(完整版)钢结构设计原理复习总结
钢结构设计原理总复习

第3章
知识点3:角焊缝连接计算
1、轴心力作用下(参考例3.3)
N 3 bhe 3 f f
N1
w f
连 接
lw1
( 3 N3 ) 19
N2
e1
e2 lw2
N
b
N3 N 1 k1 N 2 N3 N 2 k2 N 2
( 3 20) ( 3 21) x
x
钢结构设计原理
N2
N2
w2
f fw
x
钢结构设计原理
Design Principles of Steel Structure
第3章
知识点3:角焊缝连接计算
2、N、M、V共同作用
e
θ M A Nx
lw 2
连 接
lw
2
N
Ny
het h e
τNy σNx σM
f ,A
6M 2 l w he he l w
变形能力小,破坏突然,断口平直、发亮呈晶粒状,无机会补 救。
钢结构设计原理 Design Principles of Steel Structure
第2章
知识点3:钢材的主要性能
1、强度:屈服强度、极和质量的综合指标 4、冲击韧性:判定钢材强度和塑性的综合指标
Design Principles of Steel Structure
第3章
知识点6:普通螺栓抗剪连接计算
普通螺栓群偏心力作用下抗剪计算
连 接
N
b v
2 1Tx
N 1Ty N 1F
2
b N min
(3 45)
N nv
d
4
完整版)钢结构知识点总结

完整版)钢结构知识点总结第一章:钢结构的特点和应用范围钢结构具有自重较轻、可靠性高、抗震抗冲击性好、制造工业化程度高、塑性和韧性好、密闭性好、强度高等特点。
因此,它适用于大跨度结构、高层建筑、工业建筑、轻质结构、高耸结构、活动式结构、可拆卸或移动的结构、和大直径管道等领域。
结构设计的目的是确保安全性、耐久性和适用性。
荷载效应S和结构抗力R是影响结构可靠性的重要因素,而功能函数Z=R-S则用于描述结构完成预定功能状态。
极限状态设计方法包括承载能力极限状态和正常使用极限状态。
第二章:钢结构的材料钢材按照脱氧方法分为沸腾钢、半镇静钢、镇静钢、脱氧剂硅和锰。
热轧型钢是通过加热钢锭至1200-1300度,然后通过轧钢机将其轧制成所需形状和尺寸的钢材。
钢材的热处理方法包括淬火、正火和回火。
钢材疲劳是指在反复荷载下,在应力低于钢材抗拉强度甚至低于屈服点时突然断裂,属于脆性破坏。
焊接结构的应力幅和非焊接结构的应力幅和应力比是导致钢材疲劳的主要原因。
钢材的强度设计值按厚度划分是因为随着厚度或直径的减小,钢材的致密性较好,强素提高,塑性也提高,存在大缺陷的几率较小。
碳、硫和磷对钢材的性能有不同的影响。
钢结构的连接方法及其特点钢结构常用的连接方法包括焊缝连接、螺栓连接和铆接。
其中,焊缝连接适用于刚接和除直接承受动力荷载的结构外的大多数情况,具有构造简单、节约钢材、加工方便等优点,但也存在脆性增大、产生残余应力及残余变形等缺点。
螺栓连接适用于铰接,可以使用普通螺栓连接和高强度螺栓连接,具有现场作业快、容易拆除、维修方便等优点,但会增加制造工作量,削弱构件截面,比焊接多费钢材。
铆接适用于受力较小的情况下,具有塑性和韧性好、传力可靠、易于检查和保证等优点,但工艺复杂,用钢量多。
4.钢材牌号的表示方法国际上钢号的表示方法一般包括三个部分,即字首符号、钢材的强度值和钢材的质量等级。
以Q235-E43、Q345-E50、Q390、Q420-E55为例,43代表焊缝熔敷金属或对接焊缝的抗拉强度。
钢结构原理知识点总结(总结范文)

钢结构原理知识点总结引言:钢结构是一种常用于建筑和桥梁等工程项目的结构形式,具有高强度、刚度和耐久性等优点。
