《传感器技术》实验指导书(07级微电子)

合集下载

传感器技术实验指导书

传感器技术实验指导书

实验一差动式传感器综合性实验一、实验目的1、了解差动技术在传感器中的应用2、掌握最佳线性度的求解方法二、实验内容1、观察下列三种差动式传感器的结构:(1)差动变压器传感器;(2)差动霍尔式传感器;(3)差动变面积电容式传感器;对观察结果进行描述并说明差动工作原理。

2、观察差动螺旋管式电感传感器差动性能;3、了解差动式传感器的性能特点;4、任选其中一种传感器进行位移测量实验,指出线性范围。

5、根据线性范围,进行最佳线性度计算,并与最小二乘线性度进行比较。

三、差动螺旋管式电感传感器差动性能演示差动螺旋管式电感传感器是由两个完全相同的单线圈螺管式自感传感器组成(1) 所需部件:利用差动变压器的衔铁和两个次级线圈构成差动螺旋管式电感传感器。

演示使用音频振荡器、测量电路电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微头等部件。

(2) 演示步骤<1>按下图接线,将两个次级线圈分别接入示波器的两个通道。

注:此图表明,单线圈的电源电压由初级线圈的电源电压耦合产生观察两个单线圈螺管式自感传感器的输出端口波形。

两波形是否同相?当衔铁处于中间位置时,两波形的幅值是否相等?<2>上、下移动衔铁,观察两端口波形的幅值是否发生变化。

<3>将次级线圈接入电桥的相邻两臂(构成差动式传感器,示波器的一个通道显示其输出值)。

上、下移动衔铁观察传感器输出,输出值是否在“+”、“0”、“-”之间变化(过零翻转)。

<4>讨论观察结果。

四、实验报告1、写出综合传感器实验仪上应用差动技术的传感器名称及结构特点,并画出结构示意图。

2、说明上述各种传感器的差动工作原理。

3、根据所选传感器的位移测量实验完成下列内容:(1) 原始数据记录。

(2) 最小二乘法线性度求解。

(3) 最佳线性度求解。

(4) 二个线性度值的比较分析。

附件一:差动螺旋管式电感传感器位移测量(1)差动变压器二个次级线圈组成差动状态,音频振荡器LV 端做为恒流源供电,差动放大器增益适度。

传感器实验指导书2023

传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。

二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。

电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。

电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。

压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。

磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。

传感器技术实验指导书2012.

传感器技术实验指导书2012.

重庆文理学院电子电气工程学院(第四版)张东重庆文理学院电子电气工程学院2012年08月传感器原理及应用实验实训教程实验目录实验一电阻式传感器 (1)实验二电容式传感器 (5)实验三电感式传感器 (7)实验四霍尔式传感器 (10)实验五压电式传感器 (11)实验六热电式传感器 (13)实验七电涡流传感器 (15)第 1 页第 1 页实验一 电阻式传感器—金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应,单臂、半桥、全桥工作原理和性能比较。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR /R =K ε式中:ΔR /R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压4/01εEK U =;对于半桥不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压2/02εEK U =;对于全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压εEK U =03。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件与单元:主机箱(±4V 、±15V 、电压表)、应变式传感器实验模板、托盘、砝码、421位数显万用表(自备)。

图1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤:1、单臂:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。

传感器技术 实验指导书

传感器技术 实验指导书

传感器技术实训指导书目录实验一 K型热电偶测温实验 (3)实验二扩散硅压阻式压力传感器的压力测量实验 (6)实验三光敏电阻基本特性实验 (6)实验四霍尔传感器位移特性实验 (10)实验五电容传感器动态特性测量 (12)实验六湿敏、气敏传感器的测量 (14)实验七霍尔式转速传感器测速实验 (16)实验八光电转速传感器测速实验 (17)实验九差动变压器的振动测量 (18)实验十应变式传感器特性实验........................ 错误!未定义书签。

实验十一光纤传感器位移特性实验 (20)实验一 K型热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。

三、实验原理:热电偶传感器的工作原理热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝克效应,即两种不同的导体或半导体A或B组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T,另一端温度为T0,则回路中就有电流产生,见图1-1(a),即回路中存在电动势,该电动势被称为热电势。

