最新人教版七年级数学上册有理数检测题8(附答案)
人教版七年级数学上册有理数测试卷(含答案)

A.0个B.1个C.2个D.3个
6.在有理数中,有()
A.最大的数B.最小的数C.绝对值最大的数D.绝对值最小的数
二、填空题(每小题6分,共24分)
7.在数+8.3,-4,-0.8,- ,0,90,- ,-|-24|中,_________________是正数,_______________不是整数.
(1)以邮局为原点,以向东方向为正方向,用1cm表示1km画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;
(2)C村离某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分用正数或负数来表示,记录如下表:
与标准质量的差值/g
-5
-2
0
1
3
6
袋数
1
4
3
4
5
3
这批样品的质量比标准质量多还是少?多或少几克?若每袋标准质量为450g,则抽样检测的总质量是多少?
四、附加题(本小题10分)
15.实数a,b,c在数轴上的位置如图所示,化简|c|-|a|+|-b|+|-a|
参考答案
1.A2.C3.D4.B5.C6.D,7.+8.3,90;+8.3,-0.8,- ,- .8.9,9.1.304×107
A.是0 B.不能确定C.是+1 D.是-1
4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()
A.0.1(精确到0.1)B.0.05(精确到千分位)
C.0.05(精确到百分位)D.0.0502(精确到0.0001)
5.有下列四个算式:①(-5)+(+3)=-8;②—(-2)3=6;③(+ )+(- )= ;
【精选】人教版七年级上册数学 有理数检测题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
人教版数学七年级上册第一章有理数综合检测题(附答案)

人教版数学七年级上学期 第一章有理数测试时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃2.-12017的相反数的倒数是( ) A 1B. -1C. 2017D. -20173.下列各式中,正确的是( ) A -|-4|>0B. |0.08|>|-0.08|C. |-23|<0 D. -13>-124.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1) B. 0.05(精确到百分位) C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)5.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( ) A. 甲乙B. 丙丁C. 甲丙D. 乙丁6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C -32-(-3)2=-9-9=-18D. 3×23-2×9=3×6-18=0 7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边8.地球平均半径约为6371000米,该数字用科学记数法可表示为( ) A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×1039.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 3710.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.12近似数2.30万精确到_____位.13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.15.若|a-4|+|b+1|=0,则b a=____.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.18.观察下面一列数:-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16……按照上述规律排下去,那么第10行从左边数第9个数是____.三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出件数7 6 3 5 4 5售价(元) +3 +2 +1 0 -1 -2请问该服装店售完这30件衣服后,赚了多少钱?25.观察下列三行数:2 6 18 54 162…①-1 3 15 51 159…②-1 -3 -9 -27 -81…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?答案与解析时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃【答案】B 【解析】试题分析:∵冰箱冷藏室的温度零上5℃,记作+5℃, ∴保鲜室的温度零下7℃,记作-7℃. 故选B .【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.-12017的相反数的倒数是( ) A. 1 B. -1C. 2017D. -2017【答案】C 【解析】12017-的相反数是12017, 12017的倒数是2017. 所以有理数12017-的相反数的倒数是2017.故选B.3.