了解钢结构原理的知识点对于工程师、建筑师和设计师等相关专业人员至关重要。
本文将对钢结构原理的关键知识点进行详细总结,为读者提供基本的理论基础。
概述:钢结构是由钢材构成的工程结构,通过将不同形状的钢材组装在一起,形成一个整体结构,以支撑和承载负荷。
在设计和建造过程中,需要考虑到结构的荷载、材料的选择、连接方式等多个因素。
正文:一、钢材的性质1.钢材的强度与刚度:钢材的强度指钢材承受外部荷载时的抗力程度,刚度指钢材受力后的形变程度。
了解钢材的强度和刚度是设计钢结构的关键。
a.强度的分类:钢材的强度可分为屈服强度、抗拉强度和抗压强度等。
b.刚度的影响因素:刚度与截面形状、钢材的弹性模量和截面尺寸等因素密切相关。
二、钢结构设计的基本原则1.强度设计原则:钢结构的设计应满足预定的安全强度水平,以最大程度地保证结构的承载能力。
a.极限状态设计:根据结构的极限状态进行设计,包括极限承载力设计和极限位移设计。
b.可靠性设计:考虑结构材料、荷载和其他不确定因素的不同,引入设计系数来提高结构的可靠性。
三、钢结构的连接形式1.熔焊连接:是将两个或多个钢材通过加热至熔点并在熔化状态下连接在一起的方法。
a.焊缝类型:包括角焊缝、对接焊缝和搭接焊缝等。
b.焊接质量:焊接质量的好坏对连接的强度和承载能力有着重要影响。
四、钢结构设计的荷载考虑1.永久荷载:代表了结构自身的重量,包括结构的质量、装饰材料的重量等。
a.配重计算:通过确定永久荷载的大小和分布,计算结构的配重需求,以使结构保持稳定。
b.空气负荷:考虑到气流对结构的影响,如风荷载和气动力。
五、钢结构设计中的稳定性分析1.屈曲分析:考虑到结构在受压状态下可能发生的屈曲失稳问题,以保证结构的整体稳定性。
a.稳定性设计:结构设计中应满足屈曲承载力的要求,以防止结构失稳。
钢结构设计原理重点知识

钢结构设计原理目录第一章:概述 (3)1、简述钢结构的特点? (3)2、钢结构设计的基本要求 (3)3、钢结构的发展趋势 (3)第二章:钢结构的材料 (3)1、钢结构对钢材性能的要求 (3)2、简述Q235钢的破坏过程,并在应力-应变曲线中标明主要参数? (3)3、钢材的力学指标包括哪几项? (3)4、解释概念:强度,塑性,韧性,冷弯性能,冲击韧性、可焊性 (3)5、低合金高强度结构钢的屈服强度是如何确定的? (3)6、说明设计时静力承载力的指标依据,为什么这样规定? (3)7、钢板中为什么薄板性能优于厚板,钢材屈服强度与厚度有关系吗? (3)8、钢材抗剪屈服强度和抗拉屈服强度的关系? (3)9、解释概念:应力集中,残余应力,冷加工硬化和时效硬化,蓝脆,冷脆,热脆 (4)10、三向或者双向拉应力场为什么容易引起脆性断裂? (4)11、钢结构材料的破坏形式有哪几种?各具有怎样的破坏特点? (4)12、简述钢材脆性断裂的主要因素?如何避免出现脆性断裂? (4)13、应力集中容易引起脆性断裂的原因? (4)14、什么是疲劳破坏?简述疲劳破坏的发展活成以及影响疲劳强度的主要因素? (4)15、解释钢材牌号的含义:Q235BF,Q235-D,ZG230-450,20MnTiB (4)16、钢结构设计规范推荐钢材是哪几种? (4)17、钢材的质量等级是根据哪一项要求划分的? (4)18、选择钢材时需要考虑哪些因素? (4)第三章:钢结构设计方法 (4)1、简要说明结构设计所采用过的方法。
《钢结构设计规范》主要采用何种设计方法?其中的疲劳设计采用何种方法? (4)2、结构可靠性的含义是什么?它包含哪些功能要求?什么是结构的可靠度?可靠指标的含义?如何确定结构的可靠指标? (5)3、“作用”和“荷载”有什么区别?影响结构可靠性的因素有哪些? (5)4、什么是结构的极限状态?结构的极限状态是如何分类的? (5)5、荷载标准值,荷载设计值有何区别?如何应用? (5)6、试述疲劳强度,应力幅,应力比的含义,并绘图说明各种类型的应力循环。