图1-1(a)图1-1(b)两种不同导体或半导体的组合被称为热电偶。

当回路断开时,在断开处a,b之间便有一电动势E T,其极性和量值与回路中的热电势一致,见图1-1(b),并规定在冷端,当电流由A流向B时,称A为正极,B为负极。

实验表明,当E T较小时,热电势E T与温度差(T-T0)成正比,即E T=S AB(T-T0)(1)S AB为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。

热电偶的基本定律:(1)均质导体定律由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。

(2)中间导体定律用两种金属导体A,B组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势E AB(T,T0),而这些导体材料和热电偶导体A,B的材料往往并不相同。

《传感器》综合实验指导书

《传感器》综合实验指导书

《传感器技术》综合实验指导书茂名学院自动化教研室实验一热电偶的校验一、实验目的1.学习使用并掌握精密型电子电位差计。

2.掌握热电偶的校验方法。

3.掌握确定仪表精度的方法。

二、实验项目1.识别热电偶的种类及电极方向。

2.热电偶进行校验三、实验设备与仪器1.温度控制系统1套2.精密电位差计1套3.铂铑-铂热电偶及补偿导线1套4.镍铬-镍硅热电偶及补偿导线1套四、实验原理实验装置连接如图1-1所示。

图1-1 热电偶校验装置连接图利用温度控制系统产生响应温度,通过精密电位差计检测标准热电偶和被校热电偶所产生的电势信号,将对应数据进行记录,对记录数据计算分析,完成热电偶的校验。

五、注意事项1.温度控制系统产生各点温度需一定时间,温度恒定后才可进行实验。

2.标准电池有一定安装位置,不可随意倒置,否则电池会毁坏。

3.完成实验后要断开电源。

避免电池耗尽。

六、实验说明及操作步骤1.由实验指导人员讲解本实验的基本要求、操作和注意事项。

2.实验步骤(1)熟悉装置,了解装置及压力表结构及各部分作用。

(2)用经验方法识别热电偶:根据热电偶材料的颜色、粗细、硬度等物理特征,识别热电偶的种类及热电偶的正负电极。

(3)按连线图正确接线。

(4)根据需要,通过温度控制系统的控制器设定温度。

(5)精密电位差计调整。

(6) 温度控制系统温度稳定后检测热电偶电势。

根据被校热电偶的检测范围分3~4点。

(7)数据记录及处理记录各校验点对应数据,按要求进行计算。

七、实验报告1.不能打印。

2.用A4统一规格纸张进行。

3.要求有实验题目、实验目的、实验项目、实验设备、实验原理、实验步骤,实验数据记录。

4.计算各误差,完成思考题。

八、思考题1.为何使用补偿导线?2.精密直流电位差计中粗、细和短三个按键的作用是什么?3.检流计有什么作用?实验二压力表的校验一、实验目的1.熟悉弹簧管压力表的结构及工作原理。

2.了解并掌握活塞式压力计的正确使用。

3.掌握确定仪表精度的方法。

传感器实验指导书

传感器实验指导书

前言CSY系列传感器与检测技术实验台主要用于各大、中专院校及职业院校开设的“传感器原理与技术”“自动化检测技术”“非电量电测技术”“工业自动化仪表与控制”“机械量电测”等课程的实验教学。

CSY系列传感器与检测技术实验台上采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础,希望通过实验帮助广大学生加强对书本知识的理解,并在实验的进行过程中,通过信号的拾取,转换,分析,掌握应具有的基本的操作技能与动手能力。

