电磁场期末考试复习题及参考答案-专升本

合集下载

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。

2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。

3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。

4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。

5.已知球坐标系中单位矢量 。

6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。

7.点电荷q 在自由空间任一点r 处电场强度为 。

8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。

9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。

10.已知任意一个矢量场A ,则其旋度的散度为 。

11.真空中静电场的基本方程的微分形式为 、 、 。

12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。

13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。

14.任意一个标量场u ,则其梯度的旋度为 。

15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。

16.介质中静电场的基本方程的积分式为 , , 。

17.介质中恒定磁场的基本方程的微分形式为 、 、 。

18.介质中恒定磁场的基本方程的积分式为 , , 。

19.静电场中两种介质分界面的边界条件是 , 。

20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。

21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。

22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。

答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。

答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。

(完整版)电磁场期末试题

(完整版)电磁场期末试题

电磁场与电磁波期末测验题一、判断题:(对的打√,错的打×,每题2分,共20分)1、标量场在某一点梯度的大小等于该点的最大方向导数。

(√)2、真空中静电场是有旋矢量场。

(×)3、在两种介质形成的边界上,电场强度的切向分量是不连续的。

(×)4、当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。

(√)5、在理想导体中可能存在恒定电场。

(×)6、真空中恒定磁场通过任一闭合面的磁通为零。

(√)7、时变电磁场是有旋有散场。

(√)8、非均匀平面波一定是非TEM 波。

(×)9、任意取向极化的平面波可以分解为一个平行极化波与一个垂直极化波的合成 (√)10、真空波导中电磁波的相速大于光速。

(√)二、简答题(10+10=20分)1、简述静电场中的高斯定律及方程式。

答:真空中静电场的电场强度通过任一闭合曲面的电通等于该闭合曲面所包围的电荷量与真空介电常数之比。

⎰=⋅S S E 0d εq2、写出麦克斯韦方程的积分形式。

答:S D J l H d )(d ⋅∂∂+=⋅⎰⎰S l t S B l E d d ⋅∂∂-=⋅⎰⎰S lt 0d =⋅⎰S S Bq S=⋅⎰ d S D三、计算题(8+8+10+10+12+12)1 若在球坐标系中,电荷分布函数为⎪⎩⎪⎨⎧><<<<=-b r b r a a r 0, ,100 ,03ρ试求b r a a r <<<< ,0及b r >区域中的电通密度D 。

解 作一个半径为r 的球面为高斯面,由对称性可知r e D s D 24d rq q s π=⇒=⋅⎰ 式中q 为闭合面S 包围的电荷。

那么在a r <<0区域中,由于q = 0,因此D = 0。

在b r a <<区域中,闭合面S 包围的电荷量为()3333410d a r v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a r -=- 在b r >区域中,闭合面S 包围的电荷量为()3333410d a b v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a b -=- 2 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。

