x2+5的图象的顶点坐标为________.11. (1分) (2017九上·邗江期末) 如图,点E是▱ABCD的边AD的中点,BE与AC相交于点P,则S△APE:S△BCP=________.12. (1分) (2017九上·邗江期末) 弧的半径为24,所对圆心角为60°,则弧长为________.13. (1分) (2017九上·邗江期末) 近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居扬州,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分)60708090100人数4812115则该班学生成绩的中位数是________.14. (1分) (2017九上·邗江期末) 如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O 的切线交AB的延长线于点E,则∠E=________.15. (1分) (2017九上·邗江期末) 如图,△ABC中,AE交BC于点D,∠CAE=∠CBE,AD:DE=3:5,AE=16,BD=8,则DC的长等于________.16. (1分) (2017九上·邗江期末) 如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC的中点,则MN长的最大值是________.17. (1分) (2017九上·邗江期末) 某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是________ m.18. (1分)(2016·滨湖模拟) 在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3 ,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为________.三、解答题 (共10题;共99分)19. (10分) (2020八上·安陆期末) 从安陆到武汉市,可乘坐普通列车或高铁,已知高铁的行驶路程是100千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)设计高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短45分钟,求高铁的平均速度.20. (10分) (2017九上·宣化期末) 已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.21. (5分) (2017九上·邗江期末) 如图,A,B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之积小于6的概率.22. (10分) (2017九上·邗江期末) 已知:关于x的一元二次方程x2﹣6x﹣m=0有两个实数根.(1)求m的取值范围;(2)如果m取符合条件的最小整数,且一元二次方程x2﹣6x﹣m=0与x2+nx+1=0有一个相同的根,求常数n 的值.23. (5分) (2017九上·邗江期末) 扬州一农场去年种植水稻10亩,总产量为6000kg,今年该农场扩大了种植面积,并且引进新品种“超级水稻”,使总产量增加到18000kg,已知种植面积的增长率是平均亩产量的增长率的2倍,求平均亩产量的增长率.24. (15分) (2017九上·邗江期末) 如图,△ABC中,D是BC上一点,∠DAC=∠B,E为AB上一点.(1)求证:△CAD∽△CBA;(2)若BD=10,DC=8,求AC的长;(3)在(2)的条件下,若DE∥AC,AE=4,求BE的长.25. (10分) (2017九上·邗江期末) 如图,Rt△ABC,∠C=90°,点D为AB上的一点,以AD为直径的⊙O 与BC相切于点E,连接AE.(1)求证:AE平分∠BAC;(2)若AC=8,OB=18,求BD的长.26. (15分) (2017九上·邗江期末) 某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)关系为二次函数,部分对应值如表所示.时间x(天)048121620销量y1(万朵)0162424160与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)的函数关系如图所示.(1)求y1与x的二次函数关系式及自变量x的取值范围;(2)求y2与x的函数关系式及自变量x的取值范围;(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.27. (12分) (2017九上·邗江期末) 如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=________,∠AGH=________°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若△ABG∽△FDH,求y与x之间的函数关系式,并求出y的取值范围.28. (7分) (2017九上·邗江期末) 如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A,B,CD是线段OB上的一动线段,且CD=2,过点C,D的两直线都平行于y轴,与抛物线相交于点F,E,连接EF.(1)点A的坐标为________,线段OB的长=________;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共99分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、。
2017学年第一学期期末教学质量监测九年级数学试卷及详细解答
2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
浙江省台州市淑江区九年级(上)期末数学试卷
C.抛掷一枚硬币,落地后正面朝上
D.任取两个正整数,其和大于 1
3.(4 分)如图,AB 是⊙O 的直径,点 C 在⊙O 上,∠B=70°,则∠A 的度数是( )
A.20°
B.25°
C.30°
D.35°
4.(4 分)如图所示,△ABC 中,∠BAC=33°,将△ABC 绕点 A 按顺时针方向旋转 50°,
17.(8 分)用适当的方法解方程 (1)2(x+2)2﹣8=0 (1)2x2+x﹣ =0. 18.(8 分)如图,在平面直角坐标系中,点 A、B、C 的坐标分别为(﹣1,3)、(﹣4,1)
(﹣2,1),先将△ABC 沿一确定方向平移得到△A1B1C1,点 B 的对应点 B1 的坐标是(1, 2),再将△A1B1C1 绕原点 O 顺时针旋转 90°得到△A2B2C2,点 A1 的对应点为点 A2. (1)画出△A1B1C1; (2)画出△A2B2C2; (3)求出在旋转过程中,点 A1 到达 A2 的路径长.