CSY2000与3000系列传感器与检测技术实验台是本公司多年生产传感技术教学实验装置的基础上,为适应不同类别、不同层次的专业需要而设计的新产品。

其优点在于:1、适应不同专业的需要,不同专业可以有不同的菜单,本公司还可以为用户的特殊要求制作模板。

2、能适应不断发展的形势,作为信息拾取的工具,传感器发展很快,可以不断补充新型的传感器模板。

3、可以利用实验台的信号源、实验电路、传感器用于学生课程设计、毕业设计和自制装置。

为了让老师、学生尽快熟悉掌握实验台的使用方法,本手册列举了一些实验示范例子,老师、学生通过实验示范例子举一反三可以自己组织开发很多实验顶目。

本手册由于编写时间、水平所限,难免有疏漏错误之处,热切期望老师与学生们提出宝贵的意见,予以完善,谢谢。

目录CSY-2000型传感器与检测技术实验台说明书 (5)CSY-3000型传感器与检测技术实验台说明书 (8)示范实验目录2000系列基本实验举例实验一应变片单臂电桥性能实验 (11)实验二应变片半桥性能实验 (17)实验三应变片全桥性能实验 (18)实验四应变片单臂、半桥、全桥性能比较实验 (20)实验五应变片直流全桥的应用—电子秤实验 (21)实验六应变片温度影响实验 (22)实验七移相器、相敏检波器实验 (23)实验八应变片交流全桥(应变仪)的应用—振动测量实验 (27)实验九压阻式压力传感器测量压力特性实验 (30)*实验十压阻式压力传感器应用—压力计实验 (32)实验十一差动变压器的性能实验 (32)实验十二激励频率对差动变压器特性影响实验 (37)实验十三差动变压器零点残余电压补偿实验 (38)实验十四差动变压器测位移特性实验 (39)实验十五差动变压器的应用—振动测量实验 (41)实验十六电容式传感器测位移特性实验 (43)实验十七线性霍尔传感器测位移特性实验 (45)实验十八线性霍尔传感器交流激励时位移特性实验 (48)实验十九开关式霍尔传感器测转速实验 (50)实验二十磁电式转速传感器测转速实验 (51)实验二十一压电式传感器测振动实验 (53)实验二十二电涡流传感器测量位移特性实验 (57)实验二十三被测体材质对电涡流传感器特性影响实验 (60)实验二十四被测体面积大小对电涡流传感器特性影响实验 (61)实验二十五电涡流传感器测量振动实验 (62)实验二十六光纤位移传感器测位移特性实验 (63)实验二十七光电传感器测量转速实验 (66)实验二十八光电传感器控制电机转速实验 (67)实验二十九温度源的温度调节控制实验 (75)实验三十 Pt100铂电阻测温特性实验 (79)实验三十一Cu50铜电阻测温特性实验 (85)实验三十二 K热电偶测温特性实验 (86)实验三十三 K热电偶冷端温度补偿实验 (92)实验三十四 E热电偶测温特性实验 (95)实验三十五集成温度传感器(AD590)的温度特性实验 (96)实验三十六气敏传感器实验 (99)实验三十七湿度传感器实验 (100)实验三十八数据采集系统实验—静态举例 (102)实验三十九数据采集系统实验—动态举例 (104)3000系列实验(包含2000系列基本实验外,还包含以下实验。

《传感器技术》实验教学大纲

《传感器技术》实验教学大纲

《传感器技术》实验教学大纲
一、本课程的目的与任务
通过学习本门课程,使学生理解传感器的基础知识和各种传统传感器的基本原理,初步掌握传感器系统设计原理,对传感器的发展和现状有初步了解,了解现代新型传感器的类型和工作方式、原理。

使学生初步掌握传感器系统的应用、开发的综合技术。

本课程的教学侧重于对传统传感器的工作原理、特性的理解,对传感器的技术参数要会求取。

对于常用传感器的测量电路要会计算;掌握传感器误差及误差补偿的相关技术。

初步了解近代传感器技术及其工作原理。

二、本课程实验内容及具体要求
1、实验理论方面:
熟悉电阻应变式和电容式传感器的基本工作原理和测量原理,用其测量应力和位移的测量系统的组成。

2、实验教学方面:
学生能够根据实验指导书合理选择测量元件和电路模块,独立完成实验项目,完成完整的实验报告;根据实验过程回答每个实验后的思考题。

3、对学生能力培养的要求:
学会用实际电路搭建简单测量系统,并对该测量系统进行静态标定;
根据实验过程了解测量系统特性,分析测量不同物理量时测量系统的结构特点。

注:要求:必做、选做、其他
类型:演示、验证、综合、设计
类别:基础、技术(或专业)基础、专业、其他
四、授课计划与学时安排
本课程实验8学时,各实验与讲课穿插进行。

五、实验考核及评分办法
1、学生进实验室要求有预习报告并检查;
2、实验做完后对每一学生完成情况和解决问题的能力进行考核;
3、对实验报告给予评分(特别要求总结存在哪些问题,如何解决);
4、综合每项实验状况给出成绩(占本门课总成绩的15%)。