电磁学期末复习题参考答案

电磁学期末复习题参考答案

选择题答案:填空题答案:70.静电场中某点的电场强度,其大小和方向与(单位正试验电荷在该点所受的静电力相同).71.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_______0______.72.,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为.73.两个平行的“无限大”均匀带电平面, σ和+2A 、B 、C 三个区域的电场强度分别为:E A =,E B =,E C =设方向向右为正).74.真空中一半径为R Q (Q S (连同电荷),如图所示,假设不影响其他处原来的电荷分布,则挖去△S 后球心处电场强度的大小E,其方向为_(由球心指向△S )__.75.一均匀带正电的导线,电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量).76.静电场中某点的电势,其数值等于_单位正试验电荷在该点的电势能___或 _把单位正电荷由该点沿任意路_径移到零势点时电场力所作的功__.77.图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离,这是由_半径为R 的无限长均匀带电圆柱面___产生的电场.78.真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0= 0,电势U 0= .(选无穷远处电势为零)79.把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r2,则半径为R (r 1<R <r 2=的球面上任一点的场强大小E 变为_0_;电势U 由选无穷远处为电势零点).80.如图所示,r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = 10 cm ___.81.半径为0.1 m 的孤立导体球其电势为300 V ,则离导体球中心30 cm 处的电势U = 100V (以无穷远为电势零点).82.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =7102-⨯-.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )83.如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点电场力作功为____0____________;从d 点移到无穷远处的过程中,电场力作功为.84.图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷R BA =.现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电功为.85.在静电场中,一质子(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =-8.0×10-15 J .设A 点电势为零,则B 点电势U =-5×104V .86.一电子和一质子相距2×10-10 m (两者静止),将此两粒子分开到无穷远距离(两者仍静止)所需要的最小能量是_7.2_eV . (41επ=9×109 N ·m 2/C 2 , 质子电荷e =1.60×10-19 C, 1 eV=1.60×10-19J )的静电场中,若选取与点电荷距离为r 0的一点为电势零点,则点电荷距离为r 处的电势U = 88.如图所示,在场强为E 的均匀电场中,A 、B 两点间距离为d .AB 连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =Ed .+σ +2σABCS89.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =-8×10-15 J ;若设a 点电势为零,则b 点电势U b =5×104V 90.真空中,一边长为a 的正方形平板上均匀分布着电荷q ;在其中垂线上距离平板d 处放一点电荷q 0如图所示.在d 与a 满足____d >>a___条件下,q 0所受的电场力可写成q 0q / (4πε0d 2).91.一电矩为p 的电偶极子在场强为E 的均匀电场中,p 与E间的夹角为α,则它所受的电场力F =0,力矩的大小M =__pEsin α__.92.d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U .93.+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为_-q __,电场分布的范围是_球壳外的整个空间. 94.带有电荷q 、A ,与一原先不带电、内外半径分别为rB 和r C同心放置如图.则图中P点的电场强度E A 、B 连接起来,则A 球的电势U (设无穷远处电势为零) 95.半径为R 1和R 2εr +λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D ,电场强度的大小 E96. 1、21的两极板间,如图所示, 则电容器2的电压U 2,电场能量W 2如何变化?(填增大,减小或不变) U 2减小,W 2减小97. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动心所产生的磁感强度B =_6.67×10-7T __,该带电轨道运动的磁矩p m .(μ0=4π×10-7 H ·m -1) 98.y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)__沿Z 轴负向____. 99.如图,′两点,并在很远处与电源相连,则环中心的磁感强度为_0__.100.如图所示,有两个半径相同的均匀带电绝缘体球面,O 1为左侧球面的球心,带的是正电;O 2为右侧球面的球心,它带的是负电,两者的面电荷密度相等.当它们绕21O O 轴旋转时,两球面相切处A 点的磁感强度B A =__0___.101.一长直螺线管是由直径d = 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A 的电流时,其内部的磁感强度B =_T 310-⨯π_.(忽略绝缘层厚度)(μ0 =4π×10-7 N/A 2)102. 两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅l Bd 等于:-μ0I (对环路a ).__0__(对环路b ). 2μ0I (对环路c ).103.如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q以速度v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为__0______带电粒子上的力为__0______.104.两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是1:2,运动轨迹半径之比是1:2.105. 如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd (磁场以边框为界).而a 、b 、c 三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a 缺口沿ad 方向射入磁场区域,若b 、c 两缺口处分别有电子射出,则此两处出射电子的速率之比v b /v c =1:2.106.(半径为R )通有电流I中.线圈所受磁力矩的大小为,方向为_在图面中向上,Oa 0c107.有两个竖直放置彼此绝缘的圆形刚性线圈(它们的直径几乎相等),互相垂直的位置上.若给它们通以电流(如图),则它们转动的最后状态是_ 108.如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I 磁且B 与导线所在平面垂直.则该载流导线bc 所受的磁力大小. 109.一弯曲的载流导线在同一平面内,形状如图(穷远来到无穷远去),则O 点磁感强度的大小是. 110.在xy 平面内,有两根互相绝缘,(如图),则在xy111. (1) B 0_______.112.一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感强度大小为,方向为 垂直于纸面向里.113.用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A ,B 的变化率应为d B /d t =__3.185 T /S _.114.一段导线被弯成圆心在O 点、半径为R 的三段圆弧ab 、bc 、ca ,它们构成了一个闭合回路,ab位于xOy 平面内,bc 和ca 分别位于另两个坐标面中(如图).均匀磁场B沿x 轴正方向穿过圆弧bc设磁感强度随时间的变化率为K (K >0),则闭合回路abca 中感应电动势的bc 中感应电流的方向是 由C 流向b115.半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin ωt ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为)cos(02t nI a m ωωμπ-.116.已知在一个面积为S的平面闭合线圈的范围内,有一随时间变化的均匀磁场)(t B,则此闭合线圈内的感应电动势.117.如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U ac=__θsin vBl __________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较,是____a ____点电势高.118.四根辐条的金属轮子在均匀磁场B 中转动,转轴与BR ,轮子转速为n ,则轮子中心O 与轮边缘b _O _处.119.一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将_____减小_____.120.一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400 V , 则线圈的自感系数为L =0.4 H .yx ×× ×× ×xy。