下列各式中,正确的是( ) A. -|-4|>0 B. |0.08|>|-0.08|C. |-23|<0 D. -13>-12【答案】D 【解析】分析:根据有理数的大小的方法是:负数<0<正数;两个负数,绝对值大的反而小,即可得出答案. 详解:A 、-|-4|=-4<0,故本选项错误;B 、∵|008|=0.08,|-0.08|=0.08,∴|0.08|=|-0.08|,故本选项错误;C 、|-23|=23>0,故本选项错误;D、∵13<12,∴-13>-12,故本选项正确.故选D.点睛:此题考查了有理数的大小比较,比较有理数的大小的方法是:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A 0.1(精确到0.1) B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁【答案】C【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.详解】甲:由数轴有,0<a<3,b<−3,∴b−a<0,甲的说法正确, 乙:∵0<a<3,b<−3, ∴a+b<0 乙的说法错误, 丙:∵0<a<3,b<−3, ∴|a|<|b|, 丙的说法正确, 丁:∵0<a<3,b<−3, ∴ba<0, 丁的说法错误; 故选C.【点睛】此题考查绝对值,数轴,解题关键在于结合数轴进行解答. 6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0【答案】C 【解析】分析:A 、原式先计算乘法运算,再计算减法运算得到结果,即可作出判断; B 、原式先计算除法,再计算乘法算得到结果,即可作出判断; C 、原式先算乘方,再算减法得到结果,即可作出判断;D 、原式先计算乘方,再计算乘法运算,最后计算加减运算得到结果,即可作出判断.详解:A. 7-2×(-15)=227+=755,故该选项错误; B 、-3÷7×17=11337749-⨯⨯=-,故该选项错误;C 、-32-(-3)2=-9-9=-18,故该选项正确;D 、3×23-2×9=3×8-18=24-18=6,故该选项错误. 故选C .点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边【答案】C【解析】【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8.地球的平均半径约为6371000米,该数字用科学记数法可表示为()A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×103【答案】B【解析】根据科学记数法的表示形式可得,6371000=6.371×106.故选B.9.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 37【答案】B【解析】试题解析:根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…故5小时后细胞存活的个数是25+1=33个.故选B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!【答案】C【解析】【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴100!1009998198!98971⨯⨯⨯⨯=⨯⨯⨯=100×99=9900,故选C.二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.【答案】(1). -2,(2). 3【解析】分析:由绝对值的性质及相反数的性质解答即可.详解:-|-2|=2;-(-3)=3点睛:主要考查了绝对值的概念及性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;12.近似数2.30万精确到_____位.【答案】百【解析】根据近似数的精确度,近似数2.30万精确到百位,故答案为百13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.【答案】(1). 0,(2). -4【解析】【分析】根据绝对值不大于3.14的有理数互为相反数,根据互为相反数的和为零,可得答案;根据不小于-4而不大于3的所有整数,可得加数,根据有理数的加法,可得答案.【详解】绝对值不大于3.14的所有有理数之和等于0;不小于-4而不大于3的所有整数之和(-4)+(-3)+(-2)+(-1)+0+1+2+3=-4,故答案为0,-4.【点睛】本题考查了有理数大小比较,有理数的加法,利用不小于-5而不大于4的所有整数得出加数是解题关键,注意互为相反数的和为零.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.【答案】-1或5【解析】【详解】试题分析:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5.考点:1.数轴;2.有理数的加法;3.两点间的距离.15.若|a-4|+|b+1|=0,则b a=____.【答案】1【解析】分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.详解:由题意得,a-4=0,b+1=0,解得a=4,b=-1,所以,b a=(-1)4=1.故答案为1.