执笔人:权义萍。

《传感器与检测技术》实验指导书修订详解

《传感器与检测技术》实验指导书修订详解

自动化专业《传感器与检测技术》课程实验指导书撰写人:闫奇瑾审定人:辅小荣目录第一部分绪论 (1)第二部分基本实验指导 (2)实验一箔式应变片桥路性能比较 (2)实验二电涡流式传感器的静态标定 (6)实验三差动变面积式电容式传感器的静态特性 (9)实验四霍尔式传感器静态特性实验 (11)第一部分绪论本指导书是根据《传感器与检测技术》课程实验教学大纲编写的,适用于自动化专业。

一、本课程实验的作用与任务传感器与检测技术实验是《传感器与检测技术》课程教学的重要环节,是自动化专业的专业基础实验课。

通过实验,使学生加深理解传感技术的一般理论原理,了解各种传感器性能,掌握选用原则和设计方法,学会对各种参数的测量及分析技术。

二、本课程实验的基础知识本课程主要介绍传感器与检测技术基础理论,传感器的基本原理和结构,非电量的检测技术及系统,抗干扰技术和微机在检测中的应用等。

实验要求的基础知识主要有传感器的静态和动态特性,电阻式传感器,电感式传感器、电容式传感器、磁电式传感器的基本工作原理、结构、测量电路以及应用方法等。

三、本课程实验教学项目及其教学要求第二部分基本实验指导-1-实验一箔式应变片桥路性能比较一、实验目的1.观察了解箔式应变片结构及粘贴方式。

2.测试应变梁变形的应变输出。

3.比较各桥路间的输出关系。

二、实验原理应变片是最常用的测力传感元件。

用应变片测试时,应变片要牢固地粘贴在测试体表面。

当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,单臂,半桥双臂,全桥电路的灵敏度依次增大。

实际使用的应变电桥的性能和原理如下:图1-1应变电桥半桥双臂和全桥电路原理已知单臂、半桥双臂和全桥电路的∑R 分别为、、。

电桥灵敏度S =∆V / ∆X ,于是对应于单臂、半桥双臂和全桥的电压灵敏度分别为1/4 U 、1/2U 和U 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《传感器技术》实验指导书目录实验一应变式传感器特性测试 2 实验二电感式传感器特性测试9 实验三霍尔传感器应用实验16 实验四传感器应用的计算机仿真20实验一 应变式传感器特性测试一、 实验目的1、掌握金属箔式应变片的应变效应,单臂电桥工作原理和性能;2、了解学习全桥测量电路的构成及其特点、优点;3、比较单臂电桥与全桥的不同性能、了解其特点。

二、 实验用器件与设备1、应变式传感器实验台;2、传感器实验箱;3、砝码;4、跳线;5、万用表等。

三、 实验原理直流电桥原理:在进行金属箔式应变片单臂、半桥、全桥性能实验之前,我们有必要先来介绍一下直流电桥的相关知识。

电桥电路有直流电桥和交流电桥两种。

电桥电路的主要指标是桥路灵敏度、非线性和负载特性。

下面具体讨论有关直流电路和与之相关的这几项指标。

1、 平衡条件直流电桥的基本形式如图1-1所示。

R 1, R 2,R 3 , R 4 为电桥的桥臂电阻,R L 为其负载(可以是测量仪表内阻或其他负载)。

当R L∞时,电桥的输出电压V 0应为V 0=E(433211R R R R R R +-+)当电桥平衡时,V0=0,由上式可得到R 1R 4=R 2R 3,或4321R R R R = (1-1)图1-1 直流电桥的基本形式式(1-1)秤为电桥平衡条件。

平衡电桥就是桥路中相邻两桥臂阻值之比应相等,桥路相邻两臂阻值之比相等方可使流过负载电阻的电流为零。

2、 平衡状态 单臂直流电桥:所谓单臂就是电桥中一桥臂为电阻式传感器,且其电阻变化为△R ,其它桥臂为阻值固定不变,这时电桥输出电压V 0≠0(此时仍视电桥为开路状态),则不平衡电桥输出电压V 0为V 0=E R R R R R R R R R R ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+∆+⎪⎪⎭⎫ ⎝⎛∆⎪⎭⎫ ⎝⎛341211114113 (1-2)设桥臂比n=12R R ,由于△R 1《R 1,分母中11R R ∆可忽略,输出电压便为V"0=E R R R R R R R R ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛∆⎪⎭⎫ ⎝⎛3412114113这是理想情况,式(1-2)为实际输出电压,由此可求出电桥非线性误差。