电磁场期末考试试题

电磁场期末考试试题

三、简答题1、说明静电场中的电位函数,并写出其定义式。

答:静电场是无旋的矢量场,它可以用一个标量函数的梯度表示,此标量函数称为电位函数(3 分)。

静电场中,电位函数的定义为grad ϕϕ=-=-∇E (3 分) 2、什么叫集肤效应、集肤深度?试写出集肤深度与衰减常数的关系式。

高频率电磁波传入良导体后,由于良导体的电导率一般在107S/m 量级,所以电磁波在良导体中衰减极快。

电磁波往往在微米量级的距离内就衰减得近于零了。

因此高频电磁场只能存在于良导体外表的一个薄层内, 这种现象称为集肤效应(Skin Effect)。

电磁波场强振幅衰减到外表处的1/e 的深度,称为集肤深度(穿透深度), 以δ表示。

集肤深度 001E e E eαδ-=⋅ ⇒ 1δα=3、说明真空中电场强度和库仑定律。

答:电场强度表示电场中某点的单位正试验电荷所受到的力,其定义式为:()()r r q=F E (3 分)。

库仑定律是描述真空中两个静止点电荷之间相互作用的规律,其表达式为:'20=4Rq qR e πεF (3 分)。

4、用数学式说明梯度无旋。

答:x y z x y zϕϕϕϕ∂∂∂∇=++∂∂∂e e e (2 分) ()xy zx y z xyzϕϕϕϕ∂∂∂∇⨯∇=∂∂∂∂∂∂∂∂∂e e e (2 分) 222222()()()x y z z y z y x z x z x y x yϕϕϕϕϕϕ∂∂∂∂∂∂=---+-∂∂∂∂∂∂∂∂∂∂∂∂e e e (2 分)0=()0ϕ∴∇⨯∇=5、什么是真空中的高斯定理?请利用高斯定理求解下面问题:假设真空中有半径为a 的球形带电体,电荷总量Q 均匀分布在球体内,求任意点的电场强度。

0()SQE r dS ε=⎰分析:电场方向垂直于球面。

电场大小只与r 有关。

在球外区域:r>a()SQE r dS ε=⎰2()(4)r QE r r πε⇒⋅=a 204r Q E r πε⇒=⋅a在球内区域:r<a由334Q QV aρπ== 因为0'()S Q E r dS ε=⎰得 32043()(4)r r E r r ρππε⋅⋅=a 30034r r r Qr E aρεπε⇒==⋅a a 6、试解释坡印亭矢量的物理意义?答:坡印亭矢量E×H 相当于功率流的面密度,(3分)即垂直于功率流动方向单位面积上流过的电磁场功率.(3分)7、为什么说体电荷密度就是电荷的体密度,而体电流密度不是电流的体密度?8、什么是高斯定理?在电场具有什么特征时可以用它来求解静电场问题?.S d D s⎰⋅=q当电场具有对称性质时,可以用来求解静电场。

电磁场期末考试试题

电磁场期末考试试题

电磁场期末考试试题一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 299,792,458 m/sB. 3.0 x 10^8 m/sC. 1.0 x 10^8 m/sD. 9.0 x 10^7 m/s2. 麦克斯韦方程组中描述磁场变化产生电场的方程是:A. ∇ × E = -∂B/∂tB. ∇ × B = ∂E/∂tC. ∇ × E = ∂B/∂tD. ∇ × B = -∂E/∂t3. 在静电场中,电场强度与电势的关系是:A. E = -∇VB. E = ∇VC. E = ∇×VD. E = -∇×V4. 以下哪个不是电磁波的类型?A. 无线电波B. 可见光C. X射线D. 声波5. 根据洛伦兹力公式,一个带电粒子在磁场中运动时受到的力是:A. F = qvBC. F = qB × vD. F = q × (v × B)6. 以下哪个是描述电磁波的偏振性质的?A. 频率B. 波长C. 振幅D. 方向7. 电磁波在介质中的传播速度与真空中相比:A. 总是更大B. 总是更小C. 取决于介质的折射率D. 无法确定8. 一个闭合电路中的感应电动势与磁通量变化的关系由以下哪个定律描述?A. 欧姆定律B. 法拉第电磁感应定律C. 基尔霍夫电压定律D. 基尔霍夫电流定律9. 在电磁场理论中,以下哪个不是电磁波的属性?A. 频率B. 波长C. 质量D. 能量10. 以下哪个是描述电磁波在介质中传播时波速变化的公式?A. v = c/nC. v = c + nD. v = n/c二、简答题(每题5分,共20分)1. 简述麦克斯韦方程组的四个基本方程及其物理意义。