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x和y的关系式为:y=3x2-5,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【详解】解:依据题中的计算程序列出算式:12×3-5.由于12×3-5=-2,-2<0,∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.【答案】10-(-6)×3-4=24(答案不唯一)【解析】分析:利用“24点”游戏规则列出算式,使其结果为24即可.详解:根据题意得:10-(-6)×3-4=24;(10-4)-3×(-6)=24;4-(-6)÷3×10=24;3×[4+10+(-6)]=24等.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.观察下面一列数:按照上述规律排下去,那么第10行从左边数第9个数是____.【答案】90【解析】分析:先从排列中总结规律,再利用规律代入求解.详解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是-81,∴第10行从左边数第9个数是81+9=90.故答案为90.点睛:主要考查了学生的综合数学素质,要求能从所给数据中找到规律并总结规律,会利用所找到的规律进行解题三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.【答案】见解析【解析】分析:根据整数,正数,非负数,负分数的定义可得出答案.详解:正数集合{3.14159,+31,0.618,|-1.56|};非负数集合{3.14159,+31,0.618,|-1.56|,0};整数集合{-3,+31,0};负分数集合{-3.1,-0.5,-227,-0.2020}.点睛:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.【答案】见解析【解析】【分析】数轴上的点与实数是一一对应的关系,画数轴要注意正方向,单位长度和原点,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.【详解】∵|-3|=3,-22=-4,-(-1)=1,∴以上各数在数轴上的位置如图所示:故412>|-3|>-(-1)>0>-2.12>-22>-5.【点睛】主要考查了数轴,数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.【答案】(1)-32;(2)-3;(3)556 -.【解析】分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算绝对值运算,再从左到右依次计算即可得到结果;(3)先乘方,再算括号里面的,最后得结果.详解:(1)原式=-21-14+18-15=-32;(2)原式=783274-⨯⨯=-3;(3)原式=-1-114923⨯⨯=-556.点睛:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.【答案】(1)-1; (2)0.5 ;(3)-9【解析】分析:(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.详解:(1)点B表示的数为-5+6=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,则点E表示的数是-5-(-1+5)=-9.点睛:本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:请问该服装店售完这30件衣服后,赚了多少钱?【答案】472【解析】试题分析:首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.试题解析:解:售价=7×3+6×2+3×1+5×0+4×(-1)+5×(-2)=21+12+3+0-4-10=22;所以总售价=22+47×30=1432元;赚的钱=1432-30×32=1432-960=472元;点睛:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.25观察下列三行数:(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.【答案】(1)每个数都等于它前面相邻的数的3倍(2)见解析;(3)726.【解析】分析:(1)观察不难发现,后一个数是前一个数字的3倍解答即可;(2)观察不难发现,第②行为第①行对应的数小3,第③行为第②行相应的数字除以-2;(3)根据各行的第n个数的表达式找出第6个数然后计算它们的和即可.详解:(1)每个数都等于它前面相邻的数的3倍(2)第②行数比第①行对应的数小3,第③行数是由第①行对应的数除以-2得到的.(3)第一行第6个数为:5;23=486第二行第6个数为:486-3=483;第三行第6个数为:486÷(-2)=-243;故每行第6个数的和为:486+483+(-243)=726.点睛:本题是对数字变化规律的考查,比较简单,观察出第①行后一个数字是前一个数字的3倍是解题的关键,也是本题的突破口.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?【答案】(1)收工时在A地的正东方向,距A地39km;(2)需加15升.