实际的非线性特性曲线与理想线性曲线的偏差秤为绝对非线性误差。

则其相对线性误差r 为:r=''00V V V -=⎪⎪⎭⎫ ⎝⎛+∆+⎪⎪⎭⎫ ⎝⎛∆-1211111R R R R R R =⎪⎪⎭⎫ ⎝⎛+∆+⎪⎪⎭⎫ ⎝⎛∆-n R R R R 11111 (1-3)由此可见,非线性误差与电阻相对变化11R R ∆有关,当11R R ∆较大时,就不可忽略误差了。

下面来看电桥电压灵敏度S V 。

在式(1-2)中,忽略分母中11R R ∆项,并且考虑到起始平衡条件4321R R R R =,从式(1-2)可以得到V 0'≈112)1(R R n n E ∆+ (1-4)电桥灵敏度的定义为S V =110R R V ∆≈11'R R V ∆ =En n 2)1(+ (1-5)当n=1时,可求得S V 最大。

也就是说,在电桥电压E 确定后,当R 1=R 2,R 3=R 4 时,电桥电压灵敏度最高。

此时可分别将式(1-2)、(1-3)、(1-4)、(1-5)化简为: V 0=1111211141R R R R E∆+∆ (1-6)r =11112R R R R ∆+∆-(1-7)V 0' ≈ 1141R R E∆ (1-8)S V = E 41(1-9)由上面四式可知,当电源电压E 和电阻相对变化11R R ∆一定时,电桥的输出电压,非线性误差,电压灵敏度也是定值,与各桥臂阻值无关。

差动直流电桥(半桥式):若图1-1中支流电桥的相邻两臂为传感器,即R 1和R 2为传感器,并且其相应变化为△R 1和 △R 2,则该电桥输出电压V 0≠0,当△R 1=△R 2,R 1=R 2,R 3=R 4 时,则得 V 0=1121R R E∆上式表明,V 0与11R R ∆成线性关系,比单臂电桥输出电压提高一倍,差动电桥无非线性误差,而且电压灵敏度S V 为S V = E 21比使用一只传感器提高了一倍,同时可以起到温度补偿的作用。

双差动直流电桥(全桥式):若图1-1中直流电桥的四臂均为传感器,则构成全桥差动电路。

若满足△R 1=△R 2=R △3=△R 4,则输出电压和灵敏度为V 0=11R R E ∆ S V = E由此可知,全桥式直流电桥是单臂直流电桥的输出电压和灵敏度的4倍,是半桥式直流电桥的输出电压和灵敏度的2倍。

四、 实验方法与步骤图1-2,图1-3是压力传感器的测量电路,由两个部分组成。

前一部分是采用三个运放构成的仪表放大器,后面的放大器将仪表放大器的输出电压进一步放大。

R28是电桥的调零电阻,R42是整个放大电路的调零电阻,R29,R40调整运放增益。

仪表放大器因为输入阻抗高,共模抑制能力好而作为电桥的接口电路。

其增益可用下式表示:A =(1+29302R R )图1-2 仪表放大电路图1-3电压放大电路(一)、电路调零:1.根据图(1-4)所示,应变式传感器已经装在传感器试验台上。

传感器中各应变片上的R1、R2、R3、R4接线颜色分别为黄色、蓝色、红色、白色(或者黄色),可用万用表测量同一颜色的两端判别,R1=R2=R3=R4=350Ω。

图1-4 应变式传感器安装示意图2.接入电源,拨通电源开关,将实验模块板调节增益电位器R29顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差动放大器的正、负输入端(电路板上的TEST1与TEST2)与地短接,输出端OUT与电路板上的IN1或IN2相连,调节电路板上调零电位器R42,输出的电压读数为零,关闭电源。

(注意:当R29、R42的位置一旦确定,就不能改变。

一直到做完第三个实验内容为止)。

(二)、全桥电路性能测量:1. 关闭实验台总电源,将红色线接入P1或者P5口,黄色线接入P2或者P3口,将黑色线接入P4或者P8口,将蓝色线接入P6或P7口;2. 用电源线将基础实验台上模块电源引接到传感器开放电路主板上;3. 开启实验台总电源,分别打开主板上+5V 、+12V 、-12V 电源,用万用表测量T1与T3之间电压是否为零,如不为零,调节R8使两者电压差为零;4. 在托盘上放置一只500g 砝码,用万用表测量T2处的电压大小,如果电压大于5V ,调节电阻R22和R21的阻值使电压在2V 到3V 之间为最佳,R22是零位调节,R21是增益调节;5. 调整完毕后,取下500g 砝码,依次添加不同质量的砝码到托盘上,用万用表测量T2点相应的电压值,因为应变片的量程是5kg ,切勿放置过大质量物体在托盘上,更不可按压托盘。