钢结构设计原理重点(老师给的哦)

《钢结构设计原理》概念复习重点提纲第一章绪论1、钢结构的特点,应用范围。
第二章钢结构的材料1、钢结构对材料性能的基本要求是什么?GB50017—2003推荐承重结构宜采用哪四种钢材(或哪四种钢材符合钢结构对材料性能的基本要求)?2、简述钢材的主要机械性能(物理力学性能)指标。
检验这些力学性能的试验主要有哪些?3、影响钢材力学性能的主要因素有哪些?4、各种钢号的表示法及代表的意义。
5、选择钢材时应考虑的主要因素是什么。
第三章钢结构的连接和节点构造1、目前我国常用的连接方法有哪些?各有什么特点?2、焊缝缺陷有哪些?焊缝三级质量检验标准?3、角焊缝的尺寸限制:写出h fmin,h fmax,L w min,L wmax的值,为什么要有这些限制?4、简述残余应力的影响。
5、对于抗剪螺栓连接,何谓“解钮扣相象”?计算中如何考虑?6、绘图说明抗剪螺栓连接的三个工作阶段,并说明普通螺栓连接、承压型高强螺栓连接、摩擦型高强螺栓连接的承载能力极限状态(设计准则)。
7、普通螺栓抗剪连接可能的破坏形式、设计中如何考虑?8、螺栓连接(普通螺栓、承压型高强螺栓、摩擦型高强螺栓)传递各种内力的计算(计算假定、计算方法等)。
第四、五章受弯构件1、以双轴对称工字形梁为例,画出梁四个工作阶段的正应力分布并加以说明;我国规范设计分别是以何阶段为依据的?2、写出GB50017—2003规定的梁正应力、剪应力、复合应力计算公式。
3、梁正应力验算,考虑梁截面有一定程度的塑性变形的计算有哪些条件?4、梁的局部压应力验算条件、验算部位、假定、计算公式及其各符号的含义。
若σc > f,你如何处理?5、简述梁整体稳定的概念(现象及原因),并分析影响梁整体稳定性的主要因素,提高梁整体稳定性的途径和不要验算梁整体稳定的条件。
6、为什么当钢梁整体稳定系数Ψb > 0.6时,要用Ψb′来代替Ψb?7、组合梁翼缘采用限制宽厚比的办法来保证其板件的局部稳定,写出对于截面不同的强度计算方法,翼缘宽厚比的限值。
(完整版)钢结构设计原理复习总结

钢结构的特点:1.钢材强度高、塑性和韧性好2.钢结构的重量轻3.材质均匀,和力学计算的假定比较符合4.钢结构制作简便,施工工期短5.钢结构密闭性好6.钢结构耐腐蚀性差7.钢材耐热但不耐火8.钢结构可能发生脆性断裂钢结构的破坏形式钢材有两种性质完全不同的破坏形式,即塑性破坏和脆性破坏。
钢结构所用材料虽然有较高的塑性和韧性,但一般也存在发生塑性破坏的可能,在一定条件下,也具有脆性破坏的可能。
塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉强度fu 后才发生。
破坏前构件产生较大的塑性变形,断裂后的断口呈纤维状,色泽发暗。
在塑性破坏前,构件发生较大的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。
另外,塑性变形后出现内里重分布,使结构中原先受力不等的部分应力趋于均匀,因而提高了结构的承载能力。
构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形并断裂。
常温及静态荷载作用下,一般为塑性破坏。
破坏时构件有明显的颈缩现象。
常为杯形,呈纤维状,色泽发暗。
在破坏前有很明显的变形,并有较长的变形持续时间,便于发现和补救。
脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点fy ,断裂从应力集中处开始。
冶金和机械加工过程中产生的缺陷,特别是缺口和裂缝,常是断裂的发源地。
破坏前没有任 何预兆,破坏时突然发生的,断口平直并呈有光泽的晶粒状。
由于脆性破坏前没有明显的预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大,因此,在设计,施工和使用过程中,应特别注意防止钢结构的脆性破坏。
在破坏前无明显变形,平均应力也小(一般都小于屈服点),没有任何预兆。
局部高峰值应力可能使材料局部拉断形成裂纹;冲击振动荷载;低温状态等可导致脆性破坏。
平直和呈有光泽的晶粒。
突然发生的,危险性大,应尽量避免。
钢结构设计原理复习

钢结构设计原理复习钢结构设计原理是指在建筑工程中,根据一系列原理和规范,通过对结构材料、力学性能、设计要求和施工要求的深入研究,确定结构的形式、尺寸、材料、节点的连接方式和受力状态,以确保结构的安全、经济、美观和实用。
1.强度原理:钢材的强度高于混凝土,因此钢结构设计基于材料的强度原理,即结构在正常使用荷载和极限荷载下应具备足够的抗弯刚度、抗剪刚度、抗扭刚度和程度足够长的安全度。
2.稳定原理:钢结构容易产生稳定性失稳,因此设计时需要考虑构件的稳定性。
通过确定适当的截面形状和尺寸,以及适当的支撑和加强措施,来提高构件和结构的稳定性。
3.构件连接原理:钢结构的构件一般通过焊接、螺栓连接、铆接等方式连接在一起。
在设计中,需要根据结构的受力性质和构件的工作状态,选择合适的连接方式,并设计合理的连接节点,以保证连接强度和刚度。
4.建筑抗震设计原理:钢结构具有良好的抗震性能。
在设计过程中,需要根据地震的地方性、活动性和构件破坏性等因素,确定合适的地震设计参数,采用合适的抗震措施,并通过力学计算和结构分析,验证结构的抗震性能。
5.建筑节能设计原理:钢结构的节能性能主要体现在结构重量轻、抗风能力强、施工速度快等方面。
在设计中,可以通过选择合适的材料、结构形式和布局方式,来提高建筑的节能性能。
6.施工工艺原理:钢结构的施工过程需要考虑到构件的加工、运输、安装等环节。
因此,在设计时需要充分考虑施工工艺的要求,确保结构的施工顺利进行。
7.美观原理:钢结构可以通过合理的形式、色彩和纹理设计,使建筑物具有良好的视觉效果。
在设计中,可以根据建筑用途和环境要求,采用不同的造型和表面处理方式,以提高建筑的美观度。
总之,钢结构设计原理是通过对结构材料、力学性能、设计要求和施工要求的综合考虑,确定结构的形式、尺寸、材料、连接方式和受力状态,以确保结构的安全、经济、美观和实用。
设计人员在实践中应熟练掌握这些原理,并在设计中加以应用,以提高建筑物的质量和性能。
钢结构基本原理总结

钢结构基本原理总结钢结构是指由钢材构成的建筑结构。
其基本原理是通过将不同形状、尺寸和材质的钢构件通过连接件连接在一起,形成一个稳定的结构体系,用以承载和传递荷载。
钢结构具有强度高、刚度好、抗震性能好等优点,因此在建筑领域得到广泛应用。
1.荷载传递原理:钢结构的荷载可以分为静载和动载。
静载是指施加在结构上的固定的荷载,如自重、活载和附加荷载等。
动载是指施加在结构上的可变荷载,如风荷载和地震荷载等。
钢结构通过其成员和节点之间的连接来传递这些荷载。
荷载传递的路径应当尽量直接,以确保荷载能够有效地传递到基础上。
2.梁的受力原理:钢梁是钢结构的主要受力构件之一,其受力原理是通过梁上的截面形状、尺寸和材质来承担荷载。
梁在受到荷载作用时,产生弯曲变形,其中上部受压,下部受拉。