【解析】【分析】(1)首先审清题意,明确“正”和“负”所表示的意义,计算结果是正数,说明收工时该检修小组位于A地向东多少千米,计算结果为负数,说明收工时该检修小组位于A地向西多少千米;(2)关键是计算出实际行走的路程所耗的油量,而耗油量应该是记录的所有数字的绝对值之和乘以3,相信你一定可以得到正确答案.【详解】(1)根据题意可得:向东走为“+”,向西走为“−”;则收工时距离等于(+15)+(−2)+(+5)+(−1)+(+10)+(−3)+(−2)+(+12)+(+4)+(−5)+(+6)=+39.故收工时在A地的正东方向,距A地39km.(2)从A地出发到收工时,汽车共走了|+15|+|−2|+|+5|+|−1|+|+10|+|−3|+|−2|+|+12|+|+4|+|−5|+|+6|=65km;从A地出发到收工时耗油量为65×3=195(升).故到收工时中途需要加油,加油量为195−180=15升.【点睛】此题考查正数和负数,有理数的加法,解题关键在于掌握其定义和运算法则.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
人教版七年级上册数学《有理数》单元测试卷(含答案)

人教版七年级上册数学《有理数》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题)1.据统计,十堰市2021年报名参加9年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)()A.2.6x104 B.2.7x104 C.2.6x105 D.2.7x1052.某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是()A.精确到百分位,有3个有效数字 B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字 D.精确到千位,有3个有效数字3.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为()A、4℃B、9℃C、-1℃D、-9℃A、abc>0B、ab-ac>0C、(a+b)c>0D、(a-c)b>05.下列说法正确的是()A.非负有理数就是正有理数B.零表示没有,是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数6.若|x+y|=y-x,则有()A、y>0,x<0B、y<0,x>0C、y<0,x<0D、x=0,y≥0或y=0,x≤07.已知|x|=0.19,|y|=0.99,且0<yx,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.88.三个有理数a 、b 、c 在数轴上的位置如图所示,则( )A .111c a c b a b >>---B .111b c c a b a>>--- C .111c a b a b c >>--- D .111a b a c b c>>---9.给出两个结论:(1)|a-b|=|b-a|,(2) 3121-->.其中( )A 、只有(1)正确B 、只有(2)正确 B 、C 、(1)和(2)都正确D 、(1)和(2)都不正确10.下列判断:①若ab=0,则a=0或b=0;②若a 2=b 2,则a=b ;③若ac 2=bc 2,则a=b ;④若|a|>|b|,则(a+b )•(a-b )是正数.其中正确的有( ) A 、①④ B 、①②③ C 、① D 、②③二、填空题(本大题共5小题)11.数轴上的A 点表示的数是-3,数轴上另一点B 到A 点的距离是2,则B 点所表示的数是________。
2023-2024学年人教版七年级数学上册第一章【有理数】训练卷附答案解析

2023-2024学年七年级数学上册第一章【有理数】训练卷(满分120分)一、选择题(本大题共10小题,共30分)1.−2023的绝对值是()A.12023B.2023C.−12023D.−20232.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A.0.5B.±0.5C.−0.5D.53.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作()A.−5元B.0元C.+5元D.+10元4.以下说法正确的是()A.正整数和负整数统称整数B.整数和分数统称有理数C.正有理数和负有理数统称有理数D.有理数包括整数、零、分数5.用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×1037.有4,−92,−3,0四个数,其中最小的是()A.4B.−92C.−3D.08.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.−3B.0C.3D.−69.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(−6)C.(−3)+(+6)D.(−3)+(−6)10.观察下列等式:31=3,32=9,33=27,34=81,35=243,…,根据其中的规律可得31+32+33+…+32023的结果的个位数字是()A.0B.2C.7D.9二、填空题(本大题共5小题,共15分)11.在−1、0、1、2这四个数中,既不是正数也不是负数的是.12.比较大小:−12−1;−2−|−3|;−(−12)−(−13).13.计算:1+(−2)+3+(−4)+…+2023+(−2024)=________.14.若|x+2|+(y−3)2=0,则x y=.15.