2. 解释什么是电磁波的色散现象,并给出一个例子。

3. 说明什么是电磁感应,并给出一个实际应用的例子。

4. 描述电磁波在不同介质中的传播特性。

电磁场期末考试题及答案

电磁场期末考试题及答案

电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。

A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。

A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。

A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。

A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。

B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。

A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。

A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。

A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。

A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。

A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。

2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。

答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。

答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。

电磁场考试试题及答案

电磁场考试试题及答案

电磁场考试试题及答案一、选择题1. 下列哪个物理量不是描述电磁场的基本量?A. 电场强度B. 磁感应强度C. 电势D. 磁化强度2. 静电场的本质特征是:A. 磁场产生于电场B. 电场产生于静电荷C. 电场与磁场相互作用D. 电场与静电荷相互作用3. 关于电磁场的能量密度,以下说法正确的是:A. 电磁场的能量密度只与电场强度有关B. 电磁场的能量密度只与磁感应强度有关C. 电磁场的能量密度与电场和磁感应强度都有关D. 电磁场的能量密度与电荷和电流有关4. 电磁波中电场和磁场的相互关系是:A. 电场和磁场以90°的相位差波动B. 电场和磁场以180°的相位差波动C. 电场和磁场处于同相位波动D. 电场和磁场没有固定的相位关系5. 有一根长直导线,通有电流,要使其产生的磁场最强,应将观察点放置在:A. 导线的外侧B. 导线的内侧C. 导线的中央D. 对称轴上二、填空题1. 电荷为2μC的点电荷在距离它10cm处的电场强度大小为______ N/C。

2. 一根长度为50cm的直导线通有5A的电流,它产生的磁感应强度大小为______ T。

三、简答题1. 什么是电磁场?它的基本特征是什么?电磁场是一种通过电荷和电流相互作用而产生的物质场。

它基于电荷和电流的特性,表现为电场和磁场的存在和相互作用。

电磁场的基本特征包括:电场与静电荷相互作用,磁场与电流相互作用,电磁场遵循麦克斯韦方程组等。

2. 电场与磁场有何区别和联系?电场是由电荷产生的一种物质场,描述电荷对其他电荷施加的作用力的特性。

而磁场则是由电流产生的一种物质场,描述电流对其他电流施加的作用力的特性。

电场和磁场之间存在密切的联系,根据麦克斯韦方程组的推导可知,变化的电场会产生磁场,而变化的磁场也会产生电场。

3. 什么是电磁波?其特点是什么?电磁波是由电场和磁场相互耦合在空间中传播的波动现象。

其特点包括:- 电磁波是横波,电场与磁场的振动方向垂直于波传播方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场》复习题一、填空题1. 在两种均匀导体的界面上,电流密度 j 的切线分量是否连续? ;电流密度 j 的法线分量是否连续? 。

2、某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的 形式3、两个同性电荷之间的作用力是 。

4、根据电磁波在波导中的传播特点,波导具有 滤波器的特点。

(HP ,LP ,BP 三选一)5、矢量z y x e e eA ˆˆˆ++= 的大小为 。

6、从场角度来讲,电流是电流密度矢量场的 。

7、一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为 。

8、电介质中的束缚电荷在外加 作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。

9、法拉第电磁感应定律的微分形式为10、电场强度可表示为_ __的负梯度。

11、一个回路的自感为回路的_ _与回路电流之比。

12、电流连续性方程的积分形式为13、反映电磁场中能量守恒与转换规律的定理是14、一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为 。