为了提高梁的承载能力,可以在梁的形状上进行优化设计,如增加剪力板、加强型钢等。
3.柱的受力原理:钢柱是钢结构的主要受力构件之一,其受力原理是通过柱的截面形状、尺寸和材质来承担荷载。
柱在受到荷载作用时,产生压力和弯矩,其中上部受压,下部受拉。
为了提高柱的承载能力,可以在柱的形状上进行优化设计,如增加加强筋、加强型钢组合等。
4.连接的设计原理:钢结构的连接件起着连接和传递力的作用。
连接是钢结构设计中的一个重要环节,直接关系到结构的安全性和稳定性。
连接的设计原则是保证连接的强度、刚度和稳定性。
常见的连接方式有焊接、螺栓连接和铆接等。
连接的设计应根据受力特点和要求,选择合适的连接方式和连接尺寸。
5.抗震设计原理:钢结构由于其材料的高强度和刚度,具有良好的抗震性能。
抗震设计原理是通过在结构中设置剪力墙、抗侧撑、斜撑等抗震构件,提高结构的抗震能力。
此外,抗震设计还包括结构的形式选择、受力构件的尺寸和材质选取、节点的设计等。
总之,钢结构的基本原理包括荷载传递、梁的受力原理、柱的受力原理、连接的设计原理和抗震设计原理等。
这些原理相互关联,共同保证了钢结构的安全性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构的特点:1.钢材强度高、塑性和韧性好2.钢结构的重量轻3.材质均匀,和力学计算的假定比较符合4.钢结构制作简便,施工工期短5.钢结构密闭性好6.钢结构耐腐蚀性差7.钢材耐热但不耐火8.钢结构可能发生脆性断裂钢结构的破坏形式钢材有两种性质完全不同的破坏形式,即塑性破坏和脆性破坏。
钢结构所用材料虽然有较高的塑性和韧性,但一般也存在发生塑性破坏的可能,在一定条件下,也具有脆性破坏的可能。
塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉强度fu 后才发生。
破坏前构件产生较大的塑性变形,断裂后的断口呈纤维状,色泽发暗。
在塑性破坏前,构件发生较大的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。
另外,塑性变形后出现内里重分布,使结构中原先受力不等的部分应力趋于均匀,因而提高了结构的承载能力。
构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形并断裂。
常温及静态荷载作用下,一般为塑性破坏。
破坏时构件有明显的颈缩现象。
常为杯形,呈纤维状,色泽发暗。
在破坏前有很明显的变形,并有较长的变形持续时间,便于发现和补救。
脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点fy ,断裂从应力集中处开始。
冶金和机械加工过程中产生的缺陷,特别是缺口和裂缝,常是断裂的发源地。
破坏前没有任 何预兆,破坏时突然发生的,断口平直并呈有光泽的晶粒状。
由于脆性破坏前没有明显的预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大,因此,在设计,施工和使用过程中,应特别注意防止钢结构的脆性破坏。
在破坏前无明显变形,平均应力也小(一般都小于屈服点),没有任何预兆。
局部高峰值应力可能使材料局部拉断形成裂纹;冲击振动荷载;低温状态等可导致脆性破坏。
平直和呈有光泽的晶粒。
突然发生的,危险性大,应尽量避免。
低碳钢的应力应变曲线:1.弹性阶段:OA 段:纯弹性阶段εσE = A 点对应应力:p σ(比例极限)AB 段:有一定的塑性变形,但整个OB 段卸载时0=ε B 点对应应力:e σ(弹性极限)2.屈服阶段:应力与应变不在呈正比关系,应变增加很快,应力应变曲线呈锯齿波动,出现应力不增加而应变仍在继续发展。