已知有理数a、b、c在数轴上对应点的位置如图所示,则|b−c|−|a−b|−|c|的化简结果为.三、计算题(本大题共8小题,共75分)16.(12分)计算:(1)(−16+34−512)×12(2) (−20)−(+5)−(−5)−(−12).(3)(+325)+(−278)−(−535)−(+18)(4)−12−(12−23)÷13×[−2+(−3)2].17.(6分)将下列各数在数轴上表示出来,并用“<”把它们连接起来.−4,−|−3|,0,−13,+(+2),π18.(7分)现有10袋小麦,称量后记录如下(单位:千克) :91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.(1)若以90千克为标准,把超出的千克数记为正数,不足的千克数记为负数,请依次写出10袋小麦的千克数与90的差值.(2)请利用(1)中的差值,求这10袋小麦的质量和.19.(9分)出租车司机老姚某天上午的营运全是在一条笔直的东西走向的路上进行.如果规定向东为正,向西为负,那么他这天上午行车里程(单位:千米)记录如下:+5,−3,+6,−7,+6,−2,−5,+4,+6,−8.(1)将第几名乘客送到目的地时,老姚刚好回到上午的出发点?(2)将最后一名乘客送到目的地时,老姚距上午的出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,则姚师傅在这天上午一共收入多少元?20.(10分)某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超额记为正、不足记为负):(单位:只)星期一二三四五六日与计划量的差值+5−2−4+13−6+6−3(1)根据记录的数据可知该厂生产风筝最多的一天是星期;(2)产量最多的一天比产量最少的一天多生产多少只风筝⋅(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元,少生产一只扣4元,那么该厂工人这一周的工资总额是多少元⋅21(10分)简便运算能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力起到非常大的作用.阅读下列相关材料.材料一:计算:124÷(23−34+16−512).分析:利用通分计算23−34+16−512会很麻烦,可以采用以下方法进行计算.解:∵(23−34+16−512)÷124=(23−34+16−512)×24=23×24−34×24+16×24−512×24=−8,∴124÷(23−34+16−512)=−18.材料二:下列算式是一类两个两位数相乘的特殊计算方法.38×32=100×(32+3)+8×2=1216;67×63=100×(62+6)+7×3=4221.根据以上材料,完成下列计算:(1)请你根据材料一,计算:(−148)÷(−12+516+34−724).(2)请你根据材料二,计算:(−54)×56.22.(10分)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示−1的点重合,则表示−3的点与表示______的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示−3的点与表示______的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为______,点B表示的数为______.23(11分)(1)比较下列各式的大小:|5|+|3||5+3|,|−5|+|−3||(−5)+(−3)|,|−5|+|3||(−5)+3|,|0|+|−5||0+(−5)|.(2)通过(1)的比较、观察,请你归纳猜想:当a,b为有理数时,|a|+|b|a+b|.(填“≥”“≤”“>”或“<”)(3)根据以上信息,小华提出:“当|x|+|−2|=|x−2|成立时,x是负数”,你同意他的观点吗⋅请说明理由.答案和解析1.【答案】B解:因为负数的绝对值等于它的相反数,所以−2023的绝对值是:2023.故选:B.2.【答案】A解:−0.5的相反数是0.5,故选:A.3.【答案】A【解答】解:由把收入5元记作+5元,可知支出5元记作−5元;故选A.4.【答案】B解:A.正整数,负整数和0统称整数,所以本选项错误;B.整数和分数统称为有理数,本选项正确;C.正有理数,负有理数和0统称有理数,故C选项错误;D.有理数包括整数、分数,故D选项错误,故选B.5.【答案】C解:A、0.06045精确到0.1得0.1,故本选项不符合题意;B、0.06045精确到百分位得0.06,故本选项不符合题意;C、0.06045精确到千分位得0.060,故本选项符合题意;D、0.06045精确到0.0001得0.0605,故本选项不符合题意.故选:C.【点睛】6.【答案】B解:将数据186000用科学记数法表示为 1.86×105;故选B7.【答案】B解:−92<−3<0<4,故最小的数为−92,故选:B.8.【答案】A解:因为a+b=0,所以a=−b,即a与b互为相反数.又因为AB=6,所以b−a=6.所以2b=6.所以b=3.所以a=−3,即点A表示的数为−3.故选:A.9.【答案】B解:由题意可知:(+3)+(−6),故选:B.10.【答案】D解:由已知可知31=3,32=9,33=27,34=81,…个位数字每四个一组循环,∵31=3,32=9,33=27,34=81四个数的个位数字之和是0,又2023÷4=505…3,∴3+9+7=19,∴31+32+33+…+32023的结果的个位数字是9.故选:D.11.