19.(8 分)已知关于 x 的方程(k﹣1)x2﹣(k﹣1)x+ =0 有两个相等的实数根,求 k 的 值.
20.(10 分)如图,AC 是⊙O 的直径,PA 切⊙O 于点 A,点 B 是⊙O 上的一点,且∠BAC =30°,∠APB=60°.
(1)求证:PB 是⊙O 的切线; (2)若⊙O 的半径为 2,求弦 AB 及 PA,PB 的长.
是( )
A.12cm
B.6cm
C.3 cm
D.2 cm
9.(4 分)定义:给定关于 x 的函数 y,对于该函数图象上任意两点(x1,y1),(x2,y2),
当 x1<x2 时,都有 y1<y2 为增函数.根据以上定义,可以判断下面所给的函数中:①y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省台州市淑江区2017届九年级数学上学期期末考试试题
( 考试时间:120分钟 试卷满分:150分)
一、 选择题(每小题4分,共40分)
1. 下列汽车标志中既是轴对称图形又是中心对称图形的是( ▲ )
A .
B .
C .
D .
2. 下列事件中属于不可能确定事件的是( ▲ )
A .在足球赛中,弱队战胜强队
B .长分别为3、5、9厘米的三条线段能围成一个三角形
C .抛掷一枚硬币,落地后正面朝上
D .任取两个正整数,其和大于1
3. 如图, AB 是⊙O 的直径,点C 在⊙0上,∠B =70°,则∠A 的度数是( ▲ )
A .20°
B .25°
C .30°
D .35°
4. 如图所示,ABC ∆中,BAC ∠=33°,将A
B C ∆绕点A 按顺时针方向旋转50°,对应得到C B A ''∆,
则AC B '∠的度数为( ▲ )
A .33°
B .50°
C .17°
D .27° 5.将抛物线8)2(2--=x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( ▲ )
A .13)1(2-+=x y
B . 3)5(2
--=x y C .13)5(2--=x y D .3)1(2-+=x y 6.台州市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年 约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ▲ )
A .8.28)21(20=+x
B .20)1(8.282=+x
C .8.28)1(202=+x
D .8.28)1(20)1(20202=++++x x
7.位于第一象限的点E 在反比例函数x
k y =的图象上,点F 在x 轴的正半轴上,O 是坐标 原点.若EF 垂直x 轴,△EOF 的面积等于1,则k =( ▲ )
A .4
B .2
C .1
D .﹣2
8.如图,从一块直径为24cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( ▲ )
A .12cm
B .6cm
C .23cm
D .32cm
9.定义:给定关于x 的函数y ,对于该函数图象上任意两点),(11y x ,),(22y x ,
当21x x <时,都有21y y <为增函数. 根据以上定义,可以判断下面所给的函数中:
① x y 2=; ② 1+-=x y ; ③ )0(2>=x x y ; ④x
y 1-
=. 是增函数的有( ▲ )
A .①②
B .①③
C .①④
D .③④ 10.如图,⊙P 的半径为5,A 、B 是圆上任意两点,且AB =6,以AB 为边作正方形ABCD (点D 、P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为( ▲ )A .3π
B .6π
C .9π
D .12π
二、 填空题(每小题5分,共30分)
11.若1=x 是一元二次方程022=++m x x 的一个根,则m 的值为 ▲ .
12.双曲线x
m y 1-=在每个象限内,函数值 y 随 x 的增大而增大,则 m 的取值范围 是 ▲ .。