其最高点和最低点分别称为上屈服点和下屈服点;下屈服点稳定,设计中以下屈服点为依据。
3.强化阶段:随荷载的增大,应力缓慢增大,但应变增加较快。
当超过屈服台阶,材料出现应变硬化,曲线上升,至曲线最高处,这点应力fu 称为抗拉强度或极限强度。
4.颈缩阶段:截面出现了横向收缩,截面面积开始显著缩小,塑像变形迅速增大,应力不断降低,变形却延续发展,直至F 点试件断裂。
疲劳破坏:钢材的疲劳断裂是微观裂纹在连续反复荷载作用下不断扩展直至断裂的脆性破坏。
钢材的疲劳强度取决于构造状况(应力集中程度和残余应力)、作用的应力幅、反复荷载的虚幻次数,而和钢材的静力强度无明显关系。
钢结构的连接方法:焊接连接:不削弱构件截面,构造简单,节约钢材,焊缝处薄。
弱铆钉连接:塑性和韧性极好,质量容易检查和保证,费材又费工。
螺栓连接:操作简单便于拆卸。
焊接连接的优点:1.焊件间可以直接相连,构造简单,制作加工方便2.不削弱截面,节省材料3.连接的密闭性好,结构的刚度大4.可实现自动化操作,提高焊接结构的质量。
缺点:1.焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆2.焊接残余应力和残余变形使受压构件承载力降低3.焊接结构对裂纹很敏感,局部裂纹一旦发生,容易扩展至整个截面,低温冷脆问题也比较突出。
焊接连接通常采用的方法为电弧焊(包括手工电弧焊)自动(半自动)埋弧焊和气体保护焊。
侧面角焊缝主要承受剪力,塑性较好,应力沿焊缝长度方向的分布不均匀,呈两端打而中间小的状态。
焊缝越长,应力分布不均匀性越显著,但临界塑性工作阶段时,产生应力重分布,可使应力分布的不均与现象渐趋缓和。
焊脚不能过小:否则焊接时产生的热量较小,而焊件厚度较大,致使施焊是冷却速度过快,产生淬硬组织,导致母材开裂。
焊脚不能过大:1.较薄焊件容易烧穿或过烧2.冷却时的收缩变形加大,增大焊接应力,焊件容易出现翘曲变形 计算长度不能过小:1.焊件的局部加热严重,焊缝起灭狐所引起的缺陷相距较近,及可能的其他缺陷使焊缝不够可靠。
对于搭接连接的侧面角焊缝而言,由于力线弯折大,也会造成严重的应力集中。
不能过长:侧面角焊缝在弹性阶段沿长度方向受力不均匀,两端大而中间小,焊缝越长,应力集中越明显。
焊接残余应力对结构性能的的影响:1.焊接应力不会影响结构的静力强度2.焊接应力的存在增大了结构的变形,故降低了结构的刚度。
3.焊接应力必定会降低受压构件的稳定承载力4.在厚板或具有交叉焊缝的强狂下,将产生三向焊接拉应力。
阻碍了塑性变形的发展,增加了钢材在低温下的脆断倾向。
5.会对结构的疲劳强度有明显的不利影响。
普通螺栓连接的工作性能:抗剪连接时最常见的螺栓连接。
在抗剪试验中,试件由零载一直加载至连接破坏的全过程,经历了以下三个阶段:1.弹性阶段:施加荷载之初,连接中的剪力较小,荷载靠板件接触面间的摩擦力传递,螺栓杆与孔壁之间的间隙保持不变2.相对滑移阶段:当荷载增大,连接中的剪力达到板件间摩擦力的最大值,板件间产生相对滑移,其最大滑移量为螺栓杆与孔壁之间的间隙,直至螺栓杆与孔壁接触3.弹塑性阶段:荷载继续增加,连接所承受的外力主要靠螺栓与孔壁接触传递。
螺栓杆主要受剪力外,还承受弯矩和轴向拉力,而孔壁则受到挤压。
由于材料的弹性,也由于螺栓杆的伸长受到螺帽的约束,增大了板件间的压紧力,使板件间的摩擦力增大,曲线呈上升状态。
荷载继续增加,在此阶段即使有很小的增量,连接的剪切变形也迅速加大,直到连接的最后破坏。