【答案】0解:一个数既不是正数,也不是负数,则这个数是0.故答案为:0.12.【答案】>>13.【答案】−1013解:1+(−2)+3+(−4)+…+2025+(−2026)=[1+(−2)]+[3+(−4)]+…+[2023+(−2024)] =(−1)+(−1)+…+(−1)=−1×1012=−1012.故答案为−1012.14.【答案】−8解:因为|x+2|+(y−3)2=0,所以x+2=0,y−3=0,所以x=−2,y=3,所以(−2)3=−8.故答案为:−8.15.【答案】a解:由数轴可知,a<0,b>0,c<0,∴b−c>0,a−b<0,∴|b−c|−|a−b|−|c|=(b−c)−(b−a)−(−c)=b−c−b+a+c=a,故答案为:a.16.【答案】解:(1) (−16+34−512)×12=−16×12+34×12−512×12=−2+9−5=2(2)原式=−20+(−5)+5+12=−8.(3)原式=325+535−278−18=9−3=6.(4)原式=2.5.17.【答案】在数轴上表示如下.−4<−|−3|<−13<0<+(+2)<π.18.【答案】【小题1】+1,+1,+1.5,−1,+1.2,+1.3,−1.3,−1.2,+1.8,+1.1.【小题2】905.4千克.19.【答案】解:(1)因为5−3+6−7+6−2−5=0,所以将第7名乘客送到目的地时,老姚刚好回到上午的出发点.(2)因为5−3+6−7+6−2−5+4+6−8=2,所以将最后一名乘客送到目的地时,老姚距上午的出发点2 km,在出发点的东面.(3)8+2×2+8+8+2×3+8+2×4+8+2×3+8+8+2×2+8+2×1+8+2×3+8+ 2×5=126(元).所以姚师傅在这天上午一共收入126元.20..【答案】【小题1】四【小题2】+13−(−6)=13+6=19(只).答:产量最多的一天比产量最少的一天多生产19只风筝.【小题3】(+5)+(−2)+(−4)+(+13)+(−6)+(+6)+(−3)=9(只),(700+9)×20+9×5=709×20+45=14180+45=14225(元).答:该厂工人这一周的工资总额是14225元.21.【答案】【小题1】−113.【小题2】−3024.22.【答案】37−15解:操作一:∵折叠数轴,使表示1的点与表示−1的点重合,∴原点为折叠点,即1与−1的中点为原点,∵表示−3的点距原点的距离为3,表示3的点距原点的距离为3,∴表示−3的点与表示3的点重合.故答案为:3.操作二:①∵折叠数轴,使表示1的点与表示3的点重合,∴表示2的点为折叠点,即表示2的点为重合点的中点,∵表示−3的点距表示2的距离为5,表示7的点距表示2的距离为5,∴表示−3的点与表示7的点重合;故答案为:7.②∵AB=6,折叠后A,B两点重合,∴点A到表示2的点的距离与点B到表示2的点的距离都为3,∵到表示2的点的距离等于3的点对应的数分别为:−1,5,又∵A在B的左侧,∴A点表示的数为−1,B点表示的数为5.故答案为:−1;5.本题主要考查了数轴,两点之间的距离,本题是操作型题目,根据折叠的对称性是解题的关键.23.【答案】【小题1】==>=【小题2】≥【小题3】不同意,x还可以是0,那么x应该是非正数.。
七年级上有理数测试卷【含答案】

七年级上有理数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √-12. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. √3 √2D. -√2 √23. 下列哪个数是整数?A. 1.5B. -2/3C. 3/3D. √94. 下列哪个数是正有理数?A. -5/6B. 0C. 3/4D. -√45. 下列哪个数是负有理数?A. -√9B. 2/3C. -2/-3D. √16二、判断题(每题1分,共5分)1. 所有整数都是有理数。
()2. 所有有理数都可以表示为分数形式。
()3. 两个有理数相加,结果一定是有理数。
()4. 两个有理数相减,结果一定是有理数。
()5. 两个有理数相乘,结果可能是无理数。
()三、填空题(每题1分,共5分)1. 有理数包括整数和______。
2. 两个有理数相加,结果一定仍为______。
3. 两个有理数相乘,结果可能是______。
4. 所有有理数都可以表示为______形式。
5. 两个有理数相减,结果可能是______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述整数和分数的关系。
3. 请简述有理数和无理数的区别。
4. 请简述两个有理数相乘的性质。
5. 请简述两个有理数相减的性质。
五、应用题(每题2分,共10分)1. 请计算:-3/4 + 2/32. 请计算:5/6 1/33. 请计算:2/3 3/44. 请计算:-2/5 / 4/55. 请计算:√16 + 3/4六、分析题(每题5分,共10分)1. 请分析两个有理数相加的性质。
2. 请分析两个有理数相乘的性质。
七、实践操作题(每题5分,共10分)1. 请用图形表示-3/4和2/3的和。
2. 请用图形表示5/6和1/3的差。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证两个有理数相加的结果仍为有理数。
人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版七年级数学上册有理数检测题8
一、填空题(每小题3分,共30分)
1. -2+2=__________, +2-(-2)=___ ___.