15、电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。

16、法拉第电磁感应定律的微分形式为17、由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 。

18、若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为 。

19、从矢量场的整体而言,无散场的 不能处处为零。

二、选择题1、静电场是 ( )A.无散场B.旋涡场C.无旋场D.既是有散场又是旋涡场2、图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U 为静电势) ( )A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系C 、半径为R 的均匀带正电球体电场的U-r 关系D 、半径为R 的均匀带正电球面电场的U-r 关系3、导体在静电平衡下,其内部电场强度 ( )∞orA.为零B.为常数C.不为零D.不确定4、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定( )A 、高斯面上各点场强均为零B 、穿过整个高斯面的电通量为零C 、穿过高斯面上每一面元的电通量为零D 、以上说法都不对5、下列说法正确的是 ( )A 、 闭合曲面上各点场强为零时,面内必没有电荷B 、闭合曲面的电通量为零时,面上各点场强必为零C 、闭合曲面内总电量为零时,面上各点场强必为零D 、通过闭合曲面的电通量仅决定于面内电荷6、电位移矢量与电场强度之间的关系为( )A.0D E ε=B.0E D ε=C.D E σ=D.E D σ=7、导体在静电平衡下,其内部电场强度( )A.为常数B.为零C.不为零D.不确定8、矢量磁位的旋度是( )A.磁场强度B.电位移矢量C.磁感应强度D.电场强度9、平行板电容器极板间电介质有漏电时,则在其介质与空间分界面处( )A.E 连续B. D 连续C. J 的法线分量连续D. J 连续10、如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为( )A 、 2021r 4Q Q πε+B 、+πε2101R 4Q 2202R 4Q πε C 、201r4Q πε D 、0 三、简述题1、坡印廷定理2、试简述唯一性定理,并说明其意义3、位移电流的表达式,它的提出有何意义4、试推导静电场的泊松方程。

5、什么是电磁波的极化?极化分为哪三种?6、试简述磁通连续性原理,并写出其数学表达式四、计算题1两点电荷,位于轴上处,位于轴上处,求空间点处的:(1) 电位;(2) 求出该点处的电场强度矢量。

2、无限长直线电流I 垂直于磁导率分别为21μμ和的两种磁介质的交界面,如图1所示。

试(1) 写出两磁介质的交界面上磁感应强度满足的方程(2) 求两种媒质中的磁感应强度21B B 和。

C 41-=q x 4=x C 42=q 4=y ()4,0,03、矢量函数z x e yz e yx A ˆˆ2+-= ,试求(1)A ⋅∇(2)A ⨯∇ 4、方程222),,(z y x z y x u ++=给出一球族,求(1)求该标量场的梯度;(2)求出通过点()0,2,1处的单位法向矢量。

五、综合题1、证明矢位和给出相同得磁场并证明它们有相同的电流分布,它们是否均满足矢量泊松方程?为什么?2、电磁波在真空中传播,其电场强度矢量的复数表达式为)/(10)(204m V e je e E z j y x π---=试求:(1) 工作频率f ;(2) 磁场强度矢量的复数表达式;(3) 坡印廷矢量的瞬时值和时间平均值;1cos sin x y A e y e x =+2(sin sin )y A e x x y =+B 图1 1B 2B 1μ 2μ参考答案一、填空题1、在两种均匀导体的界面上,电流密度 j 的切线分量是否连续? 连续 ;电流密度 j 的法线分量是否连续? 不连续 。

2、某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的 梯度 形式。

3、两个同性电荷之间的作用力是 相互排斥的 。

4、根据电磁波在波导中的传播特点,波导具有 HP 滤波器的特点。

(HP ,LP ,BP 三选一)5、矢量z y x e e eA ˆˆˆ++= 6.从场角度来讲,电流是电流密度矢量场的 通量 。

7.一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为 2a I p m π= 。

8.电介质中的束缚电荷在外加 电场 作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。

9、法拉第电磁感应定律的微分形式为 tB E ∂∂-=⨯∇ 10、电场强度可表示为_标量函数__的负梯度。

11、一个回路的自感为回路的_自感磁链_与回路电流之比。

12、 •dS j =-dt dq 13、 反映电磁场中能量守恒与转换规律的定理是 坡印廷定理14、一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为2a I p m π= 。

15、电磁波从一种媒质入射到理想导体表面时,电磁波将发生 全反射 。

16、法拉第电磁感应定律的微分形式为 tB E ∂∂-=⨯∇ 17、由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为静电场 。