螺栓抗剪连接达到极限承载力时,可能的破坏形式:1.螺杆剪断:螺栓杆直径较小而板件较厚2.孔壁挤压破坏:直径较大、板件较薄3.构件拉断:板件截面可能因为螺栓孔削弱太多而被拉断4.端部钢板冲剪破坏:端距太小,端距范围内的板件可能会被螺栓杆冲剪破坏。
前三种似乎通过计算避免破坏,第四种通过构造方法避免高强度螺栓连接的工作性能:高强度螺栓连接和普通螺栓连接的主要区别在于普通螺栓连接在受剪时依靠螺栓栓杆承压和抗剪来传递剪力,在拧紧螺帽是螺栓产生的预拉力很小,其影响可以忽略。
而高强度螺栓除了其材料强度高之外,拧紧螺栓还施加很大的预拉力,使被连接板件的接触面之间产生压紧力,因而板件间存在很大的摩擦力。
预拉力、连接板件抗滑移系数和钢材种类都直接影响其承载力。
高强螺栓受剪受拉强度中,受拉强度较大。
由于预拉力作用,板件间在承受荷载前已经存在较大的压紧力,拉力作用首先要抵消这种压紧力。
轴心受力构件的设计应同时满足承载能力极限状态和正常使用极限状态的要求。
轴心受拉构件的设计需要分别进行强度和刚度的计算,轴心受压构件的设计需要进行强度、整体稳定、局部稳定和刚度计算。
轴心受力构件的刚度通过限制其长细比来保证。
理想轴心受压构件:假设构件完全挺直,荷载沿构件形心轴作用,在受荷之前构件无初始应力、初弯曲和初偏心等缺陷,截面沿构件时均匀的。
三种屈曲形式丧失稳定:1.弯曲屈曲:构件的截面只绕一个主轴旋转,构件纵轴有直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。
(工字形)2.扭转屈曲:失稳时构件除支承端外的各截面均绕纵轴扭转(十字形截面)3.弯扭屈曲:单轴对称截面构件绕对称轴屈曲是,在发生弯曲变形的同时必然伴随着扭转(T 形)工字形截面受压翼缘翼缘板外伸部分的宽厚比与长细比的关系:yf t b 235)1.010(1λ+≤ λ取构件两方向长细比的较大值,小于30取30,大于100取1001.长细比2.钢种双肢缀条式格构式构件的换算长细比:12027A A x x +=λλ(也是等稳法则的稳定条件。
靠虚轴、实轴等稳即等稳法则。
)x λ整个构件对虚轴的长细比 A1一个节间内两侧斜缀条毛截面面积之和折算应力:f c c 12223βτσσσσ≤+-+1.12.1 31111222====≤+-+βσσβσσψσσβτσσσσ同号时,和当异号时,和当c c wc n x c c It F y I M f(στ c σ腹板计算高度边缘同一点的弯曲正应力、剪应力和局部压应力)6.0φb ϕ时梁已进入非弹性工作阶段,整体稳定临界应力有明显降低,必须对其修正。
0.1282.007.1≤-=⋅b b ϕϕ 当1===⋅y b b f σϕϕ即y f =σ则控制构件强度用fy 来控制而不用σ受压翼缘板的外伸部分为三边简支板:yf t b 235131≤ 当梁在弯曲Mx 作用的强度按弹性计算:y f t b 235151≤ t 为翼缘板的厚度,b1翼缘板的外伸宽度弯曲应力、剪应力和局部压应力共同作用下,计算腹板的局部稳定是,首先应布置加劲肋(增加局部稳定),然后进行局部稳定计算,若不满足要求,应调整加劲肋间距重新验算。
不考虑腹板屈曲后强度时,组合梁腹板宜按下列规定配置加劲肋:1、当y w f t h 235800≤时,可不配置横向加劲肋。
有局部压应力时构造配置。
2、当y w f t h 235800>时,按计算配置横向加劲肋 。
3、当y w f t h 2351700≥(受压翼缘受到约束,如连有刚性铺板),同时配置横向加劲肋和纵向加劲肋。
当y w f t h 2351500≥(其他情况),同时配置横向加劲肋和纵向加劲肋。
任何情况下要求y w f t h 2352500≤ 加劲肋的间距0025.0h a h ≤≤。