2.=-+--+-)3(2)3
2()31(________. 3.10_______5-=+- , 6________3
12-=--. 4.比-5大6的数是________.
5.+2减去-1的差是_______.
6.甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.
7.把(-12)-(-13)+(-14)-(+15)+(+16)统一成加法的形式是________________,写成省略加号的形式是_________________,读作 .
8.写出两个负数的差是正数的例子: .
9.1-3+5―7+……+97―99 =____________. 10.结合生活经验....
,对式子(+6)+(-9)=-3作出解释: .
二、选择题(每题2分,共20分)
11.室内温度是15 0C,室外温度是-3 0C,则室外温度比室内温度低( )
(A) 12 0C (B) 18 0C (C) -12 0C (D) -18 0C
12.下列代数和是8的式子是( )
(A) (-2)+(+10) (B) (-6)+(+2)
(C) )212()215(-+- (D) )3
110()312(-+ 13.下列运算结果正确的是( )
(A) -6-6=0 (B) -4-4=8
(C) 1125.0811-=-- (D) 25.1)8
11(125.0=-- 14.数轴上表示―10与10这两个点之间的距离是( )
(A) 0 (B) 10 (C) 20 (D) 无法计算
15.2个有理数相加,若和为负数,则加数中负数的个数( )
(A) 有2个 (B)只有1个
(C) 至少1个 (D)也可能是0个
16.数-4与-3的和比它们的绝对值的和( ) (A) 大7 (B) 小7 (C) 小14 (D) 相等
17.若三个有理数的和为0,则下列结论正确的是( )
(A)这三个数都是0 (B)最少有两个数是负数
(C)最多有两个正数 (D)这三个数是互为相反数
18.一个数的绝对值小于另一个数的绝对值,则这两个数的和是
(A) 正数 (B) 负数 (C) 零 (D) 不可能是零
19.绝对值等于32的数与2
13-的和等于( ) (A) 218 (B)614 (C)2182120-或 (D) 6
14652--或
三、解答题(共50分)
21.(24分)计算下列各题:
(1))8()9()2()5(--++-+- (2) )8()2()7()15()3(15-++-++--++-
(3))3()85.1()4
32()75.0(85.0++-++-++ (4) ⎥⎦
⎤⎢⎣⎡----)31()325(2 (5) 43)31()21(1--+-- (6) 11
1174417431115-+-
22.(8分)列式计算:
(1) ―3与3
2-的差. (2). ―2与―3的倒数的和 23.(8分)某面粉厂购进标有50千克的面粉10袋,复称时发现误差如下(超过
记为正,不足记为负):
+0.6 , +1.8 , ―2.2 , +0.4 , ―1.4 , ―0.9 , +0.3 , +1.5 , +0.9 , ―0.8 问: 该面粉厂实际收到面粉多少千克?
24.(10分)某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:
(1)聪聪家与刚刚家相距多远?
(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在
这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).
(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?
(4)你认为可用什么办法求数轴上两点之间的距离?
答案
一.1. 0,4 2. -6 3. -5,3
23 4. 1 5. 3 6. -30米 7.(-12)+(+13)+(-14)+(-15)+(+16),-12+13-14-15+16-12,有两种读法 8. 开放题 9.-50 10. 开放题
二.11.B 12.A 13.D 14.C 15.C 16.C 17.C 18.D 19.D 20.D
三.21. (1)10 (2)0 (3)0 (4)313- (5)12
5 (6)
6 22. (1)31
2323----)=((2)32
1312-⎪⎭⎫
⎝⎛---= 23.
10×50+0.2=500.2 24. (1)350米 (2)略 (3)-110 (4)21x x d -=。