6. 在托盘上放置一只砝码,读取电压数值,依次增加砝码和读取相应的电压值,直到砝码加完,记下实验结果填入如表1-1类似的表中,关闭电源。

7. 根据表1-1计算系统灵敏度S=WU ∆∆(输出电压变化量与重量变化量之比)。

8. 绘出电压和质量之间的关系曲线,并对其进行线性拟合,求出拟合直线,记下斜率K和截距b 待用。

(二)、全桥电路的应用--称重实验:1.运行Labview 主程序,打开“全桥电路的应用--称重实验”程序,建立实验环境, 如图1-5所示;图1-5 全桥电路应用-称重实验程序2. 关闭实验台总电源,将红色线接入P1或者P5口,蓝色线接入P6或者P7口,将黑色线接入P4或者P8口,将黄色线接入P2或者P3口;3. 用电源线将基础实验台上模块电源引接到传感器开放电路主板上,确保连接准确无误,用一根跳线将主板上T2点与T4点或T5点,用信号线将T4点或T5点对应的BNC接口连接至采集模块的某一通道上,将数据采集模块的电源线连接至实验台的采集模块电源输出口;4. 开启实验台总电源,开启采集卡电源,分别打开主板上+5V、+12V、-12V电源;5. 在全桥电路的应用—称重实验labview界面上输入对应通道数,分别输入k值和b值;6. 在托盘上分别放置不同质量的砝码,记录实验测量值,比较误差,如果误差过大请重新计算k值和b值;7.计算实际质量与程序测量得到的质量之间的实验误差。

实验二电涡流传感器特性测试及应用预习要求:1、学习理解电涡流传感器的结构及工作原理,并掌握电涡流传感器用于位移测量时的测量电路和测试原理。

2、根据实验要求,作好实验前的准备(测试方法及测试点选择、数据记录的格式等)。

一、实验目的1、了解电涡流传感器的结构、特点,掌握其工作原理和使用方法;2、通过测量电涡流传感器的输入输出关系曲线,深入理解电涡流传感器的特性及其指标的含义;3、利用电涡流传感器进行传感器静态特性的测量;4、利用机械结构、传感器、数据采集卡、虚拟仪器平台构建测试系统。

二、实验原理1、电涡流的形成原理如图2-1所示,由物理学知识可知,若在线圈中通入交变电流I,在线圈周围的空间就产生了交变磁场Фi,将金属导体置于此交变磁场范围内,导体表面层产生涡电流,涡电流的高频磁场Фe以反作用于传感器电感线圈,从而改变了线圈的阻抗Z L或线圈的电感和品质因素。

Z L的变化取于线圈到金属板之间的距离x、金属板的电阻率δ、磁导率μ以及激励电流的幅值A和频率f。

金属导体ФiФei高频交变磁场涡流磁场高频激励电流图2-1 电涡流传感器的工作原理2、电涡流位移传感器原理电涡流位移传感器是以高频电涡流效应为原理的非接触式位移传感器。

前置器内产生的高频振荡电流通过同轴电缆流入探头线圈中,线圈将产生一个高频电磁场。

当被测金属体靠近该线圈时,由于高频电磁场的作用,在金属表面上就产生感应电流,既电涡流。

该电流产生一个交变磁场,方向与线圈磁场方向相反,这两个磁场相互叠加就改变了原线圈的阻抗。

这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。

通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离 D、电流强度 I 和频率ω参数来描述。

则线圈特征阻抗可用 Z=F(τ, ξ, б, D, I, ω)函数来表示。

通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗 Z 就成为距离 D 的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。

于此,通过前置器对信号进行处理,将线圈阻抗 Z 的变化,即头部体线圈与金属导体的距离 D 的变化转化成电压或电流的变化。

输出信号的大小随探头到被测体表面之间的间距的变化而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。

相关文档
最新文档