18、若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为线极化 。

19、从矢量场的整体而言,无散场的 旋度 不能处处为零。

二、选择题1、静电场是 ( C )A.无散场B.旋涡场C.无旋场D.既是有散场又是旋涡场2、图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U 为静电势) ( B )B 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系∞orC 、半径为R 的均匀带正电球体电场的U-r 关系D 、半径为R 的均匀带正电球面电场的U-r 关系3、导体在静电平衡下,其内部电场强度( A )A.为零B.为常数C.不为零D.不确定4、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定( B )A 、高斯面上各点场强均为零B 、穿过整个高斯面的电通量为零C 、穿过高斯面上每一面元的电通量为零D 、以上说法都不对5、下列说法正确的是 ( D )A 、闭合曲面上各点场强为零时,面内必没有电荷B 、闭合曲面的电通量为零时,面上各点场强必为零C 、闭合曲面内总电量为零时,面上各点场强必为零D 、通过闭合曲面的电通量仅决定于面内电荷6、电位移矢量与电场强度之间的关系为( A )A.0D E ε=B.0E D ε=C.D E σ=D.E D σ=7、导体在静电平衡下,其内部电场强度( B )A.为常数B.为零C.不为零D.不确定8、矢量磁位的旋度是( C )A.磁场强度B.电位移矢量C.磁感应强度D.电场强度9、平行板电容器极板间电介质有漏电时,则在其介质与空间分界面处( C )A.E 连续B. D 连续C. J 的法线分量连续D. J 连续10、如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为( D)A 、 2021r 4Q Q πε+B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 三、简述题略四、计算题1解:(1)空间任意一点()z ,y ,x 处的电位为:()()()22202222014444z y x q z y x q z ,y ,x +-++++-=πεπεφ将400===z ,y ,x ,C 41-=q ,C 42=q 代入上式得空间点()4,0,0处的电位为:()0400=,,φ(2)空间任意一点()z ,y ,x 处的电场强度为232021310144r r q r r q E πεπε+=其中,()z y x e ˆz e ˆy eˆx r ++-=41 , ()z y x e ˆz e ˆy e ˆx r +-+=42将400===z ,y ,x ,C 41-=q ,C 42=q 代入上式2421==r rz x e ˆeˆr 441+-= z y e ˆe ˆr 442+-= 空间点()4,0,0处的电场强度()y x ee r r q r r q E ˆˆ6424402320213101-=+=πεπεπε 2、解:(1)磁感应强度的法向分量连续n n B B 21=根据磁场强度的切向分量连续,即t t H H 21=因而,有 2211μμtt B B =(2)由电流在区域1和区域2中所产生的磁场均为ϕeˆ,也即是分界面的切向分量,再根据磁场强度的切向分量连续,可知区域1和区域2中的磁场强度相等。

由安培定律I l d H C =⋅⎰得 r IH π2=因而区域1和区域2中的磁感应强度分别为 rI e B πμϕ2ˆ11= rI e B πμϕ2ˆ22= 3、答案:(1)y xy zA y A x A A zy x +-=∂∂+∂∂+∂∂=⋅∇2(2) 22ˆˆ0ˆˆˆx e z e yzyx z y xe e e A z x z y x+=-∂∂∂∂∂∂=⨯∇ 4、答案: (1)z e y e x e z u e y u e x u e u z y x z y x2ˆ2ˆ2ˆˆˆˆ++=∂∂+∂∂+∂∂=∇ (2)uu n ∇∇=ˆ 所以52ˆˆ1644ˆ2ˆˆy x y x e ee en +=++=五、综合题1、证明:与给定矢位相应的磁场为11(cos sin )cos sin 0x y z z e e e B A e x y x y z y x ⎛⎫ ⎪∂∂∂ ⎪=∇⨯==+ ⎪∂∂∂ ⎪ ⎪⎝⎭ 22(cos sin )0sin sin 0x y z z e e e B A e x y x y z x x y ⎛⎫ ⎪∂∂∂ ⎪=∇⨯==+ ⎪∂∂∂ ⎪ ⎪+⎝⎭所以,两者的磁场相同.与其相应的电流分布为110011(cos sin )x y J A e y e x μμ=∇⨯=+ 220011(cos sin )x y J A e y e x μμ=∇⨯=+可以验证,矢位1A 满足矢量泊松方程,即 22101(cos sin )(cos sin )x y x y A e y e x e y e x J μ∇=∇+=-+=-但是 矢位2A 不满足矢量泊松方程.即 22202[(sin sin )](sin sin )y y A e x x y e x x y J μ∇=∇+=-+≠- 这是由于2A 的散度不为0,当矢位不满足库仑规范时,矢位与电流的关系为 222202()A A A J μ∇⨯∇⨯=-∇+∇∇=可以验证,对于矢位2A ,上式成立,即222()(sin sin )(cos )y A A e x x y x y -∇+∇∇=++∇ 02(sin sin )cos sin sin cos y x y y x e x x y e y e x ye x e y J μ=++-=+=2、。

相关文档
最新文档